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What can MDDs do for Combinatorial Optimization?

e Compact representation of all solutions to a problem
e Limit on size gives approximation

e Control strength of approximation by size limit

MDDs for Constraint Programming and Scheduling
e MDD propagation natural generalization of domain propagation
e Orders of magnitude improvement possible
/MDDs for Discrete Optimization )
e MDD relaxations provide upper bounds

e MDD restrictions provide lower bounds
\_® New branch-and-bound scheme J

Many Opportunities: integrated methods, theory, applications,...
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MDDs for Discrete Optimization
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e Conventional integer programming relies on branch-
and-bound based on continuous LP relaxations

— Relaxation bounds
— Feasible solutions
— Branching

e We investigate a branch-and-bound algorithm for
discrete optimization based on decision diagrams
— Relaxation bounds — Relaxed BDDs
— Feasible solutions — Restricted BDDs
— Branching — Nodes of relaxed BDDs

e Potential benefits: stronger bounds, efficiency,
memory requirements, models need not be linear



Case Study: Independent Set Problem  lepper
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e Given graph G = (V, E) with vertex weights w.

e Find a subset of vertices S with maximum total weight
such that no edge exists between any two vertices in S

max 2., w,X

5 4
s.t. x+x<1 forall(i,j)inE i:i>j 2
x. binary foralliinV 6



Exact top-down compilation Tppér
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Node Merging Teppér
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Relaxed BDD Tpper

' Exact BDD O—Q2 Relaxed BDD (width < 3)
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Relaxed BDD Tpper
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Relaxed BDD Tpper
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Relaxed BDD Tpper
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Evaluate Objective Function "Tepper
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Variable Ordering "lepper

e Order of variables greatly impacts BDD size

— also influences bound from relaxed BDD (see next)

e Finding ‘optimal ordering” is NP-hard

e Insights from independent set as case study

— formal bounds on BDD size

14
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Exact BDD orderings for Paths "Tepper
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Formal Results for Independent Set ~ lepper
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Graph Class Bound on Width

Paths 1
Cliques 1
Interval Graphs 1
Trees n/2
General Graphs Fibonacci Numbers:
|Layer j| < Fj,y

(The proof for general graphs is based on a maximal path
decomposition of the graph)
INFORMS J. Computing (2014)
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Many Random Orderings "Tepper
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Variable ordering heuristics lepper

e Several possibilities
— choose vertex at random
— choose vertex that appears in fewest states in current layer
— choose vertex according to maximal path decomposition

5 | | | | | | |
MPD ——
1 MinState =-=-----
45 | /_,-l . ‘l I random 7
e Each data point is average

over 20 instances

e Forrandom, line segment
indicates range over 5
instances

Bound / Optimal Value

18
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Quality of the bound in practice lepper
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e Benchmarks
— Random Erdo6s-Rényi G(n,p) graphs
— DIMACS clique graphs (87 instances)
— Compare with CPLEX 12.5
(standard MIP model and cligue cover model)

19



Bounds in practice lepper
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random graphs (n=500)
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Bounds in practice lepper

random graphs (n=1500)
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Restricted BDDs "lepper
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e Relaxed BDDs find upper bounds for independent set
problem

e Can we use BDDs to find lower bounds as well (i.e.,
good feasible solutions)?

e Restricted BDDs represent a subset of feasible
solutions

— we require that every r-t path corresponds to a feasible
solution

— but not all solutions need to be represented

e Goal: Use restricted BDDs as a heuristic to find good
feasible solutions
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Creating Restricted BDDs "lepper
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Using an exact top-down compilation method, we can
create a limited-width restricted BDD by

1. merging nodes, or
2. deleting nodes
while ensuring that no non-solutions are introduced

23



Node merging by example Tepper
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Restricted BDD (width < 3)
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Node merging by example Tepper
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Restricted BDD (width < 3)
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Node deletion by example Tepper
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Restricted MDD (width < 3)
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Experimental Evalution "lepper
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e Compare with Integer Programming (CPLEX)
— LP relaxation + cutting planes
— Root node solution

e DIMACS instance set

e Restricted BDDs with varying maximum width
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IP versus BDD heuristic "Tepper
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BDD-based Branch and Bound lepper
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e Search in conventional branch and bound
— branch on variable (x £v or x > v)
— branch on constraints (act; << act, or act, << act,)

/\ at each search state,
can evaluate BDD lower
and upper bound

e \We will ‘branch’ on states in the BDD instead

29



Branch and Bound Tepper
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Relaxed BDD (width < 3)
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Node Queue Tpper
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Relaxed BDD (width < 3)
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Node Queue Tpper
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Node Queue Tpper
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Camegie Mellon
Node Queue lepper
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Node Queue Tpper
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Optimal Solution: 12
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New Branching Scheme Tepper
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e Novel branching scheme
— Branch on pools of partial solutions
— Remove symmetry from search

e Symmetry with respect to feasible completions

— Can be combined with other techniques

e Use decision diagrams for branching, and LP for bounds
e Define CP search with MDD inside global constraint

— Immediate parallelization
e Send nodes to different workers, recursive application
e DDX10 (CPAIOR 2014)

36



Computational Results: DIMACS Tepper
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DIMACS Graphs: End Gap (1,800s) Tepper
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Gap Ratio (UB/LB) Comparison
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Parallelization: Centralized Architecture Tépwf)ﬁl'
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Master maintains a pool of BDD
- nodes to process

—nodes with larger upper bound
—_ —_ have higher priority

Workers receive BDD nodes,

- - generate restricted & relaxed BDDs,
and send new BDD nodes and
bounds to master

—they also maintain a local pool
of nodes

39
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1 worker: BDD 1.25 times faster than CPLEX (density 0.29)
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General Approach Tepper
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e |n general, our approach can be applied when problem
is formulated as a dynamic programming model

— We can build exact BDD from DP model using top-down
compilation scheme (exponential size in general)

— Note that we do not use DP to solve the problem, only to
represent it

e Other problem classes considered
— MAX-CUT, set covering, set packing, MAX 2-SAT, ...

INFORMS J. Computing (to appear)
J. Heuristics (2014)
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MAX-CUT representation "Tepper
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e Value of a cut (S,T) is

Z s,t|seS, teT W(S't)

e Example: cut ({1,2}, {3,4) ) has value 2
e MAX-CUT: Find a cut with maximum value

e How can we represent thisin a BDD?
— state represents vertices included in S?

— we propose a state to represent the
marginal cost of including vertexin T

42
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MAX-CUT example BDD Tepper

e State: jt" element is additional
value of adding vertexjto T
(if positive)

0 v,
® (0,49)
0.
//// v2
(0,0,17)g,
V3
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MAX-CUT example BDD Tepper
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e State: jt" element is additional
value of adding vertexjto T
(if positive)

(r) (0,0,0)
0

@ (0,4,9)
0. 4 + min{8,9}
/// v
(0,0,17) @ (0,0,1) 2

v
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e Compare with IBM ILOG CPLEX
e Typical MIP formulation + triangle inequalities

— O(n?) variables, O(n?) constraints
e Benchmark problems

— g instances

— Helmberg and Rendl instances, which were taken from
Rinaldi’s random graph generator

— n ranges from 800 to 3000 — very large/difficult problems,
mostly open

— Also compared performance with BigMac



MIP vs BDD: 60 seconds (n=40) Tepper
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Number of MCP Instances Solved in 60 Seconds (n=40)
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MIP vs BDD: 1,800 seconds (n=40)

number solved
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BigMac vs BDD ‘lepper
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BigMac BDD Best known
instance LB UB LB UB LB UB
g50 5880 5988.18 5880  5899* 5880 5988.18
g32 1390 1567.65  1410%* 1645 1398 1560
g33 1352 1544.32  1380*  1536* 1376 1537
g34 1366 1546.70  1376* 1688 1372 1541
gll 558 629.17 564 567* 564 627
gl2 548 623.88 556 616* 556 621

gl3 578 647.14 580 652 580 645
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Summary Tpper
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What can MDDs do for Combinatorial Optimization?

e Compact representation of all solutions to a problem
e Limit on size gives approximation

e Control strength of approximation by size limit

MDDs for Constraint Programming and Scheduling
e MDD propagation natural generalization of domain propagation
e Orders of magnitude improvement possible

MDDs for Discrete Optimization

e MDD relaxations provide upper bounds
e MDD restrictions provide lower bounds
e New branch-and-bound scheme

Many Opportunities: integrated methods, theory, applications,...
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Opportunities / Open issues lepper

e Extend application to CP

— Which other global constraints are suitable? (Cumulative?)
— Can we develop search heuristics based on the MDD? (yes)

— Can we more efficiently store and manipulate approximate
MDDs? (Implementation issues)

— Can we obtain a tighter integration with CP domains?

e MDD technology

— How should we handle constraints that partially overlap on
the variables? Build one large MDD or have partial MDDs
communicate?

— How do we communicate information between MDDs on
different subproblems (e.g., jobshop)? (Lagrangians)

50
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Opportunities / Open issues (cont’d) rlépwf)hél"

e Formal characterization
— Can MDDs be used to identify tractable classes of CSPs?

— Can we identify classes of global constraints for which
establishing MDD consistency is hard/easy?

— Can MDDs be used to prove approximation guarantees?

— Can we exploit a connection between MDDs and tight LP
representations of the solution space?

e Optimization

— Relaxed/restricted MDDs can provide bounds for any
nonlinear (separable) objective function. Demonstrate the
performance on an actual application.
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Opportunities / Open issues (cont’d) rlépwf)ﬁl"

e Beyond classical CP

— How can MDDs be helpful in presence of uncertainty?
E.g., can we use approximate MDDs to represent policy
trees for stochastic optimization?

— Can we utilize limited-width BDDs for SAT? (yes)

— Can MDDs help generate nogoods, e.g., in lazy clause
generation? (yes)

— Tighter integration of MDDs in MIP solvers? (yes)

e Applications

— So far we have looked mostly at generic problems. Are there
specific application areas for which MDDs work particularly

well? (Bioinformatics?)
52
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7. Consider the following CSP
AX, + 2X, + X3+ X, + 2Xc + 44X, =7
X1, X9,y X € 10,1}
a) Draw an exact BDD for this problem using the
variable ordering x,, X,, X3, X4, Xc, X¢

b) Draw an exact BDD for this problem using the
variable ordering x,, X, X5, X5, X3, X4

c) Which of the two orderings yields the smallest
width?
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8. Consider the following set covering instance:

minimize 3x; + 2X, + X3 + 4X, + 2X:

s.t. X; + X, + X3 >1
X4 +X, +X =1
X5 + X, 21

What state representation would you use to define
the BDD? Construct a restricted BDD with maximum
width 3. Does it yield the optimal solution?
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