Formalizing forcing arguments in subsystems of second-order arithmetic

Ulrik Buchholtz

Stanford

April 26, 2011
Outline

1. Introduction
2. Forcing in the abstract
3. Forcing syntactically
4. Forcing Weak König's Lemma
Outline

1 Introduction

2 Forcing in the abstract

3 Forcing syntactically

4 Forcing Weak König's Lemma
 Strong and weak forcing notions
 $\frac{1}{2}$-forcing: one generic path
 1-forcing: recursive comprehension
 From n- to $n + 1$-forcing
 Uniform n-forcing
We will review the paper *Formalizing forcing arguments in subsystems of second-order arithmetic* by Jeremy Avigad.[2]

We will also draw on Avigad’s survey article about forcing in proof theory.[1]

The main result of [2] is an effective version of the following theorem:

Theorem (Harrington)

\[\text{WKL}_0 \text{ is conservative over } \text{RCA}_0 \text{ for } \Pi^1_1\text{-sentences.} \]

(Friedman had earlier shown conservativity for \(\Pi^0_2 \)-sentences.)
The Brown-Simpson Extension

In fact, Avigad is able to treat the following extension:

Theorem (Brown-Simpson)

\(\text{WKL}^+_0 \text{ is conservative over } \text{RCA}_0 \text{ for } \Pi^1_1\text{-sentences, where } \text{WKL}^+_0 \text{ is } \text{WKL}_0 \text{ plus} \)

\[\forall n \forall \sigma \exists \tau \subset \sigma \varphi(n, \tau) \rightarrow \exists f \forall n \exists m \varphi(n, f[m]), \quad \text{(BCT)}\]

where \(\sigma\) and \(\tau\) range over binary sequences, \(f\) is a function with range \(\{0, 1\}\) and \(f[m]\) denotes the sequence \(\langle f(0), \ldots, f(m - 1)\rangle\).

(BCT) implies a version of the Baire Category Theorem, and the Open Mapping Theorem for separable Banach spaces.
Outline

1. Introduction
2. Forcing in the abstract
3. Forcing syntactically
4. Forcing Weak König’s Lemma
 - Strong and weak forcing notions
 - $\frac{1}{2}$-forcing: one generic path
 - 1-forcing: recursive comprehension
 - From n- to $n+1$-forcing
 - Uniform n-forcing
Kripke structure

Recall that a Kripke structure for a first-order relational language consists of a tuple $\langle P, D, \models \rangle$ where

- P is an inhabited poset, elements of which are called “conditions,”
- D assigns to each $p \in P$ a set, $D(p)$, to be the “domain at p”,
- for each relation symbol R and each $p \in P$, $p \models R(\bar{a})$ denotes a relation on $D(p)$.

These data are required to satisfy the monotonicity requirements: for $q \leq p$ (“q is stronger than p”):

- $D(q) \supset D(p)$,
- if $p \models R(\bar{a})$, then $q \models R(\bar{a})$.
The classical forcing relation

1. \(p \models \varphi \land \psi \text{ if and only if } p \models \varphi \text{ and } p \models \psi, \)
2. \(p \models \varphi \lor \psi \text{ if and only if } p \models \varphi \text{ or } p \models \psi, \)
3. \(p \models \varphi \rightarrow \psi \text{ if and only if } \forall q \leq p \,(q \models \varphi \rightarrow q \models \psi), \)
4. \(p \models \forall x \varphi(x) \text{ if and only if } \forall q \leq p \forall a \in D(q) \,(q \models \varphi(a)), \)
5. \(p \models \exists x \varphi(x) \text{ if and only if } \exists a \in D(p) \,(p \models \varphi(a)). \)
Outline

1 Introduction

2 Forcing in the abstract

3 Forcing syntactically

4 Forcing Weak Königs Lemma
 Strong and weak forcing notions
 $\frac{1}{2}$-forcing: one generic path
 1-forcing: recursive comprehension
 From n- to $n+1$-forcing
 Uniform n-forcing
The above considerations take models at face value. By formalizing a forcing analysis of one theory T_1 inside another theory, T_2, we may be able to obtain stronger results, for instance concerning lengths of proofs.

To do this, define in T_2 predicates $\text{Cond}(p)$, $q \leq p$, and $p \models \text{Name}(x)$ (of the displayed variables). Then we define, also in T_2, for each relation symbol R in the language of T_1, a relation $p \models R(\vec{a})$. Finally, we prove in T_2 that this determines a Kripke structure where the axioms of T_1 are forced, and that forcing respects the logic of T_1.
Assume the setup of the previous slide. Then the upshot is that whenever T_1 proves φ, T_2 proves that φ is forced.

Now, if T_2 proves that \bot is not forced, then this shows that T_1 is consistent relative to T_2.

Further, if for a class \mathcal{F} of formulae φ, T_2 proves that $\models \varphi$ is equivalent to φ, then the interpretation shows that T_1 is conservative over T_2 relative to \mathcal{F}.
Examples of results

Let’s consider a few examples of this approach, the first of which will be the focus of the presentation:

Recall that the theory WKL₀ extends RCA₀ with the following axiom

\[\forall T \ (T \text{ is an infinite binary tree} \rightarrow \exists P \ (P \text{ is a path through } T)) \].

It is an old result of Friedman that WKL₀ is conservative over RCA₀ for \(\Pi^0_2 \)-sentences. Harrington strengthened this to \(\Pi^1_1 \)-conservativity. These relied on model-theoretic arguments that gave no effective means of translating proofs using the above axiom to proofs without it.

Hájek [3] provided an effective version using recursion-theoretic coding techniques, whereas Avigad obtained an effective version by formalizing Harrington’s forcing argument.
Goodman’s theorem

Another example is provided by Beeson’s version of Goodman’s theorem:

Theorem

\[\text{HA}^\omega + (\text{AC}) + (\text{Ext}) \text{ is a conservative extension of HA}^\omega. \]

Beeson formulated this as composition of:

- a realizability argument exploiting the fact that HA\(^\omega\) proves that the axiom of choice is realizable, with
- the observation that in the negative fragment,”\(\varphi \) is realizable” is equivalent to \(\varphi \), with
- a forcing argument adding “generic” functions to verify the axiom of choice, coding up witnesses to \(\lor \)- and \(\exists \)-subformulas.
As a final example, let us mention Thierry Coquand’s observation that forcing can be used to show that $I\Sigma_1$ is Π^0_2-conservative over its intuitionistic counterpart, $I\Sigma^i_1$.

Here, the double-negation translation isn’t adequate by itself, since the translation of an instance of Σ_1-induction isn’t again an instance of Σ_1-induction. However, adding Markov’s principle

$$\neg\forall x \ A \rightarrow \exists x \ \neg A,$$

for quantifier-free A; translated Σ_1-sentences become equivalent to Σ_1-sentences. Thus, we need to interpret $I\Sigma^i_1 + (\text{MP})$ in $I\Sigma^i_1$.

Conservativity of $I\Sigma_1$ over $I\Sigma^i_1$, continued

To do this, take conditions to be codes of finite sets of Π^0_1-sentences,

$$p = \neg \{ \forall x A_1(x), \forall x A_2(x), \ldots, \forall x A_n(x) \} \neg,$$

with $p \leq q$ if and only if $p \supseteq q$. For atomic θ, define $p \models \theta$ to be

$$\exists y (A_1(y) \land \cdots \land A_n(y) \rightarrow \theta).$$

Then Markov’s Principle is forced.

For further applications: see [1].
Outline

1 Introduction

2 Forcing in the abstract

3 Forcing syntactically

4 Forcing Weak Königs Lemma
 Strong and weak forcing notions
 $\frac{1}{2}$-forcing: one generic path
 1-forcing: recursive comprehension
 From n- to $n + 1$-forcing
 Uniform n-forcing
In general outline, Harrington’s argument starts with a model of RCA$_0$ and constructs a sequence of models

\[M = M_0 \subset_\omega M_1 \subset_\omega M_2 \subset_\omega \cdots \subset_\omega M_i \subset_\omega \cdots \]

where each M_i is a model of RCA$_0$, and if T is an infinite binary tree in M_i, there is a $j > i$ such that M_j contains an infinite path through T. Then $\bigcup M_i$ models WKL$_0$.

Avigad replicates this argument syntactically as follows.
Good strong forcing notions

Definition
Assume $\text{Cond}(P)$ and $P \leq Q$ have been defined so that the base theory proves that the class of conditions forms a partial order. Definitions “$P \models^s \text{Name}(x)$” and “$P \models^s \varphi$” (for atomic φ) form a good strong forcing notion if the following holds:

1. The free variables of $P \models^s \varphi$ are P together with those of φ; the free variables of $P \models^s \text{Name}(X)$ are P and X,
2. Monotonicity; the base theory proves that $P \models^s \varphi$ and $P \models^s \text{Name}(X)$ are monotone in P,
3. Substitution; for each term t,

$$P \models^s \varphi(x/t) \iff (P \models^s \varphi)(x/t).$$
Good strong forcing notions extended

Definition

We extend a given good strong forcing notion to arbitrary formulas of \mathcal{L}^2 as follows:

1. $P \vdash^s \neg \varphi :\iff \forall Q \leq P \neg (Q \vdash^s \varphi)$,
2. $P \vdash^s \varphi \land \psi :\iff (P \vdash^s \varphi) \land (P \vdash^s \psi)$,
3. $P \vdash^s \varphi \lor \psi :\iff (P \vdash^s \varphi) \lor (P \vdash^s \psi)$,
4. $P \vdash^s \varphi \rightarrow \psi :\iff \forall Q \leq P (Q \vdash^s \varphi \rightarrow \exists R \leq Q (R \vdash^s \psi))$,
5. $P \vdash^s \exists x \varphi :\iff \exists x (P \vdash^s \varphi)$,
6. $P \vdash^s \forall x \varphi :\iff \forall x \forall Q \leq P \exists R \leq Q (R \vdash^s \varphi)$,
7. $P \vdash^s \exists X \varphi :\iff \exists X (P \vdash^s \text{Name}(X) \land P \vdash^s \varphi)$,
8. $P \vdash^s \forall X \varphi :\iff \forall X \forall Q \leq P \exists R \leq Q (R \vdash^s \text{Name}(X) \rightarrow R \vdash^s \varphi)$.

The extended forcing relation satisfies monotonicity and substitution.
Good weak forcing notions

A problem with good strong forcing notions is that they don’t necessarily preserve logic! Basically this occurs when they’re not “not-not stable,” so we define:

Definition

A good strong forcing notion \(P \models \phi \) is a good weak forcing notion if the base theory additionally proves \(P \models \phi \iff P \models \neg \neg \phi \). The extension to arbitrary formulae differs from strong forcing in the following clauses:

3. \(P \models \phi \lor \psi :\iff \forall Q \leq P \exists R \leq Q ((R \models \phi) \lor (R \models \psi)) \),

5. \(P \models \exists x \phi :\iff \forall Q \leq P \exists R \leq Q \exists x (R \models \phi) \),

6. \(P \models \forall x \phi :\iff \forall x (P \models \phi) \),

7. \(P \models \exists X \phi :\iff \forall Q \leq P \exists R \leq Q \exists X (R \models \text{Name}(X) \land R \models \phi) \),

8. \(P \models \forall X \phi :\iff \forall X (P \models \text{Name}(X) \rightarrow P \models \phi) \).
An extended good weak forcing notion satisfies monotonicity, substitution and stability:

\[P \models \varphi \iff P \models \neg \neg \varphi. \]

Lemma

*Suppose \(\models^s \) is a good strong forcing notion. Then the relation \(\models \) given by

\[P \models \varphi \iff P \models^s \neg \neg \varphi \]

\((*)\)

is a good weak forcing theory, and \((*)\) will hold as well for the extended relations.*
To force WKL, the first step is to add a generic path through some infinite tree. We do this in two steps: first we a single generic path ($\frac{1}{2}$-forcing); then we add all sets recursively definable from this new path and old set, so as to model RCA$_0$ (1-forcing). Both will be weak forcing relations.

Definition

1/2-conditions are infinite binary trees:

$$\text{Cond}_{\frac{1}{2}}(P) :\Leftrightarrow P \text{ is an binary tree } \land \forall n \exists \sigma \in P \left(\text{len}(\sigma) = n \right),$$

(this is equivalent to a Π^0_1-formula), and we let $P \leq_{\frac{1}{2}} Q :\Leftrightarrow P \subset Q$.

The $\frac{1}{2}$-names are $\hat{X} = \{ \langle 0, x \rangle \mid x \in X \}$ for old sets and $\hat{G} = \{ \langle 1, 0 \rangle \}$ for the new generic.
The $\frac{1}{2}$-forcing relation

We define:

\[
P \models_{\frac{1}{2}} t_1 = t_2 :\iff t_1 = t_2
\]

\[
P \models_{\frac{1}{2}} t \in \hat{X} :\iff t \in X
\]

\[
P \models_{\frac{1}{2}} t \in \hat{G} :\iff \exists n \forall \sigma (\sigma \in P \land \text{len} \sigma = n \rightarrow t \subset \sigma).
\]

The intuition of the last clause is that we want G to be an infinite path through P, so at some height n, all nodes have t as a prefix (thus, since P is prefix closed, all nodes of height greater than n will also have t as a prefix). Thus, all but finitely many nodes of P have t as a prefix.

This condition is Σ^0_1.
Now, the key facts about $\frac{1}{2}$-forcing are:

1. $\frac{1}{2}$-forcing is a good weak forcing notion,
2. RCA_0 proves that for φ not mentioning G, $\models \frac{1}{2} \varphi(\hat{X})$ is equivalent to $\varphi(X)$,
3. if φ is Σ^0_1 (resp. Π^0_2), then RCA_0 proves that $\models \frac{1}{2} \varphi$ is equivalent to another Σ^0_1 (resp. Π^0_2) formula.
4. RCA_0 proves that Σ^0_1-induction is $\frac{1}{2}$-generically valid.

The next step is to add names for all sets recursively definable from the \hat{X} and \hat{G}.
We take 1-names to be triples $\langle X, \psi, \chi \rangle$, where $\psi(x, X, G)$ and $\chi(x, X, G)$ are codes of Σ^0_1 and Π^0_1-formulas determining a set which is recursive in X and G.

Let $\text{Tr}_{\Sigma^0_1}$ and $\text{Tr}_{\Pi^0_1}$ be suitable truth predicates. Then we define

$$P \models_{1} \text{Name}(\langle X, \psi, \chi \rangle) :\iff P \models_{\frac{1}{2}} \forall x \ (\text{Tr}_{\Sigma^0_1}(\psi, x, \hat{X}, \hat{G}) \iff \text{Tr}_{\Pi^0_1}(\chi, x, \hat{X}, \hat{G})).$$

Then we can set

$$P \models_{1} t \in \langle X, \psi, \chi \rangle :\iff P \models_{\frac{1}{2}} \text{Tr}_{\Sigma^0_1}(\psi, t, \hat{X}, \hat{G}).$$
Now, the key facts about 1-forcing are:

1. 1-forcing is a good weak forcing notion,
2. RCA_0 proves that for φ not mentioning G, $\models_1 \varphi(\hat{X})$ is equivalent to $\varphi(X)$,
3. if φ is Σ^0_1 (resp. Π^0_2), then RCA_0 proves that $\models_1 \varphi$ is equivalent to another Σ^0_1 (resp. Π^0_2) formula.
4. RCA_0 proves that Σ^0_1-induction is 1-generically valid.
5. RCA_0 proves that each axiom of RCA_0 is 1-generically valid.
6. RCA_0 proves that if P is a 1-condition, then $P \models_1 \exists X \ (X$ is an infinite path through $\hat{P})$.
From n- to $n + 1$-forcing

Once n-forcing has been defined, we define:

1. An $n + 1$-condition is a pair $\langle P, P' \rangle$ such that
 \[\text{Cond}_n(P) \land P \models_n \text{Name}(P') \land P \models_n \text{Cond}_1(P'). \]

2. If $\langle P, P' \rangle$ and $\langle Q, Q' \rangle$ are $n + 1$-conditions, then $\langle P, P' \rangle \leq_{n+1} \langle Q, Q' \rangle$ if and only if
 \[P \leq_n P' \land P \models_n (P' \leq_1 Q'). \]

3. $\langle P, P' \rangle \models_{n+1} \text{Name} X$ if and only if
 \[P \models_n (P' \models_1 \text{Name}(X)). \]

4. $\langle P, P' \rangle \models_{n+1} \varphi$ if and only if
 \[P \models_n (P' \models_1 \varphi). \]
Uniform \(n \)-forcing

By carefully pushing the formula-complexity of \(n \)-forcing to \(\Pi_2^0 \), Avigad is able to find primitive recursive functions of \(n \), giving the notions of condition, order, name, and “element of” as codes of \(\Pi_2^0 \)-formulas (with \(n \) as a parameter).

Then, using the fact that RCA\(_0\) is finitely axiomatizable, we can prove that “if \(\bigwedge \) RCA\(_0\) is \(n \)-forced, then \(\bigwedge \) RCA\(_0\) is \(n + 1 \)-forced.”

Then we take an \(\omega \)-condition to be an \(n \)-condition where \(\bigwedge \) RCA\(_0\) is \(n \)-forced.
ω-forcing: summing up

Now, the key facts about ω-forcing are:

1. ω-forcing is a good weak forcing notion,
2. RCA₀ proves that for φ not mentioning G, \(\models_\omega \varphi(\hat{X}) \) is equivalent to \(\varphi(X) \),
3. if \(\varphi \) is \(\Sigma^0_1 \) (resp. \(\Pi^0_2 \)), then RCA₀ proves that \(\models_1 \varphi \) is equivalent to another \(\Sigma^0_1 \) (resp. \(\Pi^0_2 \)) formula.
4. RCA₀ proves that \(\Sigma^0_1 \)-induction is ω-generically valid.
5. RCA₀ proves that each axiom of RCA₀ is ω-generically valid.
6. RCA₀ proves that (WKL) is ω-generically valid.
The effective version of Brown-Simpson

More work forces also BCT, and by analyzing the transformation, we get

Theorem (Avigad)

There is a recursive function f and a polynomial p such that: if d codes a proof in WKL^+_0 of a Π^1_1-formula φ, then $f(d)$ codes a proof of φ in RCA_0, and the length of $f(d)$ is less than $p(\text{length of } d)$.
