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Abstract 

Given its abstract nature, group theory is a branch of mathematics that has been found to 

have many important applications. One such application forms the basis of our modern Elliptic 

Curve Cryptography. This application is based on the axiom that all the points on an algebraic 

elliptic curve form an abelian group with the point at infinity being the identity element. This one 

axiom can be explored further to branch out many interesting implications which this paper 

explores. For example, it can be shown that choosing any point on the curve as the identity 

element with the same group operation results in isomorphic groups along the same curve. 

Applications can be extended to geometry as well, simplifying proofs of what would 

otherwise be complicated theorems. For example, the application of the group law on elliptic 

curves allows us to derive a simple proof of Pappus’s hexagon theorem and Pascal’s Theorem. It 

bypasses the long traditional synthetic geometrical proofs of both theorems. Furthermore, 

application of the group law of elliptic curves along a conic section gives us an interesting rule of 

constructing a tangent to any conic section at a point with only the aid of a straight-edge ruler. 

Furthermore, this paper explores the geometric and algebraic properties of an elliptic 

curve’s subgroups. 
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Introduction 

 Given its abstract nature, group theory is a branch of mathematics that has been found to 

have many important applications. From rigid motions to cryptography to crystallography, 

groups can be found almost everywhere. Being a frequent online shopper, I tend to rely on the 

safety of online transactions a lot. To find out how secure these transactions are, I decided to 

research them and found out that a lot of the involved cryptographic systems are based on the 

fact that the points on an elliptic algebraic curve form a group by themselves. To follow through, 

I became interested in further exploring on the group law on the algebraic cubic curve. So in my 

exploration, I have discovered many more implications of the group law on the cubic curve such 

as in algebraic geometry. 

Groups 

 First of all, in order to explore the notion of the group law on the cubic curve we must 

introduce the concept of a group itself. A group is basically a well-defined set of objects with a 

defined binary operation associated with this group. This binary operation must have a specific 

set of properties. Namely, this operation must be closed and associative. Also, the group must be 

structured in such a way that it contains an identity element and also has an inverse within the 

group for each element.  

Closure 

A group operation is said to be closed if the following condition is satisfied for the operation: 



If the domain of a group operation is restricted to the set of elements within the group, then its 

range is also restricted to the same set.  

For example, if we take a set of elements to be {1,2,3,4,5,6} and associate the defined operation 

𝑥 ⊗ 𝑦 = 𝑥 ∗ 𝑦 with this we will find that this function is actually not closed within this set. This 

can be seen by the fact that 3 ⊗ 4 = 12 lies outside this set. However, the same function can be 

said to be closed within the set {−1,1} as all possible function values −1 ⊗ −1 = 1,1 ⊗ −1 =

−1,1 ⊗ 1 = 1 lie within the same set. 

Associativity 

 An operation ⊗ is said to be associative if 𝑥 ⊗ (𝑦 ⊗ 𝑧) = (𝑥 ⊗ 𝑦) ⊗ 𝑧 for all 𝑥, 𝑦, 𝑧 within a 

set. For example, if we define 𝑥 ⊗ 𝑦 to be the geometric mean of 𝑥 and 𝑦 where 𝑥 and 𝑦 are real 

numbers, we will find that 𝑥 ⊗ (𝑦 ⊗ 𝑧) ≠ (𝑥 ⊗ 𝑦) ⊗ 𝑧 as √𝑥√𝑦𝑧 ≠ √𝑥𝑦𝑧3
 for some reals 𝑥, 𝑦 

and 𝑧. However, we find that the operation of normal addition (+) is associative. 

Identity and Inversion 

Every group has a special identity element. Let us say that this identity element is 𝑂. So this 

identity element 𝑂 is defined such that 𝑂 ⊗ 𝑥 = 𝑥 ⊗ 𝑂 = 𝑥  for any 𝑥 within the group. For 

example, 1 is the identity element for the group of integers in normal multiplication (∙).  

An operation ⊗ is said to be invertible within a set if each element 𝑘 has an element within the 

same set 𝑘−1 such that 𝑘 ⊗ 𝑘−1 = 𝑂 where 𝑂 is the identity of the operation within the set. In 

this case, 𝑘−1 and 𝑘 are said to be each other’s inverses. 

Given all these fundamental properties of a group it is a common mistake to assume that all 

groups are commutative. This assumption however is not necessarily true. For example, the set 



of invertible matrices in multiplication form a group. However, this operation is not 

commutative. Some groups can be commutative though, like the group of integers in addition. 

Such groups are said to be abelian groups. Interestingly enough, the set of points on an elliptic 

curve form an abelian group. This group is the subject of this exploration and will be elaborated 

upon shortly. 

Elliptic Curves 

Now that we have been introduced to the notion of groups, we must briefly do the same for 

elliptic curves before delving into the intriguing abelian group law behind it. Elliptic curves are 

algebraic plane curves which are described by the intersection of the 𝑧 = 0 plane and the 

polynomial function 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏. Furthermore, this curve must have no cusps and hence 

have a genus of one. To express the aforementioned restriction algebraically, we say that the 

curve’s discriminant, −16(4𝑎3 + 27𝑏2) is non-zero. Given below are examples of elliptic curve. 

 



Group Law on Elliptic Curves 

Now that we have introduced the concepts of groups and elliptic curves, let us examine the 

connection between the two. We see that all the points on any elliptic curve form an infinite 

abelian group. The rule associated with this group can be explained as follows. Let us take the 

point at infinity, O, on the curve such that every vertical line goes through this point. Let us 

define the operator ⋄ such that 𝑃 ⋄ 𝑄 (with P and Q being points on a curve) is the third 

intersection point of the line joining 𝑃 and 𝑄 with the curve. Now let us define 𝑃 ⊕ 𝑄 to be 

equivalent to 𝑂 ⋄ (𝑃 ⋄ 𝑄). In other words, 𝑃 ⊕ 𝑄 is the second intersection of the vertical line at 

𝑃 ⋄ 𝑄 with the curve. This ⊕ operator is the group law of this curve. This law is illustrated in the 

following diagram: 



 

We see that this operator upholds the properties of associativity, commutability, closure and 

inversion. Also, the identity of this group happens to be the point at infinity, 𝑂. This can be seen 

by the following: 𝑂 ⊕ 𝑃 = 𝑂 ⋄ (𝑂 ⋄ 𝑃)   



 

So we have that 𝑂 ⋄ 𝑃 is the third intersection point of the vertical line going through P with the 

curve by the definition of O. Due to this fact, 𝑂 ⊕ 𝑃 = 𝑂 ⋄ (𝑂 ⋄ 𝑃) should lie on the same 

vertical line and should be equivalent to P. Hence, 𝑂 ⊕ 𝑃 returns P for any P on the curve, hence 

O serves as the identity of this group.  

Closure also is very trivial by the definition of the group law. 

The commutability of this group is quite trivial, given the trivial property 𝑄 ⋄ 𝑃 = 𝑃 ⋄ 𝑄. We 

have that 𝑃 ⊕ 𝑄 = 𝑂 ⋄ (𝑃 ⋄ 𝑄) = 𝑂 ⋄ (𝑄 ⋄ 𝑃) = 𝑄 ⊕ 𝑃. (𝑃 ⊕ 𝑄) ⋄ 𝑅 

We also find that each point on the curve has an inverse. Since the general equation for an 

elliptic curve is 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 ⇒ ±𝑦 = √𝑥3 + 𝑎𝑥 + 𝑏, we know that for each point (𝑥, 𝑦) 

on the curve, its reflection across the x axis (𝑥, −𝑦)is also on the curve. We also notice that the 

inverse of each point on the curve is the third intersection of the vertical line going through it 



with the cubic. In other words, the inverse of 𝑃 is its vertical reflection due to the symmetry of 

the cubic curve. To prove this, let us take a point 𝑃 on an elliptic cubic curve. Let us call its 

vertical reflection 𝑃′. Note that 𝑃 ⋄ 𝑃′ = 𝑂 as 𝑃 and 𝑃′ lie on the same vertical line, leaving 𝑂 to 

be the third point on this line as all vertical lines intersect at 𝑂. So we see that 𝑃 ⊕ 𝑃′ = 𝑂 ⋄

(𝑃 ⋄ 𝑃′) = 𝑂 ⋄ 𝑂 = 𝑂. Hence, 𝑃 and its vertical reflection 𝑃′ are indeed inverses of each other.  

 

Associativity, however, is a rather difficult property to prove. We must prove that 𝑃 ⊕

(𝑄 ⊕ 𝑅) = (𝑃 ⊕ 𝑄) ⊕ 𝑅 for all points 𝑃, 𝑄 and 𝑅 on the cubic curve. So let us illustrate 𝑃 ⊕



(𝑄 ⊕ 𝑅) and (𝑃 ⊕ 𝑄) ⊕ 𝑅 on a diagram. Below we have illustrated (𝑃 ⊕ 𝑄) ⊕ 𝑅.

 

  



Next, we have the illustration of 𝑃 ⊕ (𝑄 ⊕ 𝑅): 

 

So to prove that 𝑃 ⊕ (𝑄 ⊕ 𝑅) and (𝑃 ⊕ 𝑄) ⊕ 𝑅 coincide we must use the Cayley Bacharach 

Theorem: 

Cayley-Bacharach Theorem: Say that two cubic intersect at 9 points, 𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6, 𝑔7, 𝑔8 

and 𝑔9. If a third cubic passes through eight of these points, then it must pass through the 

remaining ninth point as well. 

Let us call the cubic curve which comprises of the group in question, 𝐶1. For convenience, let us 

say 𝐷1 = 𝑃 ⊕ (𝑄 ⊕ 𝑅)  and 𝐷2 = (𝑃 ⊕ 𝑄) ⊕ 𝑅. Let us also define the lines 𝐿1 =



𝑄𝑅(𝑄 ⋄ 𝑅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝐿2 = 𝑂(𝑃 ⊕ 𝑄)(𝑃 ⊕ 𝑄)′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and  𝐿3 = 𝑃𝐷1′(𝑄 ⊕ 𝑅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (the blue lines in the diagram 

below). The union of these three lines form a degenerate cubic 𝐶2. Let us then define the lines 

𝑁1 = 𝑅(𝑃 ⊕ 𝑄)𝐷2′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑁2 = 𝑃𝑄(𝑃 ⋄ 𝑄)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑁3 = (𝑄 ⋄ 𝑅)𝑂(𝑅 ⊕ 𝑄)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, (the green lines below). We 

can form another degenerate cubic, 𝐶3, with the union of these three lines. 

 

So we see that 𝐶1 and 𝐶2 intersect at nine points, 𝑃, 𝑅, 𝑄, 𝑄 ⋄ 𝑅, 𝑃, 𝐷1
′ , 𝑅 ⊕ 𝑄, 𝑃 ⊕ 𝑄, 𝑃 ⋄ 𝑄 and 

𝑂. We also see that 𝐶3 trivially contains eight of these points, but not through 𝐷1′. However, by 

the Cayley-Bacharach Theorem, 𝐶3 must go through 𝐷1′. We see that 𝑁2 must contain 𝐷1′ in 

order for this to happen. As 𝐷1′ and 𝐷2’ are both the third intersection points of  𝑁2 with 𝐶1, the 

others being 𝑃 ⊕ 𝑄 and 𝑅, 𝐷1
′ = 𝐷2′. As 𝐷1′ and 𝐷2′ are inverses of 𝐷1 and 𝐷2, respectively, and 



𝐷1
′ = 𝐷2′ we also know that 𝐷1 = 𝐷2. Hence, we have also proven that 𝑃 ⊕ (𝑄 ⊕ 𝑅) = 

(𝑃 ⊕ 𝑄) ⊕ 𝑅. 

Another Take on the Identity O 

So far, we have seen that the group structure of an elliptic curve is heavily dependent on the 

location of the identity, O, at infinity. This is evident in the fact that 𝑃 ⊕ 𝑄 is equivalent to 𝑂 ⋄

(𝑃 ⋄ 𝑄), or in other words the third intersection point of O and (𝑃 ⋄ 𝑄). By virtue of the location 

of O so far, 𝑂 ⋄ (𝑃 ⋄ 𝑄) happens to be second intersection of the vertical line going through 𝑃 ⋄

𝑄 with the curve. So then it is tempting to question what happens when the identity point, O, is 

taken as a different point on the curve. So then we have to define a new group operation to 

account for this. Let us define this operation to be ⊕ ′. So we will define ⊕ ′ in a way similar to 

⊕. So we have that 𝑃 ⊕ ′𝑄 is equal to 𝑂′ ⋄ (𝑃 ⋄ 𝑄). This new operation is illustrated below: 

 



Interestingly, this new operation tells us that 𝑃 ⊕′ 𝑄 = 𝑂′ − (𝑃 ⊕ 𝑄). To see why this is the 

case, we must first note that 𝑃 ⋄ 𝑄 is equal to −(𝑃 ⊕ 𝑄) where −𝑃 is defined to be the inverse 

of 𝑃 in the group (𝐶,⊕). In other words, −𝑃 is the third intersection point of the vertical line 

going through 𝑃 or −𝑃 = 𝑂 ⋄ 𝑃. So going off of the notion that 𝑃 ⊕′ 𝑄 = 𝑂′ ⋄ (𝑃 ⋄ 𝑄), we have 

that 𝑃 ⊕′ 𝑄 = 𝑂′ ⋄ (−(𝑃 ⊕ 𝑄)) = −(𝑂′ ⊕ −(𝑃 ⊕ 𝑄)).  

Now to continue further, we must convince ourselves that −(𝑃 ⊕ 𝑄) = −𝑃 ⊕ −𝑄. To do this, 

we must use the following lemma: 

Lemma statement: If 𝑃, 𝑄, 𝑅 ∈ 𝐶 are collinear, then we have that 𝑃 ⊕ 𝑄 ⊕ 𝑅 = 𝑂. 

Proof: Since 𝑃, 𝑄, 𝑅 are collinear, we have that 𝑄 ⋄ 𝑅 = 𝑃. Hence, we have that 𝑃 ⊕ 𝑄 ⊕ 𝑅 =

𝑃 ⊕ (𝑄 ⊕ 𝑅) = 𝑃 ⊕ 𝑂 ⋄ (𝑄 ⋄ 𝑅) = 𝑃 ⊕ 𝑂 ⋄ 𝑃 = 𝑃 ⊕ −𝑃 = 𝑂. So we have proven that 𝑃 ⊕

𝑄 ⊕ 𝑅 = 𝑂.  

So going off of the lemma we have that  

𝑃 ⊕ 𝑄 ⊕ 𝑅 = 𝑂 

⇒ 𝑃 ⊕ 𝑄 = 𝑂 ⊕ −𝑅 

⇒ 𝑃 ⊕ 𝑄 =  −𝑅    

⇒ −(𝑃 ⊕ 𝑄) = 𝑅 (1) 

We also have that 

𝑃 ⊕ 𝑄 ⊕ 𝑅 = 𝑂 

⇒ 𝑃 ⊕ (𝑄 ⊕ 𝑅) = 𝑂 

⇒ 𝑄 ⊕ 𝑅 = −𝑃 



⇒ 𝑅 = −𝑃 ⊕ −𝑄  (2) 

Substituting (1) into (2) results in 

−(𝑃 ⊕ 𝑄) = −𝑃 ⊕ −𝑄 

QED 

So continuing from the earlier result that  

𝑃 ⊕′ 𝑄 = −(𝑂′ ⊕ −(𝑃 ⊕ 𝑄)) 

So we have that 

𝑃 ⊕′ 𝑄 = −(𝑂′ ⊕ −(𝑃 ⊕ 𝑄)) = (𝑃 ⊕ 𝑄) ⊕ −𝑂′ 

This operation should hold the same properties of closure, commutability, identity and inversion. 

The inverse of 𝑃 in this scenario would be 𝑃 ⋄ 𝑂′ instead of the usual 𝑃 ⋄ 𝑂. We also see that 

associativity holds by the same argument using the Cayley-Bacharach theorem. So seeing how 

this group operation holds with 𝑂′ as the identity. It seems that we can now generate different 

groups on a single curve by choosing different identity points. However, we see that the set of 

elements within each of these groups remains the same no matter what we choose for the identity 

element. So it seems that we can perhaps find an isomorphism between the group of elements 

(𝐶,⊕) with identity 𝑂 and another group (𝐶,⊕′) with some other identity 𝑂′. Let us say that in 

this hypothetical isomorphism, each element 𝑃 in (𝐶,⊕) maps to 𝑓(𝑃) in the other group 

(𝐶,⊕ ′). So in order for this isomorphism to hold, the operation in both groups must be 

preserved by it. That means that for any two elements 𝑃 and 𝑄 in (𝐶,⊕), we must have that if 

𝑃 ⊕ 𝑄 = 𝑅, then 𝑓(𝑃) ⊕′ 𝑓(𝑄) = 𝑓(𝑅). So we have that  

𝑓(𝑅) = 𝑓(𝑃 ⊕ 𝑄) = 𝑓(𝑃) ⊕ 𝑓(𝑄) ⊕ −𝑂′ 



This statement happens to be true when 𝑓(𝑃) = 𝑂′ ⊕ −𝑃 giving us, 

𝑓(𝑃) ⊕ ′𝑓(𝑄) = (𝑂′ ⊕ −𝑃) ⊕ (𝑂′ ⊕ −𝑄) ⊕ −𝑂′ 

= (𝑂′ ⊕ 𝑂′ ⊕ −𝑂′) ⊕ (−𝑃 ⊕ −𝑄) 

= 𝑂′ ⊕ −(𝑃 ⊕ 𝑄) 

= 𝑓(𝑃 ⊕ 𝑄)  

So we have found the possibility of the following isomorphic mapping 𝛽: 

𝑓: (𝐺,⊕) ↦ (𝐺,⊕′) 

𝑃 ↦ 𝑓(𝑃) = 𝑂′ ⊕ −𝑃 

The final step to showing that 𝑓(𝑃) is actually an isomorphic mapping, we need to show that it is 

bijective. To do this, we need an inverse function 𝑓−1(𝑃) which maps 𝑓(𝑃) to 𝑃. We have that 

𝑓(𝑓−1(𝑃)) = 𝑃 = 𝑂′ ⊕ −𝑓−1(𝑃) 

⇒ 𝑓−1(𝑃) = 𝑂′ ⊕ −𝑃 

⇒ 𝑓−1(𝑃) = 𝑂′ ⊕ −𝑃 

= 𝑓(𝑃) 

So we have a well-defined inverse function for 𝑓(𝑃) which interestingly enough is 𝑓(𝑃) is itself. 

So every point 𝑄 in the range of 𝑓(𝑃), maps back to the domain of 𝑓(𝑃) by virtue of the well-

defined inverse function 𝑓−1(𝑃). Hence, 𝑓(𝑃) is a bijective mapping. Therefore, it is also an 

isomorphism from (𝐺,⊕) to (𝐺,⊕′).  



In effect, we have found that all the seemingly different groups defined by the different identity 

points on a cubic curve are actually all isomorphic to each other. Hence, the group structure on 

the cubic curve is actually independent of the chosen identity point. 

This fact, along with the associativity property of cubic curves gives rise to many other 

interesting theorems. 

Pappus’ Theorem 

Being an ardent math competitor, I tend to apply Pappus’ theorem at times to the Olympiad 

problems I have to solve. Interestingly, there is a deep connection between the elliptic curve 

group law and this theorem. The theorem is stated as follows: 

Let 𝐿1 and 𝐿2 be two lines in a plane. Let 𝑃1, 𝑄1 and 𝑅1 be points on 𝐿1 and 𝑃2, 𝑄2 and 𝑅2 be 

points on 𝐿2. Let, 𝐴 = 𝑃1𝑄2
̅̅ ̅̅ ̅̅ ∩ 𝑄1𝑃2

̅̅ ̅̅ ̅̅ , 𝐵 = 𝑃1𝑅2
̅̅ ̅̅ ̅̅ ∩ 𝑅1𝑃2

̅̅ ̅̅ ̅̅  and 𝐶 = 𝑄1𝑅2
̅̅ ̅̅ ̅̅ ̅ ∩ 𝑅1𝑄2

̅̅ ̅̅ ̅̅ ̅. Then we have 

that 𝐴, 𝐵 and 𝐶 are collinear. 

 

This theorem is generally proven through general Euclidean geometry. However, we can readily 

apply the group structure of cubic curves to prove this. We start off by defining 𝑃 = 𝑃1,  𝑂 = 𝑄1, 



𝑅 = 𝑅1 and 𝑄 = 𝑄2 from the above diagram. We also set 𝑀 = 𝑃2 and 𝑁 = 𝑅2 We also say that 

𝐴 = 𝑃𝑄̅̅ ̅̅ ∩ 𝑂𝑀̅̅ ̅̅ ̅ and 𝐵 = 𝑄𝑅̅̅ ̅̅ ∩ 𝑂𝑁̅̅ ̅̅ . Let us say that 𝐿1 = 𝑃𝑂𝑅̅̅ ̅̅ ̅̅ , 𝐿2 = 𝐴𝐵̅̅ ̅̅  and 𝐿3 = 𝑀𝑄𝑁̅̅ ̅̅ ̅̅ ̅. We can 

take the union of 𝐿1, 𝐿2 and 𝐿3 to be a degenerate cubic curve. Let us also say that 𝑀 ⋄ 𝑅 or 𝐶 =

𝑀𝑅̅̅̅̅̅ ∩ 𝐿2. So we have the following diagram so far: 

 

So in since we have taken the union of all the green lines to be one degenerate cubic, we have 

that 𝑃, 𝑂, 𝑅, 𝐴, 𝐶, 𝐵, 𝑀, 𝑄, 𝑁 are elements of the group in this cubic. Also, let us take the identity 

of this group to be 𝑂. So we see that 𝐴 = 𝑃 ⋄ 𝑄 = −(𝑃 ⊕ 𝑄). Hence, we see that 𝑀 = 𝑂 ⋄

(𝑃 ⋄ 𝑄) = 𝑃 ⊕ 𝑄. Similarly, 𝑁 = 𝑄 ⊕ 𝑅.  

In order to complete the proof of Pappus’s theorem, we want to prove that 𝑃𝑁̅̅ ̅̅ ∩ 𝑀𝑅̅̅ ̅̅̅ lies on 𝐿2. 

To do this, it is sufficient to show that 𝑃𝑁̅̅ ̅̅ ∩ 𝑀𝑅̅̅ ̅̅̅ = 𝑃𝑁̅̅ ̅̅ ∩ 𝐿2 = 𝐶.  

Moving on, we see that 𝐶 = 𝑀 ⋄ 𝑅 = (𝑃 ⊕ 𝑄) ⋄ 𝑅 = −((𝑃 ⊕ 𝑄) ⊕ 𝑅). Also, 𝑃𝑁̅̅ ̅̅ ∩ 𝐿2 = 𝑃 ⋄

𝑁 = −(𝑃 ⊕ 𝑁) = −(𝑃 ⊕ (𝑄 ⊕ 𝑅)) = −((𝑃 ⊕ 𝑄) ⊕ 𝑅) = 𝐶 by virtue of the associativity 

property of the group operation on a cubic. So we have proven that 𝑃𝑁̅̅ ̅̅ ∩ 𝐿2 = 𝐶, proving 

Pappus’s Theorem. 



To me, this proof using elliptic curves is a very beautiful one. This seems especially true when 

compared to the primal and tedious synthetic geometry proof.  

A similar argument can be used to prove Pascal’s theorem which is stated as follows.  

Let 𝑇 be a conic in a plane. Let 𝑃1, 𝑄1, 𝑅1, 𝑃2, 𝑄2 and 𝑅2  be points on 𝑇. Let, 𝐴 = 𝑃1𝑄2
̅̅ ̅̅ ̅̅ ∩

𝑄1𝑃2
̅̅ ̅̅ ̅̅ , 𝐵 = 𝑃1𝑅2

̅̅ ̅̅ ̅̅ ∩ 𝑅1𝑃2
̅̅ ̅̅ ̅̅  and 𝐶 = 𝑄1𝑅2

̅̅ ̅̅ ̅̅ ̅ ∩ 𝑅1𝑄2
̅̅ ̅̅ ̅̅ ̅. Then we have that 𝐴, 𝐵 and 𝐶 are collinear. 

 

The proof for this is almost identical to the one I have shown for Pappus’s except we form the 

cubic curve group through the union of the conic 𝑇 and 𝐴𝐶̅̅ ̅̅ . Interestingly, this theorem leads to 

two profound lemmas. 

Tangent to a Conic 

In the setup of Pascal’s theorem, let 𝑃1 and 𝑄2 coincide. So then we get the following diagram: 

So this leads us to deduce a handy rule for constructing a tangent to a conic at a point: 



 

We see that 𝑃2𝑄1
̅̅ ̅̅ ̅̅ , 𝐴𝐵̅̅ ̅̅  and 𝑃1𝑄2

̅̅ ̅̅ ̅̅  (the tangent at 𝑃1) all concur at 𝐶. Hence, we can construct 𝑃1𝑄2
̅̅ ̅̅ ̅̅  

if 𝐶 and 𝑃1 are known. 𝐶 is simply found by the intersection of lines  𝑃2𝑄1
̅̅ ̅̅ ̅̅  and 𝐴𝐵̅̅ ̅̅ . As this holds 

for any inscribed pentagram with a vertex being the required point of tangency, we have a rule 

for constructing a tangent to a conic at a point. 

Subgroups of the Cubic Curve Group 

Since we have a group structure on the elliptic curve, it is not unnatural to explore its non-trivial 

subgroups.  



Order 2 

The most basic non-trivial group would consist of two elements, namely the identity element, 𝑂 

and another element 𝑃 such that 2𝑃 or 𝑃 ⊕ 𝑃 is equal to 𝑂. Now let us investigate these such 

elements. Assuming such elements exist, we have that  

𝑃 ⊕ 𝑃 = 𝑂 

(𝑃 ⋄ 𝑃) ⋄ 𝑂 = 𝑂 

This implies that 𝑃 ⋄ 𝑃 = 𝑂 since 𝑂 is the only element, 𝑀, on a cubic such that 𝑀 ⋄ 𝑂 = 𝑂. 

Hence, we have that if an element, 𝑃, is part of a subgroup of order 2 and is not the identity of 

the cubic curve, then 𝑃 ⋄ 𝑃 = 𝑂. In other words, if an element, 𝑃, is in a subgroup of order 2 then 

its tangent to the given cubic intersects it at the identity, 𝑂. We can reverse the same] proof to 

show the converse of the statement to hold true to conclude that a point on a cubic is part of an 

order 2 subgroup if and only if the tangent to the curve at that point intersects it at the identity.  

Order 3 

The next smallest non-trivial subgroup of a cubic curve would be one of order 3. It would consist 

of a set in the form {𝑂, 𝑀, 2𝑀} where 3𝑀 = 𝑂 just like a generic order 3 subgroup. So we have 

that: 

3𝑀 = 𝑀 ⊕ 𝑀 ⊕ 𝑀 = 𝑂 

We can manipulate this equation to obtain a useful result: 

𝑀 ⊕ 𝑀 ⊕ 𝑀 ⊕ (−𝑀) = 𝑂 ⊕ (−𝑀) 

𝑀 ⊕ 𝑀 = −𝑀 



𝑂 ⋄ (𝑀 ⋄ 𝑀) = 𝑂 ⋄ 𝑀 

From this equation, we deduce that 𝑀 ⋄ 𝑀 = 𝑀. Hence, the tangent to the given cubic at 𝑀 

intersects the cubic only at 𝑀. In other words, 𝑀 is a flex to the cubic. So we have proven that if 

𝑀 is in a subgroup of order 3 on a cubic 𝐶, then it is an flex point on 𝐶. We can prove the 

converse of this statement by reversing the proof given that 𝑀 ⋄ 𝑀 = 𝑀 for all flex points 𝑀 on 

a cubic 𝐶 to conclude that a point 𝑀 on 𝐶 is a flex point if and only if it is contained in a 

subgroup of order 3.  

Playing More With Flexes 

So given the statement that 𝑃 is a flex point if and only if 3𝑃 = 𝑂, we can actually show that all 

the flex points in a cubic curve are actually closed under a single subgroup. Suppose we have 

two flex points 𝑃 and 𝑄, then we can actually use the abelian nature of the cubic curve group to 

show that 𝑃 ⊕ 𝑄 is also a flex. We have that 

3(𝑃 ⊕ 𝑄) = 𝑃 ⊕ 𝑄 ⊕ 𝑃 ⊕ 𝑄 ⊕ 𝑃 ⊕ 𝑄 

= 𝑃 ⊕ 𝑃 ⊕ 𝑃 ⊕ 𝑄 ⊕ 𝑄 ⊕ 𝑄 

= 3𝑃 ⊕ 3𝑄 

= 𝑂 ⊕ 𝑂 

= 𝑂 

Hence, as 3(𝑃 ⊕ 𝑄) = 𝑂, we have that 𝑃 ⊕ 𝑄 is a flex point.  



Rational Points 

As I will discuss later a widely-used method of cryptography, works using this group structure of 

elliptic curves. However, as we have computers working with this algorithm, the numbers 

involved in the cryptosystem are most likely all rational ones. If only rational points are worked 

with when using an elliptic curve for a cryptosystem, then surely all the rational points in the 

elliptic curve must be closed under the group operation for the curve, forming a subgroup. We 

can confirm this by proving the algebraic closure of the rational points in a curve’s group 

operation. Before going about this, we must first recall that for any two points 𝑃 and 𝑄 on an 

elliptic curve with identity 𝑂, 𝑃 ⊕ 𝑄 is equivalent to (𝑃 ⋄ 𝑄) ⋄ 𝑂. If we just prove that the 

operation ⋄ is algebraically closed among all the ration points on the curve, then the closure of 

the ⊕ in the same set immediately follows. So let us define an elliptic curve, 𝐶, in its generic 

form as 𝑦 = 𝑥3 + 𝑎𝑥 + 𝑏. Let us also define two points with rational coordinates on this curve 

𝑃 (
𝑑1

𝑒1
,

𝑑2

𝑒2
) and 𝑄 (

𝑚1

𝑛1
,

𝑚2

𝑛2
) where 𝑑!, 𝑑2, 𝑒1, 𝑒2, 𝑚1, 𝑛1, 𝑚2, 𝑛2 are all integers.  

The line joining 𝑃 and 𝑄 has a slope of 

𝑚2
𝑛2

−
𝑑2
𝑒2

𝑚1
𝑛1

−
𝑑1
𝑒1

 

=
(𝑚2𝑒2 − 𝑑2𝑛2)𝑛1𝑒1

(𝑚1𝑒1 − 𝑛1𝑑1)𝑛2𝑒2
 

=
ℎ

𝑗
 

Where ℎ = (𝑚2𝑒2 − 𝑑2𝑛2)𝑛1𝑒1and 𝑗 = (𝑚1𝑒1 − 𝑛1𝑑1)𝑛2𝑒2. Notice how the slope here is also 

rational. Now the final equation of the line 𝑃𝑄̅̅ ̅̅  would be solved as follows using the point-slope 

formula: 



𝑦 −
𝑑2

𝑒2

𝑥 −
𝑑1

𝑒1

=
ℎ

𝑗
 

𝑦 =
ℎ𝑥

𝑗
−

𝑑1

𝑒1

ℎ

𝑗
+

𝑑2

𝑒2
 

Which turns out to in the form of  

𝑦 =
ℎ

𝑗
𝑥 +

𝑟

𝑠
 

For some integers 𝑟 and 𝑠. Now when we equate this equation with that of 𝐶 to solve for their 

intersection points, we obtain: 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 = (
ℎ

𝑗
𝑥 +

𝑟

𝑠
)

2

 

𝑥3 −
ℎ2

𝑗2 𝑥2 + (𝑎 − 2
ℎ𝑟

𝑗𝑠
) 𝑥 + (𝑏 −

𝑟2

𝑠2) = 0 

We already know that the x-coordinates of 𝑃 and 𝑄 are roots of this equation as they are given 

intersection points of the line 𝑃𝑄̅̅ ̅̅  and 𝐶. Let us say that the third intersection point is 𝑃 ⋄ 𝑄 =

𝑅(𝑤, 𝑧). Hence, 𝑤 is the third root of the above equation. By Vieta’s formulas we know that the 

sum of the roots of the above equation is the additive inverse of the coefficient of 𝑥2 in the 

equation. In other words, the sum of the roots is 
ℎ2

𝑗2 . So we have that  

𝑤 +
𝑚1

𝑛1
+

𝑑1

𝑒1
=

ℎ2

𝑗2
 

We can solve for 𝑤 from this: 



𝑤 =
ℎ2

𝑗2
−

𝑚1

𝑛1
−

𝑑1

𝑒1
 

𝑤 =
ℎ2𝑛1𝑒1 − 𝑗2𝑚1𝑒1 − 𝑗2𝑑1𝑛1

𝑗2𝑛1𝑒1
 

=
𝑡

𝑢
 

Where 𝑡 is the integer ℎ2𝑛1𝑒1 − 𝑗2𝑚1𝑒1 − 𝑗2𝑑1𝑛1 and 𝑢 is the integer 𝑗2𝑛1𝑒1. Note that we have 

expressed 𝑤 as a quotient of two integers, showing that is rational. From this value of 𝑤 we can 

solve for the y-coordinate of 𝑅, 𝑧 as follows: 

𝑧 =  
ℎ

𝑗
𝑤 +

𝑟

𝑠
 

=
𝑔

𝑓
 

Where 𝑔 is the integer ℎ𝑤𝑠 + 𝑗𝑟 and 𝑓 is the integer 𝑗𝑠. Note that we have expressed 𝑧 as a 

quotient of two integers, showing that is also rational. So we have found the third intersection 

point 𝑅 to have rational coordinates 𝑤 =
𝑡

𝑢
 and 𝑧 =

𝑔

𝑓
. 

So we proved that the third intersection of line 𝑃𝑄̅̅ ̅̅  with 𝐶 has rational coordinates. In effect, we 

proved that 𝑃 ⋄ 𝑄 yields a point with rational coordinates if 𝑃 and 𝑄 have rational coordinates. 

Therefore, the operator ⋄ is algebraically closed under rational points.  

As 𝑃 ⋄ 𝑄 yields a rational point if 𝑃 and 𝑄 are rational, 𝑃 ⊕ 𝑄 = (𝑃 ⋄ 𝑄) ⋄ 𝑂 will also yield a 

rational if 𝑃, 𝑄 and 𝑂 are all rational. Hence, 𝑃 ⊕ 𝑄 is indeed algebraically closed in the rational 

points on an elliptic curve.  



In order to completely prove the claim that all the rational points on an elliptic curve form a 

subgroup, we must also show that that each element in the set of rational points on the curve has 

an inverse. As we discussed earlier, the inverse of an element 𝑃 on an elliptic is simply 𝑂 ⋄ 𝑃. As 

the operator ⋄ is closed in the set of rational points, each rational point 𝑃 also has an inverse 𝑂 ⋄

𝑃 that is rational. Hence, we have shown that the set of rational points on an elliptic curve does 

indeed form a subgroup in the operation, ⊕. 

As I mentioned earlier, this rational subgroup of elliptic curves happens to be the basis of 

increasingly popular elliptic curve cryptosystems. The most basic of them is called the Diffie-

Hellman Key Exchange Protocol.  

In such a cryptosystem, there publicly exists an elliptic curve 𝐶 and a publicly known point 𝑃 on 

the curve. The identity of the group of points on 𝐶 is usually taken to be the point at infinity. 

Suppose Billy wants to send an encrypted message to Bob through this cryptosystem. Billy and 

Bob will first confer that they wish to exchange a message. Bob has a randomly generated 

number 𝑘𝐴 which he multiplies with 𝑃 to yield 𝑘𝐴𝑃 (𝑃 added to itself using the standard group 

operation, ⊕, 𝑘𝐴 times). He sends this result to Billy. After receiving this value, Billy maps his 

message to some point, 𝑀, on 𝐶 using a commonly agreed upon mapping. Then he uses his 

randomly generated private key 𝑘𝐵 to generate the values 𝑘𝐵𝑘𝐴𝑃 and 𝑘𝐵𝑃. Finally, he sends Bob 

the points 𝑘𝐵𝑃 and 𝑀 ⊕ 𝑘𝐵𝑘𝐴𝑃. Now, Bob can evaluate 𝑘𝐵𝑘𝐴𝑃 by multiplying his private key 

with the received point 𝑘𝐵𝑃. To retrieve the message 𝑀 he can simply add the inverse of 

𝑘𝐵𝑘𝐴𝑃 with the received point 𝑀 ⊕ 𝑘𝐵𝑘𝐴𝑃.  

Notice how third-party knowledge of 𝑘𝐵𝑘𝐴𝑃 enables a middle-man to eavesdrop on the 

exchanged message. Although, 𝑃 is publicly known 𝑘𝐵𝑘𝐴 cannot be determined as easily as there 



is no quick and efficient method of “dividing” two points. In other words, we can easily add a 

point, 𝑃, to itself 𝑛 times to obtain 𝑛𝑃 but we can’t easily find 𝑛 given 𝑛𝑃 and 𝑃. This property 

is what makes this cryptosystem so useful. 

Conclusion 

When I first heard about cubic polynomials, I merely thought that they would be regular 

functions which I encounter in my math class exercises and only serve to fill my math homework 

packets. However, my discovery of the abelian group structure on these polynomials opened this 

idea up to so many applications from geometry all the way to cryptography. Not only did this 

group structure yield many applications of elliptic cubic curves but it yielded many interesting 

properties about elliptics themselves. 

Apart from teaching me about the versatility of elliptic curves, this investigation served as an 

example of how interconnected math can be within its various branches and with the real world 

no matter how obscure a concept may seem. It really encouraged me to look beyond solving 

problems from math competitions and schoolwork and to look for deeper connections across the 

various branches of mathematics. In retrospect, successful mathematical advances were mostly 

made by people looking for these connections. For example, René Descartes’s Cartesian plane 

linked algebra and geometry, forming a foundation that is irreplaceable today. I hope to break 

out of my shell of problem solving and further delve into finding useful and interesting 

connections in the future. 

 

 


