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Overview

* Motivation
« Decision Diagrams for Integer Programming

— Incorporate DD bounds in MIP search
— Ccut generation

— outer approximation for MINLP

 Conclusions
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Decision Diagrams and Integer Feasible Sets
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BDD: binary decision diagram
MDD: multi-valued decision diagram
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Optimizing Over Decision Diagrams

MaX
X3

s ={(0,0,0), X4
(0,0,1),
(0,1,0), X2
(1,0,0)}
X3

optimal objective value: 2
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Relaxed Decision Diagrams

* Relaxed Decision Diagrams have limited width: polynomial size

* Over-approximation of feasible set: dual bound
[Bergman et al. 2011, 2014]
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S= {(0)0)0)1 X1
(0)0) 1))

(011}0)1 X2
(1,0,0)}

X3

Carnegie Mellon University



Relaxed Decision Diagrams

* Relaxed Decision Diagrams have limited width: polynomial size

- Over-approximation of feasible set: dual bound (Andersen et al. 20071
[Bergman et al. 2011, 2014]

S - {(0,0,0), X1 'c"
(0;011); ‘ ,
(0,1,0), X2 :"
(1,0,0)}

X3

Carnegie Mellon University



Relaxed Decision Diagrams

* Relaxed Decision Diagrams have limited width: polynomial size

- Over-approximation of feasible set: dual bound (Andersen et al. 20071
[Bergman et al. 2011, 2014]

S = {(01010)1 X1 X (1f0f1)
(0;0;1);
(0,1,0), X,
(1,0,0)}
U {(0,1,1),
0,1,1) .
(1,0,1)}

Carnegie Mellon University



Relaxed Decision Diagrams

* Relaxed Decision Diagrams have limited width: polynomial size

- Over-approximation of feasible set: dual bound (Andersen et al. 20071
[Bergman et al. 2011, 2014]

S = {(0,0,0), X,
(0;0;1)) ' )
(011;0): X2 4
(1,0,0)}

U0,
(1,0,1)}

Carnegie Mellon University



Relaxed Decision Diagrams

* Relaxed Decision Diagrams have limited width: polynomial size
- Over-approximation of feasible set: dual bound (Andersen et al. 20071

[Bergman et al. 2011, 2014]
) /max
S= {(01010)1 X1 '," X3 Xy * 2X3

(0;0;1); s
(0,1,0), X,
(1,0,0)} b
U {(0,1,1),
X3
(1,0,1)}

Carnegie Mellon University



Relaxed Decision Diagrams

* Relaxed Decision Diagrams have limited width: polynomial size
- Over-approximation of feasible set: dual bound (Andersen et al. 20071

[Bergman et al. 2011, 2014]
) /max
S= {(01010)1 X1 '," X3 Xy * 2X3

(0;0;1); s
(0,1,0), X,
(1,0,0)} b
U {(0,1,1),
X3
(1,0,1)}

Carnegie Mellon University



Relaxed Decision Diagrams

* Relaxed Decision Diagrams have limited width: polynomial size
- Over-approximation of feasible set: dual bound (Andersen et al. 20071

[Bergman et al. 2011, 2014]
) /max
S= {(01010)1 X1 '," X3 Xy * 2X3

(0,0,1), \

(0,1,0), X,

(1,0,0)} "
U {(0,1,1), %

(1,0,1)}

Carnegie Mellon University



Relaxed Decision Diagrams

* Relaxed Decision Diagrams have limited width: polynomial size
- Over-approximation of feasible set: dual bound (Andersen et al. 20071

[Bergman et al. 2011, 2014]
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Categories of Successful Applications

Sequencing and routing problems

— single machine scheduling with setup times, time windows, precedence

constraints (including TSPTW) [Cire & vH, OR2013], [Kinable et al. EJOR 2017]
[O’'Neil & Hoffman, ORL2019]

Decomposition and embedding in MIP models

— nonlinear objective functions [Bergman&Cire, MgtSc 2018]
— column generation [Morrison et al. IJOC 2016] [Kowalczyk & Leus 1JOC 2018]

Combinatorial optimization
— MISP, MAX-CUT, MAX-2SAT, ... [CPAIOR 2011, 2012] [IJOC 2014, 2016] [J Heur 2014]

Constraint Programming
— DD-based constraint propagation [Andersen et al. CP2007] [Hoda et al. CP2010]
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Application to Integer Programming
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Application to Integer Programming

IP model
DD construction from IP model

Presolve

) Cutting planes

Branch-and-bound

[Tjandraatmadja, PhD 2018]
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DD Compilation for IP Models

* Option 1: use linear constraints from model
— single DD for (subset) of constraints; usually weaker than LP bound
— (using multiple DDs can be quite effective, for nonlinear problems)

* Option 2: identify structure in model
— e.g. set covering, set packing, independent set,...
— dedicated DD representing substructure of the model
— can be stronger than LP bound, and faster to compute

* Option 3: use structure inferred by solver
— conflict graph/clique table
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Conflict Graph for Binary Problems
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Conflict Graph for Binary Problems

X;+ X, +X3<1

«Y
X, +(1—-x3)<1
= (1-x,)+(1-x,)<1

Conflict graphs are inferred and constructed by most modern MIP solvers
[Atamtirk et al., 2000; Achterberg, 2007]
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Decision Diagram Compilation

e State: variable domains
* Transition: propagate decision i1 € (0.1}, 25 € {01}, 25 € {0.1)

L1

o € {0, 1},333 - {0, 1} ': ® T2 € {0,1},3:3 - {1}

L2

r3 € {1}
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Decision Diagram Compilation

« State: variable domains
* Transition: propagate decision 1€ (0.1}, € {01}, 24 € {1}

X1 '
:.’L‘Q c {0, 1},333 < {1}

L2

b s € {1}

* Theorem: If root state is domain consistent, then this approach
yields a reduced exact DD
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Stronger DD relaxation via Lagrangian

Original IP model Lagrangian model
max ¢ ' x r;]>|51 max c'x + A (b Ax)
Fx < f < Structured N Fx < f

constraints for DD

n
Ax < b < Any set of linear xel", L <x<u

constraints

xeZ" < x<u

Carnegie Mellon University




Stronger DD relaxation via Lagrangian

Original IP model

MaxXx CTX

Fx < f < Structured
constraints for DD

Ax < b < Any set of linear
constraints

xeZ" < x<u

Lagrangian model

minmax ¢'x A (b Ax)
A>0

Fx < f
xe " [ < x<u

Lagrangian subproblem is
longest path in DD (efficient)
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Stronger DD relaxation via Propagation

* Propagate linear constraints

e Additional state information

— variable domains 3x; +x2 +2x3 < 4
— constraint right-hand sides 1 €40, 1}, % € {0,1},x5 € {0, 1}
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Stronger DD relaxation via Propagation

* Propagate linear constraints

e Additional state information

— variable domains 3x; +x2 +2x3 < 4
— constraint right-hand sides 1 €40, 1}, % € {0,1},x5 € {0, 1}

Xo +2x3 < 4 Xp +2x3 < 1
X2 € {0; l};X3 c {03 l} Xy € {0, l},X3 - {0}
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Experimental evaluation

* Experimental setup
— Independent set problem on random graphs (Watts-Strogatz)
— Add set of random knapsack constraints » ;.caix;i < b
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— Vary number of knapsack constraints m
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Experimental evaluation

* Experimental setup
— Independent set problem on random graphs (Watts-Strogatz)
— Add set of random knapsack constraints » ;.caix;i < b
— Vary number of variables n
— Vary number of knapsack constraints m

* Implemented in SCIP 5.0.1

— Only IP model Is given to solver
— DD compiled automatically
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Random Graphs + Knapsack Constraints

Solving time for MIP + DD bounds (s)
}_'I.
o

[
o
w

B
Solving time for MIP (s)

n = 300, 350, 400, 450
m =0.1n

On average: 65.5% node reduction
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Random Graphs + Knapsack Constraints

n = 300, 350, 400, 450
m =0.1n

On average: 65.5% node reduction
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Deriving Cutting Planes from Decision Diagrams
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Deriving Cutting Planes from Decision Diagrams

A Xy
Max
@ /

LP relaxation

Related work: ¢« Becker et al. [2005], Behle [2007]: Lagrangian cut generation
using exact decision diagrams

« Buchheim et al. [2008]: Target cuts
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Cut-Generating Linear Program
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Cut-Generating Linear Program
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Cut-Generating Linear Program
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Cut-Generating Linear Program
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Cut-Generating Linear Program

___________________

___________________

min y; +Y,
2Y3 Yy, tys=-1
+ flow conservation

Solution:
Y1=Y5=413, Y,=Y5=5/3, y,=0

___________________

Target cut

« Solution methods
— solve CGLP as LP (facet defining cuts) [Tjandraatmadja & vH, 1JOC 2019]
— or use subgradient method (iteratively finds longest path in DD) [Davarnia & vH]
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Outer Approximation Scheme for MINLP

« Solve Integer Linear Programming relaxation: x*
« For all constraints that are violated by x*: add linearization cut
* Repeat until x* is feasible

* Requires that all functions are convex and sufficiently smooth
(continuously differentiable)

[Duran and Grossmann, 1986]
[Westerlund & Pettersson, 1995]
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Outer Approximation with DDs

« Generate a DD (relaxed or exact) for each individual constraint
— Done once In pre-processing phase
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Outer Approximation with DDs

« Generate a DD (relaxed or exact) for each individual constraint
— Done once In pre-processing phase

« Outer Approximation with DD cuts:
— Solve Integer Linear Programming relaxation: x*
— For all constraints that are violated by x*: add DD cut
— Repeat until x* is feasible

* Requires that all functions are factorable
— Can be non-convex

Carnegie Mellon University




Outer Approximation Example
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Experimental Evaluation: Polynomial Knapsack
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Gap closure for various outer approximation methods
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Experimental Evaluation: Penetration Pricing
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maximum DD width is 5000
time limit is 300s
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Conclusion

« Decision Diagrams can be applied to Integer Programming
 |ncorporate DD bounds in MIP search

— conflict graph represented as DD
— strengthened by Lagrangian relaxation and constraint propagation
— up to 65.5% node reduction (1.59x speedup)

« QOuter approximation for MINLP

— applies to non-convex factorable functions

— can outperform state-of-the-art approaches on certain problem classes
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