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ABSTRACT

SDN controllers demand tight performance guarantees over
the control plane actions performed by SDN switches. For
example, traffic engineering techniques that frequently re-
configure the network require guarantees on the speed of
gathering data from the network and the speed of reconfig-
uring the network. Yet, modern switches provide no guar-
antees for these control plane actions, e.g., inserting rules
or gathering statistics. In fact, initial experiments demon-
strate that unpredictability in control plane actions, specifi-
cally rule insertion, can inflate application completion times
by a factor of 4X!

In this paper, we present Mercury, a framework that of-
fers a novel method for efficiently and practically manag-
ing switch TCAM to enable strict performance guarantees.
Specifically, Mercury builds on the fundamental properties
of TCAMs and provides guarantees by trading-off a nomi-
nal amount of TCAM space for assured performance. Our
preliminary evaluations show that with less than 10% over-
heads, Mercury provides guarantees of 10ms insertion time
and improves application performance by a factor 2X to 5X.
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1. INTRODUCTION

Software Defined Networking (SDN) offers flexibility and
programmatic control over the network. However, this pro-
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grammatic control requires frequent modifications to the net-
work’s flow tables (TCAM). For example, traffic engineer-
ing SDN Apps, e.g. Google’s B4 [20], require frequent net-
work reconfigurations to improve network performance. Sim-
ilarly, service chaining SDN Apps [10, 17] require fast re-
configuration to ensure network correctness.

Unfortunately, current SDN switches leverage traditional
software and hardware components that are designed to sup-
port legacy protocols — e.g., BGP, which do not require fre-
quent modifications to the switch’s TCAM. Modern SDN
switches reuse these existing hardware components, for ex-
ample TCAM, which are not designed to support frequent
network reconfiguration. As a result of this mismatch, run-
ning modern SDN Apps on these SDN switches can signif-
icantly degrade the performance of networked applications.
Our experiments in Section 3, demonstrate that due to inef-
ficiencies in the switches, the TCAM installation time can
hurt application performance by 4X!

Existing approaches [23, 26, 30] seek to minimize TCAM
insertion times by reordering rules or introducing new hard-
ware algorithms. These approaches provide a best-effort at-
tempt to minimize TCAM insertion latency; however, there
are no performance guarantees. These approaches attack the
symptoms (insertion latency) and not the root-cause (TCAM
behavior), they mitigate and not eliminate the issues — large
variations and unpredictability in switch performance still
exist.

Unfortunately, without concrete performance guarantees
for control plane actions, modern SDNs are unable to ef-
fectively support the growing number of novel use cases —
critical infrastructures, cellular infrastructures, security sys-
tems, and virtual networks. For example, in 4G and 5G
networks, there is a need to instantiate VOLTE connections
within a predefined amount of time. Similarly, for cyber
physical systems [11] there is a need for networks that make
strong performance guarantees. Only by redesigning switch
software and algorithms to explicitly support frequent con-
trol plane actions (with performance guarantees) can SDN
support emerging SDN Apps.

In this paper, we present Mercury, a framework, for pro-
viding strict performance guarantees for control plane ac-
tions by intelligently partitioning and managing TCAM. Mer-
cury builds on the observations that control plane actions are
expensive when a flow table contains a large number of en-
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tries [23, 18, 22] .

To this end, Mercury eliminates large tables by intelli-
gently carving a monolithic TCAM into two tables: the first
table is small in size and kept largely empty. This small ta-
ble, called the scratch table, is used to serve all insertion and
modification requests, thus from the perspective of these re-
quests the TCAM is small and mostly empty. The second, a
full sized table called the regular table. When the scratch ta-
ble grows in size, Mercury proactively migrates entries from
the scratch table to the regular table. By controlling the size
of the scratch table, Mercury is able to make a broad range
of performance guarantees.

In this paper, we take the first step towards realizing Mer-
cury by systematically exploring the potential benefits of
Mercury and investigating the challenges that arise in the
design of Mercury. Our contributions are:

e Empirical Study: A systematic study of the impact of
control plane actions on big data workloads across a
variety of network switches.

e Design of Mercury: A strawman approach for pro-
viding strict performance guarantees over the latency
of control plane actions by intelligently managing the
switch’s TCAM.

e Preliminary Evaluation: A preliminary evaluation of
the benefits and overheads of Mercury.

2. BACKGROUND

In this section, we provide an overview of modern SDN
switch design and highlight steps taken by SDN switches to
perform control plane actions, e.g., rule installation, (§ 2.1),
and summarize existing measurement studies on switch per-
formance and control plane actions (§ 2.2).

2.1 Serving Control Plane Actions

Many SDN switches, specifically whitebox switches, run
a Linux based OS with specialized device drivers to handle
the switch’s ASIC and specialized applications for various
networking protocols. For example, Cumulus runs Debian
with Quagga and specialized software to deal with resilient
hashing. Unfortunately, many of these software and hard-
ware components are not optimized for SDN-specific use-
cases and are often highly inefficient. This inefficiency and
sub-optimality impacts the latency of control plane actions.

In Figure 1, we illustrate the typical control flow for two
of the three types of control plane actions defined in the
OpenFlow spec [6]: switch-initiated (e.g., Packet-In) and
controller-initiated (e.g., flow entry insertion — FlowMod).
Here we focus on the workflow within the switches and high-
light the resources that impact the control plane action’s per-
formance !.

Switch-Generated Async Action: The ASIC can gener-
ate and send packets to the controller for a variety of reasons

! Most of the control logic is performed on the remote con-
troller such as calculation of path, traffic engineering, but the
local switches still have their own control procedure for the
new rule installation which is described as follows.
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Figure 1: Operations on New Packets Arrival

ranging from the OpenFlow rule’s action (e.g., forward to
the controller) to a lack of matching rules. Regardless, the
ASIC will raise an OS interrupt and the OS will transfer the
packet from the ASIC to main memory and alert the Open-
Flow agent. The OpenFlow agent will, in turn, encapsulate
the packet into a packet_in message and send this message
to the SDN controller. The performance of these actions is
impacted by contention with other processes for the switch’s
CPU (for raising the interrupt and running the OF-agent) and
memory (for copying packets).

Controller-Generated Async Action: When the switch
receives control plane commands from the controller, e.g.
flow_mod or get_statistics, the switch OS transfers the pack-
ets to the OpenFlow agent. For a subset of these actions,
flow_mod, which add/modify/delete rules in TCAM, the Open-
Flow agent uses the ASIC’s device driver to modify rules in
the TCAM’s flow tables. Within a switch, the latency of
performing control plane action, e.g., flow_mod, consists of
the OS processing time (e.g., OF Agent processing, context
switching) and the TCAM processing time (device driver
processing and rearrangement of rules in TCAM).

2.2 Measuring Control Plane Action Per-
formance

Recent studies [19, 23, 22] of SDN switches and TCAM
performance have analyzed the performance profiles of cur-
rent SDN switches. Here we summarize their key findings
and use them to help motivate the design choices for Mer-
cury.

Insertion Time Grows Linearly with number of rules
In their experiments, prior work observed that rule installa-
tion time is impacted by a number of factors:

First, the priorities of the rules impacts TCAM perfor-
mance [19, 23]; rules with priorities are 5-times slower than
rules without priority. Furthermore, the order of insertion is
important. For example, installing rules in ascending order
of priorities is 10-times faster than in descending order.

Second, the number of rules in the flow tables impacts
the flow insertion time [22]. For example, a flow table con-
taining 50 rules is almost 10 times faster than the same flow
table containing 200 rules. In Table 1, we present the rule



ASIC Table Occupancy | Update/s Pérformance Scratch Size
uarantee
50 1266 .
108 KB 200 114 3ms 0
Firebolt-3 1000 23
3000 3 10ms 200

Table 1: Rule Update Rate of Pica8 P-3290 [22]

installation time for different flowtable occupancy levels.

Deletion is constant time operations Unlike flow inser-
tions, deleting flows exhibits relatively trivial performance
characteristics because deletions remove entries and do not
require moving entries around 2. Specifically, rule deletion
latency is independent of the flow table occupancy [22] and
rule priority [23].

Modifications, surprisingly, can be constant Modifica-
tions require changing the match or action of a rule — regard-
less they are cheap and fast because they do not require mov-
ing TCAM entries. For example, “modifying 5000 entries
could be six times faster than adding new flows” claims [23].
Alternatively, modifications that alter the priority of a rule
may require moving TCAM entries and perform similarly to
insertions.

Takeaways The insertion time is directly proportional to
the number of rules already in the flow table — we can bound
the insertion time by limiting the number of rules in the ta-
ble. Furthermore, there is a clear correlation between the
flow table size and the max insertion time (Table 1). Finally,
while there are many types of control plane actions only a
few of them need to be revisited to provide strong perfor-
mance guarantees. For example, flow table insertion, dele-
tion, and modification are all part of the same control plane
action, flow_mod, yet we only need to explicitly design for
insertions.

3. MOTIVATION

In this section, we expand on our observations and analyze
the impact of control plane action latency (and variation) on
networked applications (big data applications). First, we dis-
cuss our experimental setup (Section 3.1), and then we ana-
lyze the implications of control plane action latencies on big
data jobs (Section 3.2).

3.1 Simulation and Models

We evaluate the impact of control plane actions using an
existing flow-level event-driven network simulator [14] for
simulating big data jobs, e.g., Map-Reduce. This simulator
simulates the workflow of map-reduce jobs, including fetch-
ing from storage nodes (by mappers), shuffle from mappers
to reducers, and writing to storage (by reducers).

Switch Performance Model. To analyze the impact of
control plane actions, we introduce the control plane action
latency by modifying the simulator to accurately simulate
an SDN switch based on existing empirical models. Specifi-
cally, for each switch on the path of a flow, the simulator uses
the distributions from related work [19, 28] to determine the
insertion latencies. The insertion latency for any single rule

Deletion may result in gaps in the TCAM

is a function of multiple things; (1) the occupancy of the flow
table, i.e., current number of rules in the flow table, and (2)
the properties of the rule being inserted.

In our simulation, we model two types of switches, Pica8
P-3290 and Dell PowerConnect 8132F, using the empirically
derived performance models [22]. These switch models al-
low us to model TCAM performance, both, control plane ac-
tions (rule installation/deletion/modification) and data plane
forwarding (packet matching and forwarding latencies).

SDN Application. In our simulation, we explored two
SDN Apps for improving the performance of big data work-
loads. The first, a proactive traffic engineering application [16]
that periodically reconfigures the network by moving con-
gested flows into other available links. The control plane ac-
tion latencies are incurred when flows are migrated and the
impact of this is extended periods of congestion. The sec-
ond, a reactive application, installs optimal paths, based on
Sinbad [13], in response to packet-in events. Control plane
action latencies are incurred on flow startup and the impact
is an inflation of a flow’s completion time. This reactive ap-
plication provides us with a worst case scenario.

Traces & Topology We run our simulator on a large scale
24 hour map-reduce trace from a 600-machine Facebook
cluster [14, 13]. We use a clos-style data center topology
— specifically Fat-Tree [9] with K=6.

3.2 Implications

In Figure 2, we present the CDF of the increased ratio of
job completion times in both proactive and reactive mode.
We separate the short (Figure 2 (a)) from the long jobs (Fig-
ure 2 (b)) with reactive mode enforced and define short jobs
as jobs that last less than 60 seconds and all other jobs are
long jobs. Similar separation is used in the proactive mode
(shown in Figure 2 (c) and (d). From the figure, we observe
that short jobs are significantly impacted compared with the
long jobs; the short jobs are more impacted because their
flows are much shorter and are thus unable to ameliorate
the latency of the control plane actions. This is particu-
larly alarming as the short jobs are more latency sensitive
and have more important flows [14].

These results further highlight the need for systematic sup-
port of performance guarantees on control plane actions. Next,
we present our system, Mercury, for enforcing and maintain-
ing these guarantees without modifying hardware or requir-
ing forklift upgrades of the network.

4. ARCHITECTURE

To enforce performance guarantees for control plane ac-
tions, we propose a framework, Mercury, that builds on the
observations discussed in Section 2. At a high level, Mer-
cury guarantees and bounds TCAM insertion time by re-
stricting the size of the flow table. To do this, Mercury maps
a logical TCAM flow table into two physical flow tables:
the first table, a small table (The scratch table), that’s kept
relatively empty and the second table (the regular table), a
large table. The size of the scratch table is a function of
the required performance guarantee; lower latency guaran-
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Figure 2: Job Completion Times for Reactive SDN App (a & b) and Proactive SDN App (c & d).
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tees require smaller scratch tables. For example, according
to Table 1, a 3ms guarantee requires a scratch table size of
50 entries where as 10ms requires 200 entries.

Mercury uses two components, Load-Balancer and Rule-
Manager, to manage both physical tables and provide the
abstraction of one logical table. In Figure 3, we present the
architecture of Mercury. Mercury intercepts all control plan
actions to the TCAM: insertion, modification and deletion.
In managing both tables Mercury’s components performs
two high level tasks:

First, the Load-Balancer handles insertions (flow_mod) and
inserts the rules into the scratch table when the scratch table
is not full. When the scratch table is full, the Load-Balancer
places flows into the regular table (red arrows in Figure 3).

Second, the Rule-Manager tries to keep the scratch empty
by periodically migrating rules from the scratch table to reg-
ular table (blue arrows in Figure 3). The goal of the Rule-
Manager is to ensure that rules are migrated from the scratch
table before the scratch table becomes full. 3

4.1 Load-Balancer

The Load-Balancer manages insertion across both tables
and ensures that both tables emulate a single logical table.
To achieve these goals, Load-Balancer tackles the following
two challenges:

Correctness Guarantees: Mercury guarantees that the
combined behavior of the scratch and regular is identical to
that of a logical table. This guarantee is complicated by the
fact that new rules are generally always into the scratch table
and lookup occurs first to the scratch table. Thus a newer
lower priority rule may be used instead of an older higher
priority rule because the newer rule is in the scratch and the

3Exceeding the target size will lead to performance viola-
tions

older rule is in the regular table. For example, in Figure 4,
two rules inserted into two tables yields a different actions
than when inserted into a single table.

We intend to tackle this challenge by modifying the over-
lapping rules to ensure that they are inserted in a manner
that respects priorities while preserving correctness. To this
end, we plan to explore an efficient data structure that de-
tects overlapping rules and selectively rewrites these rules to
eliminate overlaps.

Match 10.0.0.0/8, port =443 ACCEPT Match 10.0.0.0/8, port =443 DROP (Wrong!!!)
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Figure 4: Correctness Challenge: Rule overlap.

Performance Guarantees: Mercury is unable to provide
performance guarantees when a batch of rules larger than
the scratch size are inserted instantaneously into the switch.
Inserting such a large number rules will force Mercury to fill
up the scratch and start inserting into the regular table. To
prevent this scenario, we plan to extend the Load-Balancer to
perform admission control (thus rate limiting insertion) and
develop an expressive API that enables Mercury to inform
applications of the rate limits associated with the requested
performance guarantees.

4.2 Rule-Manager

The Rule-Manager periodically migrates the rules from
the scratch table to the regular table. The goal of the Rule-
Manager is to ensure that rules are migrated from the scratch
table before the occupancy of the scratch table exceeds the
target size. The design of the Rule-Manager must tackle
several challenges: (1) Decide when to migrate rules from
scratch table? (2) How should the rules be migrated to main-
tain consistency? (3) How does Mercury ensure that guaran-
tees are maintained during rule migration?

Next, we elaborate on these challenges:

4.2.1 When to migrate rules?

To provide performance guarantees Mercury must migrate
rules from the scratch table to the regular table before the
number of rules in the scratch table exceeds its target size.
This requires an intelligent technique for capturing and pre-
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dicting the flow insertion rates. This technique allows Mer-

cury to predict when the number of rules in the scratch table

will exceed its limit and subsequently trigger a migration.
There are three alternatives: first by exploring predictive

algorithms, e.g., estimated weighted moving average (EWMA),

autoregressive model (ARM), Cubic Spline, second by mod-
ifying the controller to provide hints as to its expected inser-
tion rate [23], and third by specifying a static threshold.

In our design of Mercury, we plan to explore the first ap-
proach for its simplicity and elegance: this approach leaves
the controller abstractions unmodified and frees the program-
mer from the burden of determining the insertion rate.

4.2.2 How to migrate rules?

The Rule-Manager performs migration in four steps (Fig-
ure 5). First, rules from the scratch table and the target flow
table(s) are copied into the Rule-Manager. Then, the Rule-
Manager optimizes the rules using existing algorithms [30].
Third, Rule-Manager copies optimized rules into the regular
flow tables. Finally, the scratch table is emptied. During the
entire migration process, the scratch table remains usable.

The migration process is designed to ensure that the Rule-
Manager maintains the following properties:

Performance Guarantees: Provided the scratch table is
emptied and a rule is never inserted when it is full, Mercury
will be able to provide performance guarantees.

A challenge arises when rules are inserted faster than Mer-
cury can empty out the scratch table. For example, if a batch
of rules are inserted such that the batch size is larger than the
scratch table, then Mercury will be unable to provide guar-
antees for a subset of the rules. To address this issue, we
plan to explore the use of a rate limiter. Similar to existing
QoS primitives, Mercury will provide specific performance
guarantees as long as the application’s insertion rate is be-
low a predefined limit. As part of future work, we intend
to develop principled methods for determining the optimal
rate-limit for the different performance guarantees.

Correctness During Migration Consistency: To ensure
correctness, Rule-Manager does not empty the scratch (step
4) until after migration (step 3). This ensures that at any
point in time there is at least one rule to process and service
packets. However, there may be two identical rules in both
tables: one in the scratch table and one in the regular ta-
ble. Fortunately, the default behavior for Mercury is to stop
matching after a packet matches an entry in the scratch table.

4.3 Implementation Feasibility

While we have not implemented Mercury in hardware,
we have discussed our design with Broadcom engineers and
switch vendors. Our discussion indicates that Mercury can
be implemented in the current line of switches using inter-
faces readily available in the Broadcom SDK. #

Modern and traditional SDN switches [6, 5, 2] provide
control over partitioning of TCAM tables, called TCAM carv-
ing. For example, Cisco [8, 4] subdivides TCAM into 8
predefined slices and provides operators with commands for
repartitioning (or resizing) these slices. More modern switches
provide richer control and flexibility. The Broadcom SDK
allows operators to “carve” the TCAM: specifically, deter-
mine the number of entries in each slice and the size of the
keys for each slice. These slices are subsequently mapped to
groups and assigned priorities. Lookup into a TCAM table is
done in parallel across all slices with each slice returning at
most one match [1, 4]. The TCAM resolves conflicts across
different slices using the configured priorities.

To support Mercury, we can carve the TCAM into two
slices. Both slices are configured with identical keys; how-
ever, the scratch slice (scratch table) is configured to be sig-
nificantly smaller than the regular slice (regular table). The
TCAM is configured to resolve conflicts in favor of the scratch
slice. During lookups, both slices are analyzed in parallel,
this parallel lookup results in the correct answer. During in-
sertions, Mercury tries, first, to insert into the group/slice
allocated for the scratch table and if this fails because the
scratch table is full, then it attempts to insert the rule into the
group/slice allocated for the regular table.

4.4 Discussion

For deletion and modifications, Mercury acts slightly dif-
ferently. For deletion, Mercury deletes the actions associated
with the rule — this ensures that deletion takes no time and
the empty rules can be removed during the optimization that
happens in the migration phrase. For modifications, Mercury
applies them without concerns because they inconsequential
incur great latencies.

Multiple TCAM Tables: While Mercury is designed to pro-
vide the abstraction of a single logical flow table, modern
switches and OpenFlow specifications support multiple flow
tables. Mercury can be extended to support multiple phys-
ical flow tables by providing multiple logical flow tables.
Each logical table is mapped to a scratch and a regular slice
— both slices are embedded in a physical table. This inde-
pendent decomposition of the different tables enables Mer-
cury to provide different guarantees for the different table: a
feature that may be particularly attractive when the different
tables are used for radically different functionality [29, 24].
To preserve the semantics of the original pipeline, Mercury
configures each regular table to exhibit the default “miss”
behavior of the original table — either go to the next table,
send the packet to the controller, or drop the packet.

4SDK access is required because existing interfaces to
switches, e.g. OFDPA [3] and OpenNSL [7], do not provide
control over configuration of TCAM slices.



S. PRELIMINARY ANALYSIS

Next, we revisit the simulation presented in Section 3 and
explore the benefits and overheads of employing Mercury.

Application Level Benefits. In Figure 2, we present the
performance improvements provided by employing Mercury
configured to provide 3ms and 10ms insertion latency guar-
antees. Note, regardless of the switches used, Mercury pro-
vides strict performance bounds. We observe that, in reactive
mode, Mercury with 10ms latency guarantee significantly
improves the median and tail by 2X-5X. Moreover, Mer-
cury with 3ms latencies provides improvements over Mer-
cury with 10ms. We observe that, with the proactive SDN
App, the benefits provided by Mercury are not as pronounced
as with the reactive SDN App. The benefits are less pro-
nounced with the proactive SDN App because there are fewer
network modifications and thus Mercury’s framework is used
less frequently.

Flow Level Benefits. Next, to better understand Mer-
cury’s performance under the proactive SDN App, in Fig-
ure 6, we examine microscopic properties. Specifically, fo-
cusing on flow completion times (FCT) and flow installation
times (FIT). We observe that the flow installation times (Fig-
ure 6 (a)) are largely constant with minor variation. These
minor variations exist because while Mercury provides an
upper bound on performance, Mercury may, in fact, perform
better than this upper bound and thus installation time may
be lower than expected.

In Figure 6 (b), with 10ms guarantee we can observe that
the median flow completion time is reduced by 48% and
80% over the 8132F and the P-3290 switches respectively.
This echoes observations made at the application level.

Overheads. The overhead of employing Mercury is di-
rectly proportional to the configured performance guaran-
tees. According to existing studies [22] (summarized in Ta-
ble 1), the Pica8 P-3290 switch incurs a 2.5% space overhead
and the Dell 8132F switch incurs a 6.67% space overhead to
provide a 3ms insertion delay guarantee — for 10ms, both
switches incur a smaller overhead. Mercury trades a modest
amount of TCAM resources to provide the application and
flow level gains described earlier.
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6. RELATED WORK

Modeling Switch Performance: Prior works [18, 23, 27,
15] have conducted empirical studies on the factors that im-
pact control plane action latency. These studies motivate our
work. We build on these studies by demonstrating the impact
of these control plane actions on network applications.

Maximizing TCAM Performance: To improve TCAM
performance, existing approaches either re-order rules [23,
25, 26, 21] or change the TCAM insertion algorithms [30].
Even though these approaches reduce control plane action
latency, they do not provide any guarantees or assurances.
Mercury address exactly this: Mercury provides performance
guarantees over control plane action latencies.

7. DISCUSSION AND FUTURE WORK

Next, we discuss ongoing work to extend Mercury to pro-
vide performance guarantees for other types of SDN control
plane actions and programmable data planes.

GetStatistics/PacketOut/PacketIn The performance of
these messages is largely a function of contention for the
switch’s CPU and memory resources. To provide guaran-
tees, we intend to optimize the switch’s software stack by
eliminating unnecessary bloat and introducing mechanisms
that allow the switch to reserve and allocate resources for
these control plane actions.

Emerging Programmable data planes Current prototypes
and designs are based on properties of modern merchant sil-
icon and ASICs. Yet, we believe that the core design of
Mercury is applicable to the emerging generation of pro-
grammable data planes, e.g., P4 and RMT chips [12], be-
cause these platforms reuse traditional TCAM-based flow
tables and Mercury addresses a property of TCAM that is
invariant to underlying TCAM design.

8. CONCLUSION

SDN Apps, e.g. traffic engineering and service chain-
ing, require frequent modification to the TCAM using con-
trol plane actions. Moreover, many of these SDN Apps re-
quire their actions to be completed in a timely manner. Un-
fortunately, modern SDN switches do not provide concrete
performance guarantees for such control plane actions — in-
stead, the switches provide a best-effort service. To sup-
port many emerging applications and scenarios, we must re-
design switch software and algorithms to explicitly support
frequent control plane actions.

In this paper, we propose Mercury, a system which pro-
vides strict performance guarantees for control plane actions
by intelligently partitioning and managing TCAM flow ta-
bles. Mercury provides these guarantees by trading off a
modest amount of TCAM space for enhancing TCAM per-
formance. Our preliminary evaluations show that with less
than 10% overheads, Mercury is able to provide significant
improvements (2X to 5X improvements).
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