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• Motivation

• Decision Diagrams for Integer Programming

– incorporate DD bounds in MIP search

– cut generation

– outer approximation for MINLP

• Conclusions
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arc with label 0 arc with label 1

BDD: binary decision diagram
MDD: multi-valued decision diagram
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• Relaxed Decision Diagrams have limited width: polynomial size

• Over-approximation of feasible set: dual bound

Relaxed Decision Diagrams
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upper bound: 3

[Andersen et al. 2007]

[Bergman et al. 2011, 2014]



• Sequencing and routing problems

– single machine scheduling with setup times, time windows, precedence 

constraints (including TSPTW)

• Decomposition and embedding in MIP models

– nonlinear objective functions [Bergman&Cire, MgtSc 2018]

– column generation 

• Combinatorial optimization

– MISP, MAX-CUT, MAX-2SAT, …

• Constraint Programming

– DD-based constraint propagation [Andersen et al. CP2007] [Hoda et al. CP2010]

Categories of Successful Applications

6

[CPAIOR 2011, 2012] [IJOC 2014, 2016] [J Heur 2014]

[Morrison et al. IJOC 2016] [Kowalczyk & Leus IJOC 2018]

[Cire & vH, OR2013], [Kinable et al. EJOR 2017]

[O’Neil & Hoffman, ORL2019]
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[Tjandraatmadja, PhD 2018]



DD Compilation for IP Models
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• Option 1: use linear constraints from model

– single DD for (subset) of constraints; usually weaker than LP bound

– (using multiple DDs can be quite effective, for nonlinear problems)

• Option 2: identify structure in model

– e.g. set covering, set packing, independent set,… 

– dedicated DD representing substructure of the model

– can be stronger than LP bound, and faster to compute

• Option 3: use structure inferred by solver 

– conflict graph/clique table

DD Compilation for IP Models
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Conflict Graph for Binary Problems

10

x1 x2 x3

x1 x2 x3

x1 + x2 + x3 ≤ 1

x2 + (1 – x3 ) ≤ 1

(1 – x1 ) + (1 – x2 ) ≤ 1

Conflict graphs are inferred and constructed by most modern MIP solvers
[Atamtürk et al., 2000; Achterberg, 2007]



• State: variable domains

• Transition: propagate decision
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Stronger DD relaxation via Lagrangian
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Lagrangian subproblem is 
longest path in DD (efficient)

Original IP model Lagrangian model



• Propagate linear constraints

• Additional state information

– variable domains

– constraint right-hand sides

Stronger DD relaxation via Propagation
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• Experimental setup

– Independent set problem on random graphs (Watts-Strogatz)

– Add set of random knapsack constraints

– Vary number of variables n

– Vary number of knapsack constraints m

Experimental evaluation
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• Experimental setup

– Independent set problem on random graphs (Watts-Strogatz)

– Add set of random knapsack constraints

– Vary number of variables n

– Vary number of knapsack constraints m

• Implemented in SCIP 5.0.1

– Only IP model is given to solver

– DD compiled automatically

Experimental evaluation
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Random Graphs + Knapsack Constraints

20

n = 300, 350, 400, 450

m = 0.1n

On average: 65.5% node reduction 

1.59x speedup



Random Graphs + Knapsack Constraints

20

n = 300, 350, 400, 450

m = 0.1n

On average: 65.5% node reduction 

1.59x speedup



Deriving Cutting Planes from Decision Diagrams
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• Becker et al. [2005], Behle [2007]: Lagrangian cut generation 

using exact decision diagrams

• Buchheim et al. [2008]: Target cuts

Deriving Cutting Planes from Decision Diagrams

21

LP relaxation

Related work: 



Cut-Generating Linear Program
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• Solution methods

– solve CGLP as LP (facet defining cuts)

– or use subgradient method (iteratively finds longest path in DD)

Cut-Generating Linear Program

22
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[Tjandraatmadja & vH, IJOC 2019]

[Davarnia & vH]
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• Solve Integer Linear Programming relaxation: x*

• For all constraints that are violated by x*: add linearization cut

• Repeat until x* is feasible

• Requires that all functions are convex and sufficiently smooth 

(continuously differentiable)

Outer Approximation Scheme for MINLP

23

[Westerlund & Pettersson, 1995]

[Duran and Grossmann, 1986]
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• Generate a DD (relaxed or exact) for each individual constraint

– Done once in pre-processing phase

• Outer Approximation with DD cuts:

– Solve Integer Linear Programming relaxation: x*

– For all constraints that are violated by x*: add DD cut

– Repeat until x* is feasible

• Requires that all functions are factorable

– Can be non-convex

Outer Approximation with DDs

24



Outer Approximation Example
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Linearization cut DD cut



Experimental Evaluation: Polynomial Knapsack
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n=500, |J| = 5, bounds [0,5]

degree k of monomial in {1,…,10}

5 randomly generated instances

maximum DD width is 3000

time limit is 300s

Gap closure for various outer approximation methods



Experimental Evaluation: Penetration Pricing

27

Find discrete prices for n products

subject to minimum revenue constraints

|J| = 5, prices {0,0.1,…,1.0}

degree k of monomial in {1,2,3}

maximum DD width is 5000

time limit is 300s

n=50 n=200 n=500

Gap closure for various sizes and MINLP solvers



• Decision Diagrams can be applied to Integer Programming

• Incorporate DD bounds in MIP search

– conflict graph represented as DD

– strengthened by Lagrangian relaxation and constraint propagation

– up to 65.5% node reduction (1.59x speedup)

• Outer approximation for MINLP

– applies to non-convex factorable functions

– can outperform state-of-the-art approaches on certain problem classes

Conclusion

28
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