Transfinitely iterated fixpoint theories

Ulrik Buchholtz

Stanford

October 26, 2010
Outline

1. Introduction
2. Ordinals
3. Transfinitely iterated fixpoint theories
4. Lower Bound
5. Upper bound
We summarize the paper by Jäger, Kahle, Setzer, and Strahm: *The proof-theoretic analysis of transfinitely iterated fixed point theories* [JKSS99].

Our goal is to determine the proof-theoretical ordinals of a family of theories, $\hat{\text{ID}}_\alpha$. Part I will sketch the lower bound. Part II will concern the upper bound.
In proof theory we use ordinals to measure infinitary objects. Ordinals are equivalence classes of well-orderings. If α and β are ordinals, then $\alpha < \beta$ if (a representative of) α is isomorphic to a proper initial segment of (a representative of) β. This relation well-orders the class On of all ordinals. Therefore, we identify an ordinal with its canonical representative:

$$\alpha = \{ \xi \mid \xi < \alpha \}$$

In this way, ordinals become transitive sets that are well-ordered by \in (von Neumann ordinals).
Every well-founded recursive relation \prec on ω determines an ordinal less than ω_1^{CK}. Kleene noted that every recursive ordinal can be represented by a primitive recursive (even Kalmár elementary) well-order on ω. [Kle55]

Any well-order \prec is order-isomorphic to its representing von Neumann ordinal, $\text{otyp}(\prec) \in \text{On}$, through an *enumerating* function:

$$\text{en}_\prec : \text{otyp}(\prec) \to \text{field}(\prec)$$

Every subclass $M \subset \text{On}$ is well-ordered with either

- $\text{otyp}(M) = \text{On}$ (if M is a proper class), or
- $\text{otyp}(M) \in \text{On}$ (if M is a set).
Normal functions and club classes

Let Ω be the least uncountable ordinal.

We say that $M \subset \text{On}$ is *unbounded* in Ω if for each $\alpha < \Omega$ there is is $\beta \in M \cap \Omega$ with $\alpha < \beta$.

We say that $M \subset \text{On}$ is *closed* in Ω if for every countable $A \subset M$ we have $\sup(A) \in M$.

An order-preserving function $f : \text{On} \rightarrow \text{On}$ is called *normal* on Ω if $\text{dom}(f) \supset \Omega$ and f is continuous.

Lemma

A class $M \subset \text{On}$ is club in Ω iff en_M is normal on Ω.

(Analogues of the above exist for each regular cardinal $\kappa \geq \Omega$.)
Given an ordinal $\alpha < \Omega$, the class $\text{On}_\alpha := \{ \beta \in \text{On} \mid \alpha \leq \beta \}$ is club, so the enumerating function is normal on Ω. Its value on ξ is denoted $\alpha + \xi$ and is called the *ordinal sum* of α and ξ.

Note that $\alpha + \xi$ can also be defined by transfinite recursion on ξ.

Let $\mathbb{H} := \{ \alpha \in \text{On} \mid \alpha \neq 0 \land \forall \xi, \eta < \alpha. \xi + \eta < \alpha \}$. We call ordinals in \mathbb{H} *additively indecomposable* or *principal*.

Lemma

\mathbb{H} *is club in* Ω, so $\text{en}_\mathbb{H}$ *is normal*. We write $\omega^\xi := \text{en}_\mathbb{H}(\xi)$.
Theorem (Cantor Normal Form)

For all ordinals $\alpha \neq 0$, there are uniquely determined principal ordinals $\alpha_1, \ldots, \alpha_n$ such that

$$\alpha = \alpha_1 + \cdots + \alpha_n \quad \text{and} \quad \alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_n.$$

Thus, noting that powers of ω enumerate the principal ordinals, and collecting equals terms, we get the form

$$\alpha = \omega^{\beta_1}k_1 + \cdots + \omega^{\beta_n}k_n \quad \text{where} \quad \beta_1 > \beta_2 \cdots > \beta_n.$$

The Cantor Normal Form can be used to form a notation system for ordinals less than ε_0.
Ordinal class differentiation

For $f: \text{On} \rightarrow \text{On}$ put $\text{Fix}(f) := \{ \eta \in \text{dom}(f) \mid f(\eta) = \eta \}$. The derivative of f is defined by

$$f' := \text{en}_{\text{Fix}(f)}$$

We define the derivative of a class $M \subset \text{On}$ as $M' := \text{Fix}(\text{en}_M)$. Facts:

- If f is normal, then $\text{Fix}(f)$ is club, and so f' is again normal.
- If M is club, then M' is again club.
- A countable intersection of club classes is again club.
The Veblen Hierarchy

The Veblen Hierarchy of critical ordinals is defined by

\[
\begin{align*}
\text{Cr}(0) & := \mathcal{H} \\
\text{Cr}(\alpha + 1) & := \text{Cr}(\alpha)' \\
\text{Cr}(\lambda) & := \bigcap_{\xi<\lambda} \text{Cr}(\xi).
\end{align*}
\]

Then we put \(\varphi_\alpha := \text{en}_{\text{Cr}(\alpha)} \). We also write \(\varphi(\alpha, \beta) = \varphi_\alpha(\beta) \). Then

\[
\varphi(0, \beta) = \omega^\beta \quad \text{and} \quad \varphi(1, \beta) = \varepsilon_\beta
\]

Theorem

For \(\alpha < \Omega \), the class \(\text{Cr}(\alpha) \) is club in \(\Omega \), so \(\varphi_\alpha \) is normal on \(\Omega \).
Theorem

We have:

(A) $\varphi_{\alpha_1}(\beta_1) = \varphi_{\alpha_2}(\beta_2)$ iff either of the following:

 (i) $\alpha_1 < \alpha_2 \land \beta_1 = \varphi_{\alpha_2}(\beta_2)$

 (ii) $\alpha_1 = \alpha_2 \land \beta_1 = \beta_2$

 (iii) $\alpha_1 > \alpha_2 \land \varphi_{\alpha_1}(\beta_1) = \beta_2$

(B) $\varphi_{\alpha_1}(\beta_1) < \varphi_{\alpha_2}(\beta_2)$ iff either of the following:

 (i) $\alpha_1 < \alpha_2 \land \beta_1 < \varphi_{\alpha_2}(\beta_2)$

 (ii) $\alpha_1 = \alpha_2 \land \beta_1 < \beta_2$

 (iii) $\alpha_1 > \alpha_2 \land \varphi_{\alpha_1}(\beta_1) < \beta_2$

This forms the basis for a notation system for ordinals less than Γ_0.
The Small Veblen Ordinal

Define $Cr_\xi(\alpha)$ by

\[
\begin{align*}
Cr_0(0) & := H \\
Cr_\xi(\alpha + 1) & := Cr_\xi(\alpha)' \\
Cr_\xi(\lambda) & := \bigcap_{\eta < \lambda} Cr_\xi(\eta) \\
Cr_{\alpha+1}(0) & := \{ \xi < \Omega \mid \xi \in \bigcap_{\lambda < \xi} Cr_\alpha(\lambda) \} \\
Cr_\lambda(0) & := \bigcap_{\xi < \lambda} Cr_\xi(0)
\end{align*}
\]

and put $\varphi_{\xi,\alpha} := \text{en}_{Cr_\xi(\alpha)}$. Continuing this line of reasoning, we get n-ary φ-functions $\Omega^n \to \Omega$ for each $n < \omega$. Letting Φ_0 be the least ordinal not expressible with these, we also get an elementary notation system \prec on ω for the ordinals less than Φ_0.

We define the systems $\hat{\text{ID}}_\alpha$ for $\alpha < \Phi_0$. Let \mathcal{L} be the language of first-order arithmetic. Terms are built from variables by means of primitive recursive functions. The predicates are the primitive recursive relations, as well as a unary predicate U.
If P and Q are fresh unary predicates, then we let $\mathcal{L}(P, Q)$ denote the extension of \mathcal{L} with P and Q. We let $\mathcal{A}(P, Q, x, y)$ range over formulas of $\mathcal{L}(P, Q)$ that

1. are P-positive (only positive literals $P(t)$ occur), and
2. have at most x and y free.

Such formulas are called *inductive operator forms*.
Transfinite induction

Let \(\sqsubseteq \) be a primitive recursive relation, and let \(A(x) \) be a formula with a distinguished variable. Let \(s \) be a term. Then we set:

\[
A(\sqsubseteq x) := \forall y \sqsubseteq x. A(y)
\]

\[
\text{Prog}(\sqsubseteq, A) := \forall x. A(\sqsubseteq x) \rightarrow A(x)
\]

\[
\text{TI}(\sqsubseteq, A) := \text{Prog}(\sqsubseteq, A) \rightarrow \forall x. A(x)
\]

\[
\text{TI}(\sqsubseteq, s, A) := \text{Prog}(\sqsubseteq, A) \rightarrow A(\sqsubseteq s)
\]

If we just write \(\text{Prog}(A) \), \(\text{TI}(A) \), or \(\text{TI}(s, A) \), it is understood that we take \(\sqsubseteq \) to be \(\prec \).
The language of $\mathcal{I}D_\alpha$

For each $\alpha < \Phi_0$ we have the theory $\mathcal{I}D_\alpha$ of α times iterated fixpoints. The language is L_{fix}, which we obtain from L by adding a new unary predicate symbol P^A for each inductive operator form $A(P, Q, x, y)$.

We define:

$$P^A_s(u) := P^A(\langle u, s \rangle)$$

$$P^A_{\prec a}(t) := (t = \langle u, s \rangle) \land s \prec a \land P^A_s(u)$$

The intended meaning is that $P^A_{\prec a} = \sum_{s \prec a} P^A_s$.

Ulrik Buchholtz (Stanford)
Axioms of $\hat{\text{ID}}_\alpha$

The axioms of $\hat{\text{ID}}_\alpha$ comprise

(i) those of Peano arithmetic with the induction scheme for all \mathcal{L}_{fix}-formulas,

(ii) fixpoint axiom: for each inductive operator form $A(P, Q, x, y)$ we have

$$\forall a < \alpha. \forall x. P^A_a(x) \leftrightarrow A(P^A_a, P^A_{\prec a}, x, a),$$

(iii) the axioms $\text{TI}(\alpha, A)$ for each \mathcal{L}_{fix}-formula A.
Previous Results

The theories $\widehat{\text{ID}}_n$ were first introduced by Feferman [Fef82]. It was established that the proof-theoretical ordinal of $\widehat{\text{ID}}_n$ is α_n, where $\alpha_0 := \varepsilon_0$, and $\alpha_{n+1} := \varphi \alpha_n 0$. Therefore, the union, $\widehat{\text{ID}}_{<\omega}$, has proof-theoretical ordinal Γ_0, the first predicatively inaccessible ordinal.

JKSS extends these results to $\widehat{\text{ID}}_\alpha$ for $\alpha \geq \omega$.
Main Theorem of JKSS

Fix an ordinal $\alpha < \Phi_0$. Let $\varepsilon(\alpha)$ denote the least ε-number greater than α. Define inductively

$$(\alpha | 0) := \varepsilon(\alpha), \quad (\alpha | m + 1) := \varphi(\alpha | m).$$

Theorem (Main Theorem)

Let α have Cantor Normal Form

$$\alpha = \omega^{1+\alpha_n} + \cdots + \omega^{1+\alpha_1} + m,$$

where $\alpha_n \geq \cdots \geq \alpha_1$ and $m < \omega$. Then the proof-theoretic ordinal of $\hat{\text{ID}}_\alpha$ is

$$|\hat{\text{ID}}_\alpha| = \varphi_1\alpha_n(\varphi_1\alpha_{n-1}(\cdots \varphi_1\alpha_1(\alpha | m)) \cdots).$$
Lower Bounds: Ordinal Analysis of PA

Let us recall how to show that $|\text{PA}| \geq \varepsilon_0$.
Since $\varepsilon_0 = \sup\{ \exp^n(0) \mid n < \omega \}$, this is done by showing:

$$\text{if } \text{PA} \vdash \text{TI}(\alpha, U) \text{ then } \text{PA} \vdash \text{TI}(\omega^\alpha, U)$$

A basic ingredient is the substitution lemma:

Lemma

Let $F(U)$ and $G(x)$ be formulas in $\mathcal{L}(U)$. If $\text{PA} \vdash F(U)$, then $\text{PA} \vdash F(\lambda x. G(x))$.
Define the jump of X by

$$J(X) := \lambda \alpha. \forall \xi. X(\prec \xi) \rightarrow X(\prec \xi + \omega^\alpha)$$

Then one shows first:

Lemma

$\text{PA} \vdash \text{Prog}(X) \rightarrow \text{Prog}(J(X))$.

And then:

Lemma

$\text{PA} \vdash \text{TI}(\alpha, J(X)) \rightarrow \text{TI}(\omega^\alpha, X)$.

Combining this with substitution, gives the lower bound for PA.
To use the well-ordering techniques for predicative systems, we will study theories for self-reflecting truth. We will see that these embed into the $\hat{\text{ID}}_\alpha$, where they will facilitate our well-ordering proofs.

Kripke [Kri75] gave in his “Outline of a theory of truth” a simultaneous inductive definition of predicates T and F over a given language, which give partial truth and falsity predicates grounded in atomic formulas.

Here, we iterate this procedure. We use Quine quotes, $\lceil A \rceil$, to mean terms for Gödel numbers.
Theories for self-reflecting truth, language

The language \mathcal{L}_{srt} extends \mathcal{L} by two binary relation symbols: T and F.

$T_s(t)$ means that t is the code of a true formula at level s.

$F_s(t)$ means that t is the code of a false formula at level s.

The sublanguage $\mathcal{L}_{\text{srt}}^\alpha$ is obtained by restricting levels s in atoms $T_s(t)$ and $F_s(t)$ to closed terms with $s \leq \alpha$.
Gödelization of $\mathcal{L}_{srt}^{\alpha}$

We Gödelize the languages $\mathcal{L}_{srt}^{\alpha}$ uniformly in $\alpha < \Phi_0$ to get Gödel numbers \overline{t} and \overline{A} for each \mathcal{L}-term t and each $\mathcal{L}_{srt}^{\alpha}$-formula A.

We have the following primitive recursive functions and predicates:

- $\text{CTer}(x) - x$ codes a closed term of \mathcal{L}.
- $\text{For}_n(f,a) - f$ codes an $\mathcal{L}_{srt}^{\alpha}$-formula with at most n free variables.
- $\text{Atm}(f,a) - f$ codes a positive literal of $\mathcal{L}_{srt}^{\alpha}$.
- $\text{num}(x) -$ the code of the xth numeral of \mathcal{L}.
- $\text{val}(z) -$ the value of the closed term z.
- $\text{neg}(f) -$ the negation of the atom f.
- $\text{and}(f,g) -$ the conjunction of f and g (also have $\text{or}(f,g)$).
- $\text{all}(x,f) -$ universal quantification of f with respect to the xth variable (also have $\text{ext}(f,g)$).
We write \(\text{Sen}(f, a) \) instead of \(\text{For}_0(f, a) \) and \(\dot{x} \) instead of \(\text{num}(x) \).
If \(\text{For}_n(f, a) \) and \(\text{CTer}(x_1), \ldots, \text{CTer}(x_n) \), then \(f(x_1, \ldots, x_n) \) denotes the code of the formula obtained from \(f \) by simultaneously substituting the \(i \)th variable of \(f \) with \(x_i \) for \(i = 1, \ldots, n \).
Similarly, if \(A \) is an \(\mathcal{L}_{srt}^\alpha \)-formula with at most \(n \) free variables, then
\[
\neg A(\dot{x}_1, \ldots, \dot{x}_n) \equiv \text{an abbreviation for } \neg A(\dot{x}_1, \ldots, \dot{x}_n),
\]
and if we furthermore have \(\text{CTer}(x_1), \ldots, \text{CTer}(x_n) \), then
\[
\neg A(x_1, \ldots, x_n) \equiv \text{an abbreviation for } \neg A(x_1, \ldots, x_n).
\]
If furthermore \(R \) is an \(n \)-ary relation symbol of \(\mathcal{L} \), then
\[
\neg R(x_1, \ldots, x_n) \equiv \text{the code of the corresponding atom.}
\]
Lastly, if \(\text{CTer}(a) \) and \(\text{CTer}(x) \), then
\[
\neg T_a(x) \text{ and } \neg F_a(x) \text{ are codes of the corresponding atoms.}
\]
Let α be an ordinal less than Φ_0.
The language of the system SRT_α for α times iterated self-reflecting truth is the unrestricted \mathcal{L}_{srt}. The theory comprises:

(i) the axioms of Peano arithmetic with the induction scheme for all \mathcal{L}_{srt}-formulas.

(ii) the axioms $\text{TI}(\alpha, A)$ for all \mathcal{L}_{srt}-formulas A.

(iii) the axiom groups I to III on the following slides.
SRT_α axiom group I – atomic truth

(1) For each \(n\)-ary relation symbol \(R\) of \(\mathcal{L}\):

\[
\text{CTer}(x_1) \land \cdots \land \text{CTer}(x_n) \land a \prec \alpha \\
\rightarrow \left(T_a(\lceil R(x_1, \ldots, x_n) \rceil) \leftrightarrow R(\text{val}(x_1), \ldots, \text{val}(x_n)) \right) \\
\land \left(F_a(\lceil R(x_1, \ldots, x_n) \rceil) \leftrightarrow \neg R(\text{val}(x_1), \ldots, \text{val}(x_n)) \right)
\]

(2)

\[
\text{CTer}(x) \land \text{CTer}(b) \land \text{val}(b) \prec a \prec \alpha \\
\rightarrow \left(T_a(\lceil T_b(x) \rceil) \leftrightarrow T_{\text{val} b}(\text{val}(x)) \right) \land \left(T_a(\lceil F_b(x) \rceil) \leftrightarrow F_{\text{val} b}(\text{val}(x)) \right) \\
\land \left(F_a(\lceil T_b(x) \rceil) \leftrightarrow \neg T_{\text{val} b}(\text{val}(x)) \right) \land \left(F_a(\lceil F_b(x) \rceil) \leftrightarrow \neg F_{\text{val} b}(\text{val}(x)) \right)
\]
SRT$_\alpha$ axiom group II – composed truth

(3) $\text{Atm}(f, a) \land a \prec \alpha \rightarrow (T_a(\neg (f)) \leftrightarrow F_a(f)) \land (F_a(\neg (f)) \leftrightarrow T_a(f))$.

(4) $\text{Sen}(f, a) \land \text{Sen}(g, a) \land a \prec \alpha$

$\rightarrow (T_a(\text{and}(f, g)) \leftrightarrow T_a(f) \land T_a(g))$

$\land (F_a(\text{and}(f, g)) \leftrightarrow F_a(f) \lor F_a(g))$.

(5) dual axiom for disjunction

(6) $\text{Sen}(\text{all}(v, f), a) \land a \prec \alpha$

$\rightarrow (T_a(\text{all}(v, f)) \leftrightarrow (\forall x)T_a(f(\dot{x})))$

$\land (F_a(\text{all}(v, f)) \leftrightarrow (\exists x)F_a(f(\dot{x})))$.

(7) dual axiom for existential quantification.
SRT$_\alpha$ axiom group III – self-reflecting truth

(8)

$$CTer(x) \land CTer(a) \land val(a) \prec \alpha$$

$$\rightarrow \left(T_{val(a)}(\neg T_a(x)) \leftrightarrow T_{val(a)}(val(x)) \right)$$

$$\land \left(T_{val(a)}(\neg F_a(x)) \leftrightarrow F_{val(a)}(val(x)) \right)$$

$$\land \left(F_{val(a)}(\neg T_a(x)) \leftrightarrow T_{val(a)}(val(x)) \right)$$

$$\land \left(F_{val(a)}(\neg F_a(x)) \leftrightarrow T_{val(a)}(val(x)) \right)$$
Embedding SRT_{α} into \widehat{ID}_{α}

We follow Sol’s paper *Reflecting on incompleteness* [Fef91].

Fix $\alpha < \Phi_0$. We want to model SRT_{α} in \widehat{ID}_{α}. The idea is to interpret T and F by a fixpoint family Q so that

$$T_a(t) \leftrightarrow Q_a(\langle t, 0 \rangle) \quad \text{and} \quad F_a(t) \leftrightarrow Q_a(\langle t, 1 \rangle).$$

We need to find a suitable inductive operator form $A(Q_a, Q_{\prec \alpha}, x, a)$. We give an informal definition of this formula on the following slides.
Clauses for truth fixpoint family, 1

\[A(Q_a, Q_{\prec a}, x, a) := \text{let } x = \langle t, y \rangle \text{ in: case of} \]

\begin{align*}
(1) & \quad t = \llbracket R(x_1, \ldots, x_n) \rrbracket \text{ where} \\
& \quad \text{CTer}(x_1) \land \cdots \land \text{CTer}(x_n) : \\
& \quad (R(val(x_1), \ldots, val(x_n)) \land y = 0) \lor \\
& \quad (\neg R(val(x_n), \ldots, val(x_n)) \land y = 1) \\
(2) & \quad t = \llbracket T_b(f) \rrbracket \text{ where} \\
& \quad \text{CTer}(f) \land \text{CTer}(b) \land \text{val}(b) \prec a : \\
& \quad (Q_{\text{val}(b)}(\langle \text{val} f, 0 \rangle) \land y = 0) \lor \\
& \quad (Q_{\text{val}(b)}(\langle \text{val} f, 1 \rangle) \land y = 1) \\
& \quad \cdots
\end{align*}
Clauses for truth fixpoint family, II

\[(2') \quad t = \neg F_b(f) \quad \text{where} \]
\[C Ter(f) \land C Ter(b) \land val(b) < a : \]
\[(Q_{val(b)}(\langle val \, f, 1 \rangle) \land y = 0) \lor \]
\[(Q_{val(b)}(\langle val \, f, 0 \rangle) \land y = 1) \]

\[(3) \quad t = \neg (f) \quad \text{where} \quad Atm(f, a): \]
\[(Q_a(\langle f, 1 \rangle) \land y = 0) \lor (Q_a(\langle f, 0 \rangle) \land y = 1) \]

\[\ldots \]

(\text{the other conditions (4)--(7) for composed truth are similar})

\[\ldots \]
Clauses for truth fixpoint family, III

\[t = \{T_\alpha(f) \} \quad \text{where } C\text{Ter}(f): \]
\[(Q_a(\langle \text{val } f, 0 \rangle) \land y = 0) \lor \]
\[(Q_a(\langle \text{val } f, 1 \rangle) \land y = 1) \]

\[t = \{F_\alpha(f) \} \quad \text{where } C\text{Ter}(f): \]
\[(Q_a(\langle \text{val } f, 1 \rangle) \land y = 0) \lor \]
\[(Q_a(\langle \text{val } f, 0 \rangle) \land y = 1) \]
Ramified sets in SRT_α

The systems SRT_α has a natural notion of ramified subsets of ω, conceived of as propositional functions. We set:

$$f \in S_a := \text{For}_1(f, a) \land \forall x. T_a(f(\dot{x})) \leftrightarrow \neg F_a(f(\dot{x}))$$

– meaning f is a set of level a.

$$x \in_a f := T_a(f(\dot{x}))$$

– meaning x is an element of the set f.
Well-ordering proofs for SRT\(_\alpha\)

We consider the notion of having transfinite induction up to \(a\) for all sets of level less than \(c\), formalized as:

\[
I^c(a) := \forall b < c. \forall f \in S_b. \text{TI}(a, f).
\]

Here \(\text{TI}(a, f)\) means \(\text{TI}(a, \lambda x. x \in_b f)\), which we recall is

\[
(\forall x. (\forall y. y < x \rightarrow y \in_b f) \rightarrow x \in_b f) \rightarrow \forall x < a. x \in_b f.
\]

Lemma

SRT\(_\alpha\) proves:

\[
\forall \ell. \text{Lim}(\ell) \land \ell \leq \alpha \rightarrow \exists f \in S_\ell. \forall a. I^\ell(a) \leftrightarrow a \in_\ell f.
\]
Well-ordering proofs for SRT_α, continued

The first step is from predicative proof theory:

Lemma

SRT_α proves:

$$\forall \ell, a. \, \text{Lim}(\ell) \land \ell \leq \alpha \land I^\ell(a) \rightarrow I^\ell(\varphi a0).$$

This is done by introducing and using the Veblen-a-jumps:

$$V\mathcal{J}_a(\ell) := \lambda b. I^\ell(b) \rightarrow I^\ell(\varphi ab).$$

Note: This step is easier for studying SRT_α (and so $\hat{\text{ID}}_\alpha$) for $\alpha \geq \omega$. For finite α, we need more delicate analysis!
Well-ordering proofs for SRT$_\alpha$, continued

We see that these well-ordering proofs rely on room to maneuver in the levels. So we define:

$$a \uparrow b := \exists c, \ell. \text{Lim}(\ell) \land b = c + a \cdot \ell$$

This is enough to formulate the main lemma:

Lemma (Main Lemma I)

Let Main$_\alpha(a)$ be defined as:

$$\text{Main}_\alpha(a) := \forall b, c. \; c \preceq \alpha \land \omega^{1+a} \uparrow c \land I^c(b) \rightarrow I^c(\varphi 1ab)$$

Then SRT$_\alpha$ proves Prog($\lambda a. \text{Main}_\alpha(a)$).
Well-ordering proofs for SRT_α, completed

Corollary

SRT_α proves:

\[
\forall c, c_0, d. \ c \leq \alpha \land c = c_0 + \omega^{1+d} \rightarrow \text{Prog}(\lambda e. I^c(\varphi 1de)).
\]

The whole well-ordering proof starts from our analysis of number theory:

Lemma

Let $\beta < \varepsilon(\alpha)$ and A be an formula of \mathcal{L}_{srt}. Then SRT_α proves $\text{TI}(\beta, A)$.

Combined, these results give the lower bound of the main theorem.
Upper bounds

We will sketch the cut-elimination arguments used to establish the upper bound in the main theorem. For this, we will employ subsystems H_α of a semi-formal system H_∞. To motivate this, we will briefly recall the goals and the framework of ordinal analysis.
Axioms for number theory

Recall one motivation for proof-theoretical analysis: the desire to quantify how well an axiom system approximates the set of true number theoretical pseudo-Π^1_1-sentences (those containing free set variables, but no quantification over set variables).

For an axiom system T, we define the Π^1_1-ordinal of T by:

$$|T|_{\Pi^1_1} = \sup\{|\varphi| \mid T \vdash \varphi\}.$$

using some measure of complexity, $|\varphi|$, of pseudo-Π^1_1-sentences. A nice measure is the *truth-complexity*, $tc(\varphi)$, defined using a semi-formal system.

It turns that for most theories we can restrict ourselves to the special sentences, $TI(\square, U)$.
Proof-theoretical ordinals

Let T be a theory. The proof-theoretical ordinal of T, denoted $|T|$ is defined by:

$$|T| := \sup \{ \text{otyp}(\sqsubseteq) \mid \sqsubseteq \text{ primitive recursive and } T \vdash \text{TI}(\sqsubseteq, U) \}$$

For theories with proof-theoretical ordinal less than Φ_0, we have

$$|T| = \sup \{ \alpha \mid T \vdash \text{TI}(\alpha, U) \}$$

The key to determining proof-theoretical ordinals is the following:

Theorem (Boundedness Theorem)

Let \prec be a primitive recursive, binary, transitive, well-founded relation. If $\text{Lim}(\text{otyp}(\prec))$, then $\text{otyp}(\prec) = \text{tc}(\text{TI}(\prec))$.
Aczel’s trick

Now to fixed point theories:
To model one fixpoint, we can use Aczel’s trick:

Lemma

Given an operator form, \(A(P, x) \), there’s a \(\Sigma_1 \)-formula \(\tilde{P}(x) \) such that

\[
\Sigma_1\text{-AC} \vdash A(\tilde{P}, x) \leftrightarrow \tilde{P}(x)
\]

Proof.

Let \(E(z, x, y) \) be a \(\Sigma_1 \)-formula which provably enumerates all \(\Sigma_1 \)-formulas \(Q(x, y) \) as \(z = 0, 1, 2, \ldots \). Consider \(A(\lambda u. E(z, z, u), x) \). This formula is provably equivalent to some \(Q_e(z, x) \) in \(\Sigma_1\text{-AC} \), so take \(\tilde{P} := Q_e(e, x) \). But this is not the route taken in the present paper.
The semi-formal system

We formulate a Tait-style system H_∞. It is formulated in the language L_∞ which extends L by unary relation symbols P_β^A and $P_{<\beta}^A$ for each inductive operator form A and each ordinal $\beta < \Phi_0$. The preformulas of L_∞ are generated inductively by:

1. Every literal of L is a L_∞ preformula.
2. If t is a number term, then the literals $P_\beta^A(t)$, $P_{<\beta}^A(t)$, $\neg P_\beta^A(t)$, and $\neg P_{<\beta}^A(t)$ are L_∞ preformulas.
3. L_∞ preformulas are closed under conjunction, disjunction, and universal and existential quantification.

We then define the L_∞ formulas to be the closed preformulas.

We detail the axioms and rules of inferences on the following slides.
The semi-formal system, axioms

I. Axioms, group 1 For all Γ, numerically equivalent literals A and B, and all true literals C:

$$\Gamma, \neg A, B \text{ and } \Gamma, C.$$

II. Axioms, group 2 For all Γ, all closed terms s with $\text{pair}(s)$ false, and all closed terms t with $\text{pair}(t)$ and $\beta \leq |(t)_1|$ true:

$$\Gamma, \neg P^A_{<\beta}(s) \text{ and } \Gamma, \neg P^A_{<\beta}(t).$$
The semi-formal system, fixed point rules

III. Fixed point rules, group 1 For all Γ and all closed terms t so that $\text{pair}(t)$ and $|(t)_1| = \alpha < \beta$:

$$
\frac{\Gamma, P^A_{\alpha}((t)_0)}{\Gamma, P^A_{<\beta}(t)}, \quad \text{and} \quad \frac{\Gamma, \neg P^A_{\alpha}((t)_0)}{\Gamma, \neg P^A_{<\beta}(t)}
$$

IV. Fixed point rules, group 2 For all Γ, all closed terms s, and all closed terms t with $|t| = \beta$:

$$
\frac{\Gamma, A(P^A_{\beta}, P^A_{<\beta}, s, t)}{\Gamma, P^A_{\beta}(s)}, \quad \text{and} \quad \frac{\Gamma, \neg A(P^A_{\beta}, P^A_{<\beta}, s, t)}{\Gamma, \neg P^A_{\beta}(s)}
$$
V. Propositional rules For all Γ and all \mathcal{L}_∞ formulas A and B:

$$
\frac{\Gamma, A}{\Gamma, A \lor B}, \quad \text{and} \quad \frac{\Gamma, B}{\Gamma, A \lor B}, \quad \text{and} \quad \frac{\Gamma, A}{\Gamma, A \land B}
$$

VI. Quantifier rules For all Γ, all \mathcal{L}_∞ preformulas $A(x)$ with only x free, and all closed terms s:

$$
\frac{\Gamma, A(x)}{\Gamma, \exists x. A(x)} \quad \text{and} \quad \frac{\Gamma, A(t) \text{ for all closed terms } t}{\Gamma, \forall x. A(x)} \quad (\omega)
$$

VII. Cut rule For all Γ, and all \mathcal{L}_∞ formulas A:

$$
\frac{\Gamma, A \quad \Gamma, \neg A}{\Gamma}
$$
Partial cut elimination

The language L_α is the sublanguage of L_∞ that allows P_β^A only for $\beta < \alpha$, and P_β^A only for $\beta \leq \alpha$. Then H_α is just H_∞ restricted to L_α.

The notion $H_\alpha \vdash^\beta \Gamma$ is used to express that Γ is provable in H_α by a proof of depth less than or equal to β.

We write $H_\alpha \vdash^\beta_* \Gamma$ if Γ can be proved by a derivation of depth less than or equal to β only using cuts of the above form.

Lemma

For all Γ:

if $H_\alpha \vdash^\beta \Gamma$, then $H_\alpha \vdash^{\epsilon(\beta)}_* \Gamma$.
Elimination of one fixed point

Let us study how to eliminate one fixed point via \textit{asymmetric interpretation}.
[Can85] Fix an ordinal β.

To see this we introduce a new semiformal system, H'_β, for studying the \textit{stages} of the construction of the fixpoint P^A_β. The language L'_β is $L_{<\beta}$ extended by unary predicates I^A_γ, which we interpret as the stages, so $I^A_0 = \emptyset$ and

$$I^A_\gamma = \{ x \mid A(I^A_{<\gamma}, P^A_\beta, x, \beta) \}.$$
Elimination of one fixed point, continued

The system extends H'_β extends H_β with the axioms:

$$
\Gamma, \neg I_0^A, \quad \text{for all } \Gamma,
$$

and the rules:

Stage rules, successor For all Γ, all closed terms s, and all closed terms t with $|t| = \beta$:

$$
\Gamma, A(I^A_\gamma, P^{<_\beta}_A, s, t) \quad \text{and} \quad \Gamma, \neg A(I^A_\gamma, P^{<_\beta}_A, s, t)
$$
Elimination of one fixed point, continued

Stage rules, limit For all Γ, all closed terms s, and all limit ordinals λ, and all $\gamma < \lambda$:

$$\frac{\Gamma, I_\gamma^A(s)}{\Gamma, I_\lambda^A(s)} \text{ and } \frac{\Gamma, \neg I_\delta^A(s) \text{ for all } \delta < \lambda}{\Gamma, \neg I_\lambda^A(s)}$$

Now we introduce the β-rank of formulas A in \mathcal{L}'_β:

$$\text{rnk}_\beta(A) = 0, \quad \text{for literals } A \text{ not containing } I_\gamma^A.$$
$$\text{rnk}_\beta(I_\gamma^A(t)) = \text{rnk}_\beta(\neg I_\gamma^A(t)) = \omega \gamma$$
$$\text{rnk}_\beta(B \circ C) = \max(\text{rnk}_\beta(B), \text{rnk}_\beta(C)) + 1$$
$$\text{rnk}_\beta(Qx. B) = \text{rnk}_\beta(B(0)) + 1$$
The asymmetric interpretation

Given any ordinals γ, δ with $0 \leq \gamma \leq \delta < \Phi_0$, we define a translation $A_{\gamma, \delta}$ of \mathcal{L}_β formulas to \mathcal{L}'_β:

\[
\neg P_\beta^A(s) \mapsto \neg I_\gamma^A(s) \quad P_\beta^A(s) \mapsto I_\delta^A(s)
\]

Theorem (Asymmetric Interpretation)

Suppose we have a derivation $H_\beta \vdash^\alpha \Gamma$. Then we can find uniformly in $\delta > 0$ and any sequence γ below δ suitable for Γ a derivation:

\[
H'_\beta \vdash^{\lambda(\alpha, \gamma, \delta)} \Gamma[\gamma, \varphi\alpha(|\gamma, \delta| + 1)].
\]

Here $\lambda(\alpha, \gamma, \delta) = \omega \varphi\alpha(|\gamma, \delta| + 1) + \omega + 1$.
Lemma

Assume Γ is a set of formulas of $\mathcal{L}_{\beta+\xi}$. Then we have for all ordinals ρ with $\xi < \omega^{1+\rho}$ and all ordinals α:

$$
\text{if } H_{\beta+\omega^{1+\rho}} \models_{\star}^\alpha \Gamma, \quad \text{then } H_{\beta+\xi} \models_{\star}^{\varphi_{1 \rho \alpha}} \Gamma.
$$
Lemma

For all L_{fix} sentences A we have:

$$\text{if } \widehat{\text{ID}}_\alpha \vdash A, \text{ then } H_\alpha \frac{\varepsilon(\alpha)}{\ast} A^\alpha.$$
Main Theorem of JKSS, again

Fix an ordinal \(\alpha < \Phi_0 \). Let \(\varepsilon(\alpha) \) denote the least \(\varepsilon \)-number greater than \(\alpha \). Define inductively

\[
(\alpha | 0) := \varepsilon(\alpha), \quad (\alpha | m + 1) := \varphi(\alpha | m) 0.
\]

Theorem (Main Theorem)

Let \(\alpha \) have Cantor Normal Form

\[
\alpha = \omega^{1+\alpha_n} + \cdots + \omega^{1+\alpha_1} + m,
\]

where \(\alpha_n \geq \cdots \geq \alpha_1 \) and \(m < \omega \). Then the proof-theoretic ordinal of \(\hat{ID}_\alpha \) is

\[
|\hat{ID}_\alpha| = \varphi 1 \alpha_n (\varphi 1 \alpha_{n-1}(\ldots \varphi 1 \alpha_1(\alpha | m)) \ldots).
\]
Corollaries and connections

Based on the studies of the paper we can add to previous result that $|\hat{\mathcal{D}}_{<\omega}| = \Gamma_0$ the following corollary:

Corollary

We have the following proof-theoretical ordinals:

$$
|\hat{\mathcal{D}}_{<\omega}| = \varphi 100 = \Gamma_0,
|\hat{\mathcal{D}}_{\omega}| = \varphi 10\varepsilon_0 = \Gamma_{\varepsilon_0},
|\hat{\mathcal{D}}_{<\omega^\omega}| = \varphi 1\omega 0,
|\hat{\mathcal{D}}_{\omega^\omega}| = \varphi 1\omega\varepsilon_0,
|\hat{\mathcal{D}}_{<\varepsilon_0}| = \varphi 1\varepsilon_0 0,
|\hat{\mathcal{D}}_{\varepsilon_0}| = \varphi 1\varepsilon_0\varepsilon_0.
$$
Scaling the metapredicative hierarchy

The theories \widehat{ID}_α can be used to scale (an initial part of) the metapredicative hierarchy. Some results in this direction follow. From Jäger and Strahm [JS00]:

\begin{align*}
\widehat{ID}_{\omega} & \equiv ATR, \\
\widehat{ID}_{<\omega} & \equiv ATR_0 + (\Sigma^1_1\text{-DC}), \\
\widehat{ID}_{<\varepsilon_0} & \equiv ATR + (\Sigma^1_1\text{-DC}).
\end{align*}

The autonomous fixed point theories, and further connections with Explicit Mathematics and Martin-Löf type theories to be discussed in later seminars.
Andrea Cantini.
A note on a predicatively reducible theory of iterated elementary induction.

Solomon Feferman.
Iterated inductive fixed-point theories: application to Hancock’s conjecture.

Solomon Feferman.
Reflecting on incompleteness.
References II

Gerhard Jäger, Reinhard Kahle, Anton Setzer, and Thomas Strahm. The proof-theoretic analysis of transfinetely iterated fixed point theories.

Gerhard Jäger and Thomas Strahm.
Fixed point theories and dependent choice.

S. C. Kleene.
On the forms of the predicates in the theory of constructive ordinals. II.
References III

Saul A. Kripke.
Outline of a theory of truth.

Wolfram Pohlers.
Proof theory.
The first step into impredicativity.

Kurt Schütte.
Proof theory.
Translated from the revised German edition by J. N. Crossley, Grundlehren der Mathematischen Wissenschaften, Band 225.
References IV