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e Yesterday: MDD-based constraint propagation

— Propagate relaxed MDDs instead of domains

— Strength of MDD can be controlled by its maximum width
e Constraint-specific propagation algorithms

— very similar to domain propagators

— define state information for each constraint

— central operations: edge filtering and node refinement
e Detailed example: Among
e Today:

— MDD propagation for Sequence constraint

— MDD propagation for disjunctive scheduling



Sequence Constraint Tpper
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Employee must work at most 7 days every 9 consecutive days

Xp | X | X3 | Xa | X5 | Xg | X7 | Xg | X9 | Xgp | Xqq | Xgp

0 S X +X+ ... #Xg < 7

0 <X, +Xgt+ ... +X S 7

O < Xo4+X.4 X, < 7 > =: SequenCE([Xl,le,,,lxlz]’ q=9’ S:{l}’ I:O’ u=7)
= A3TXgT ... 11 =

0 < Xg+Xst+ ... X, <7 )
Sequence(X, q,S, Lu):= /\ <3, _,(xeS)<u

Among(X, S, [, u)



Motivation lepper
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e Domain propagation well understood for Sequence

— several papers with improved propagation or time
complexity

— domain consistency can be established in O(n?) time

e Combining the Among constraints into a single
Sequence global constraint can yield huge speedups

e We have developed MDD propagation for Among
— Would it be useful to do the same for Sequence?
— Perhaps MDD consistency in polynomial time?

D. Bergman, A. A. Cire, and W.-J. van Hoeve. MDD Propagation for Sequence
Constraints. JAIR, Volume 50, pages 697-722, 2014. 4
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MDD Representation for Sequence leppér

e Equivalent to the DFA
representation of Sequence
for domain propagation

[v.H. et al., 2006, 2009]

X3

I4

e Size O(n291)

Exact MDD for Sequence(X, g=3, S={1}, [=1, u=2) >



MDD Filtering for Sequence lepper
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Goal: Given an arbitrary MDD and a Sequence constraint, remove
all inconsistent edges from the MDD (i.e., MDD-consistency)

Can this be done in polynomial time?

Theorem: Establishing MDD consistency for Sequence on an
arbitrary MDD is NP-hard

(even if the MDD ordering follows the sequence of variables X)

Proof: Reduction from 3-SAT [JAIR, 2014]

Next goal: Develop a partial filtering algorithm, that does not
necessarily achieve MDD consistency



Partial filter from decomposition lepper
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e Sequence(X, q, S, |, u) with X =x,, x,, ..., X,

* |Introduce a ‘cumulative’ variable y; representing the sum of the
first i variables in X

Yo=0
y.= Y., + (x.€S) fori=1..n

e Then the Among constraint on [x;

+17°° /+q

] is equivalent to

/S yi+q _yi
Vieg—¥iSu fori=0..n-q

e [Brand et al., 2007] show that bounds reasoning on this decomposition
suffices to reach Domain consistency for Sequence (in poly-time)



MDD filtering from decomposition lepper
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X
vy . Sequence(X, g=3, 5={1}, I=1, u=2)
X7 4 b

Approach

* The auxiliary variables y; can be
naturally represented at the
nodes of the MDD — this will be
our state information

_1'3

* We can now actively filter this
node information (not only the

edges)
X5
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MDD filtering from decomposition ~ lepper
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MDD filtering from decomposition lepper
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L 2 ]
X1 7
i (o)) ) Sequence(X, g=3, S={1}, [=1, u=2)
12 s , B
i . Yi= Vi1 T X
2 C o 2 C1 )
T ] 1<y.—y,<?2
| Y3~ Yo
_1'3 |
I
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k| \ | > g 15_)/5_)/232
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Analysis of Algorithm lepper
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e |nitial population of node domains (y variables)

— linear in MDD size

e Analysis of each state in layer k
— maintain list of ancestors from layer k-g

— direct implementation gives O(gW?) operations per
state (W is maximum width)

— but since we propagate inequalities, we only need
to maintain min and max value over previous g
layers: O(gW)

e One top-down and one bottom-up pass

12
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Experimental Setup lepper

e Decomposition-based MDD filtering algorithm

— Implemented as global constraint in IBM ILOG CPLEX CP
Optimizer 12.4

e Evaluation

— Compare MDD filtering with Domain filtering for Sequence
and for the same ‘cumulative sums’ decomposition
(achieves domain consistency for all our instances)

— Random instances and structured shift scheduling instances

e All methods apply the same fixed search strategy
— |exicographic variable and value ordering
— find first solution or prove that none exists

13



Random instances lepper
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« Randomly generated instances
— n=50 variables
— domain {0,1,...,10}
— 5 random Sequence constraints
— 250 instances total
(see paper for more details)

« Vary maximum width of MDD
— widths 2 up to 128

14



MDD vs Domain Propagation "Tepper
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Performance Comparison for Sequence
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Sequence vs. Among Tpper
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Coming up Toppér
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e MDDs can handle objective functions as well
e Important for many CP problems
— e.g., disjunctive scheduling

— minimize makespan, weighted completion times,
etc.

e We will develop an MDD approach to
disjunctive scheduling

— combines MDD propagation and optimization
reasoning

18



Handling objective functions lepper
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t (0,0,1,1,0)

Suppose we have an
objective:

min 4x,+3X,+X;+2X,+5X:

shortest path
computation

19
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MDDs for Disjunctive Scheduling

* Cire and v.H. Multivalued Decision Diagrams for Sequencing
Problems. Operations Research 61(6): 1411-1428, 2013.

20
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Disjunctive Scheduling in CP lepper

e Sequencing and scheduling of activities on a resource

e Activities 0 ! 2 3 4
— Processing time: p, Activity 1 | ——— =
— Release time:r,
. . r
— Deadline: d. Activity 2 C

— Start time variable: s,  Activity 3

1

a—

* Resource
— Nonpreemptive
— Process one activity at a time

22
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Extensions ‘lepper
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e Precedence relations between activities

e Sequence-dependent setup times

e Various objective functions

— Makespan

— Sum of setup times

— (Weighted) sum of completion times
— (Weighted) tardiness

— number of late jobs

23
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Inference Tpper

e [nference for disjunctive scheduling

— Precedence relations

— Time intervals that an activity can be processed
e Sophisticated techniques include:

— Edge-Finding

— Not-first / not-last rules

0 1 , ; .
Activity 1 _ j
e Examples: 1<K 3
Activity 2 [

S323
Activity 3

i

ﬁ

24



Assessment of CP Scheduling lepper
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e Disjunctive scheduling may be viewed as the ‘killer
application’ for CP
— Natural modeling (activities and resources)

— Allows many side constraints (precedence relations, time
windows, setup times, etc.)

— Among state of the art while being generic methodology

e However, CP has some problems when

— objective is not minimize makespan (but instead, e.g.,
weighted sum of lateness)

— setup times are present optimization

e What can MDDs bring here?

25



MDDs for Disjunctive Scheduling lepper
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Three main considerations:

e Representation

— How to represent solutions of disjunctive
scheduling in an MDD?

e Construction

— How to construct this relaxed MDD?

e Inference techniques

— What can we infer using the relaxed MDD?

26



MDD Representation Tépwf)er
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e Natural representation as ‘permutation MDD’

e Every solution can be written as a
permutation i

. activity sequencing in the resource

Ty, Ty, Ty, ooy T

e Schedule is implied by a sequence, e.g.:

starty, = starty,  +p . 1=2,..,n

27



MDD Representation Tepper
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Act ri pI di
2 4 2 9
3 3 3 8
T,
Path {1} —{3}—{2}:
3 0 <start; €1

6 <start, <7

3 Sstart; <5

28
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Exact MDD Compilation Tepper

Theorem: Constructing the exact MDD for a Disjunctive
Instance is an NP-Hard problem

 We work with MDD relaxations instead
* Bounded size in specific cases, e.g. (Balas [99]):

TSP defined on a complete graph
Given a fixed parameter k, we must satisfy

| LK j if j—i=k forcitiesi, ]

Theorem: The exact MDD for the TSP above has O(n2¥) nodes



MDD-based propagation Tepper
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Propagation: remove infeasible arcs from the MDD

We can utilize several structures/constraints:
e Alldifferent for the permutation structure
e Earliest start time and latest end time

e Precedence relations

For a given constraint type we maintain specific
‘state information’ at each node in the MDD

— both top-down and bottom-up

30
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Propagation (cont’d) Tppér

e State information at
each nodej

— labels on all paths: A,
— labels on some paths: S,

— earliest starting time: E,
— latest completion time: L,

{1,2,3,4,5} T,

e Top down example for
arc (u,v)

41
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Alldifferent Propagation lepper
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All-paths state: A

» Labels belonging to all paths
from node r to node u

» A, = {3}
» Thus eliminate {3} from (u,v)

1,2}

(12,745}

Ty

32
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Alldifferent Propagation ‘lepper
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Some-paths state: S,

» Labels belonging to some
path from node r to node u

» S, =11,2,3}
» Identification of Hall sets

» Thus eliminate {1,2,3} from
(u,v)

33



Propagate Earliest Completion Time lepper
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Earliest Completion Time: E,

» Minimum completion time
of all paths from root to
node u

1,2}

Similarly: Latest Completion
Time

34



Propagate Earliest Completion Time  1epper
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» Eliminate 4 from (u,Vv)

35



Propagate Precedence Relations leppeér
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Arc with label j infeasible if

[ < jandinotonsome path fromr

Suppose 4 K 5
» S, ={1,2,3}

» Since 4 notin S, eliminate 5
from (u,v)

Similarly: Bottom-up forj «< i

36



More MDD Inference Tepper
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Theorem: Given the exact MDD M, we can deduce all implied
activity precedences in polynomial time in the size of M

For a node v,
» A} values in all paths from root to u
» Al values in all paths from node u to terminal

Precedence relation i < j holds if and only if
(J & Ai) or (i & Al__) for all nodes uin M

Same technique applies to relaxed MDD

37



Extracting precedence relations lepper
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Build a digraph G=(V, E) where V is the set of activities
e Foreachnodeuin M
— ifj € A}, and i € A}, add edge (i,j) to E (@, 1234) (4, 4])

— represents that i << j cannot hold

e Take complement graph G (3, 124)

— complement edge exists iff i < j holds

(23, 14)
4
3K1 (234, 1)
3K?2
3K4
2 K 4

(1234, @)

G G 38



Extracting precedence relations lepper
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e Build a digraph G=(V, E) where V is the set of activities

e For each nodeuin M
—ifj € At and i € AL add edge (i,j) to E

— represents that i << j cannot hold

e Take complement graph G

— complement edge exists iff i < j holds

e Time complexity: O(|M|n?)

e Same technique applies to relaxed MDD
— addanedgeifj € S andi € S}

— complement graph represents subset of precedence

relations
39



Communicate Precedence Relations ~lepper
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1. Provide precedence relations from MDD to CP
— update start/end time variables
— other inference techniques may utilize them

— (some of the precedence relations found by the MDD
may not be detected by existing CP methods)

2. Filter the MDD using precedence relations from
other (CP) techniques

40



MDD Construction and Refinement "Tepper
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r r r
N1 Cg >‘]3 / \ / \
u iy i
(. — 3 5 ey S '
al J ' - ] ' =
1 2 13 Ja ",‘2 J3
v J] v 11 V] I 1/'2
J3
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Jo < J1

e Torefine the MDD, we generally want to identify equivalence
classes among nodes in a layer
— For sequencing, deciding equivalence is NP-hard

e |n practice, refinement can be based on
— earliest starting time
— latest earliest completion time r.+p,

— alldifferent constraint (A, and S, states) "



Computational Evaluation lepper
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e MDD propagation implemented in IBM ILOG CPLEX
CP Optimizer 12.4 (CPO)

— State-of-the-art constraint based scheduling solver
— Uses a portfolio of inference techniques and LP relaxation

e Three different variants
— CPO (only use CPO propagation)
— MDD (only use MDD propagation)
— CPO+MDD (use both)

42



Problem classes ‘lepper
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e Disjunctive instances with
— sequence-dependent setup times
— release dates and deadlines
— precedence relations

e Objectives (that are presented here)
— minimize makespan
— minimize sum of setup times
— minimize total tardiness

e Benchmarks

— Random instances with varying setup times
— TSP-TW instances (Dumas, Ascheuer, Gendreau)

— Sequential Ordering Problem
43



Importance of setup times ‘lepper
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100
; Random instances
_ | -15jobs
10 | | -lexsearch
= : | - MDD width 16
Z - min makespan
s
— 1 F i
%)
=
o
(al
O 0.1 | |
0.01

0] 0.2 04 0.6 0.8 1 1.2 14 1.6

Importance of setup times
(increasing average length of setup times) 44



TSP with Time Windows "lepper
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_ instances
1000 | 1 -20-60jobs
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& - x _
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Minimize Total Tardiness lepper
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e Consider activity i with due date 0,
— Completion time of i: ¢, = s, + p,
— Tardiness of i: max{0, ¢,— 6, }

e Objective: minimize total (weighted) tardiness

e 120 test instances
— 15 activities per instance
— varyingr;, p,, and §,, and tardiness weights

— no side constraints, setup times (measure only impact of
objective)
— lexicographic search, time limit of 1,800s

46



Total Tardiness Results lepper
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Sequential Ordering Problem (TSPLIB)

lepper

SCHOOL OF BUSINESS

CPO CPO+MDD, width 2048
instance vertices bounds best  time (s) best time (s)
br17.10 17 55 55 0.01 55 4.98
brl17.12 17 55 55 0.01 55 4.56
ESCO07 7 2125 2125 0.01 2125 0.07
ESC25 25 1681 1681 TL 1681 48.42
p43.1 43 28140 28205 TL 28140 287.57
p43.2 43 28175, 28480 28545 TL 28480 279.18*
p43.3 43 28366, 28835] 28930 TL 28835 177.29%*
pd3.4 43 83005 83615 TL 83005 88.45
ry48p.1 48 15220, 15805] 18209 TL 16561 TL
ry48p.2 48 (15524, 16666 18649 TL 17680 TL
ry48p.3 48 (18156, 19894] 23268 TL 22311 TL
ry48p.4 48 29967, 31446] 34502 TL 31446 96.91 *
ft53.1 53 (7438, 7531] 9716 TL 9216 TL
ft53.2 53 (7630, 8026] 11669 TL 11484 TL
ft53.3 53 9473, 10262] 12343 TL 11937 TL
ft53.4 53 14425 16018 TL 14425 120.79
48

* solved for the first time



Extensions
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e Improved bounds
— Lagrangian relaxation for violated constraints

With Lagrange multipliers

Scatter plot of optimality gap at the root node

Number of instances solved versus time

Without Lagrange multipliers

T /, 200 IS O PR . UL AN NS I;:_ G-
. P ’ - ’ ] 'U N h, :
-~ )
> ¥
- & 150 - -
w
4]
&)
= o
S
| 2 100 - -
S
-
: 50 - -
X - pZd without Lagrangian ——
with Lagrangian -->¢--
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30 35 0.01 0.1 1 10 100 1000 10000
Time (seconds)
TSPTW instances (Constraints, 2015)
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Conclusion lepper
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e MDD propagation natural generalization of domain
propagation
— Strength of MDD relaxation can be controlled by the width
— Huge reduction in the amount of backtracking and solution
time is possible
e For sequencing/disjunctive scheduling problems

— MDD can handle all side constraints and objectives from
existing CP systems

— Polynomial cases (e.g., Balas variant)
— MDD propagation algorithms (alldifferent, time windows, ...)
— Extraction of precedence constraints from MDD

— Great addition to CP systems
50
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5. Consider the following scheduling problem

Act r, d. P,
1 0 4 ) Activity 1 [———]
) 2 6 ) Activity 2 [ ﬂ
3 2 6 2 Activity 3 [ — ]
4 0 8 2 Activity 4 [ — ]

a) Create an exact MDD M representation for this problem.

b) Use the state information 4;, and A, to derive all
precedence relations from M.

51



Exercises lepper
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6. Consider an arbitrary disjunctive scheduling
problem, and assume we are given an exact MDD M
representing all its solutions.

a) Verify that the optimal solution to objectives ‘minimize
makespan’ and ‘minimize sum of setup times’ can be
derived by recursion/computing a shortest path in M.

b) Give an example that shows that for objective ‘minimize
total tardiness’, a shortest path in M provides a lower
bound.

52



