95712C Lecture Notes,

Wednesday, September 8, 2004
Java Language Features Summary

Reference: Chapter 1 of textbook

· Object Oriented Programming Language

· Everything is part of a class
· Programs are built from sets of classes
· Classes are instantiated to create objects. Objects communicate with each other via messages
· Java supports OO concepts:

· Data Abstraction

· Inheritance

· Polymorphism and Dynamic Binding

· Interpreted

· Java Compiler generates architecture neutral byte-codes
· Java Virtual Machine interprets the byte-codes
· Byte-codes can be ported to any machine with JVM
· Programming Language for the Internet and Intranets

· Browser is the environment to execute the Java Applets.

· Server side programming with JSP and servlets.

· Packages are available for supporting web services and XML development.

· Java Security

· Security features designed into the language.

· With applets:

· You are executing someone else's program in your machine.

· The Java execute in a safe environment called sandbox, which enforces security restrictions.

· The applets can be signed to get around security restrictions.

· Modern Programming Language yet Simple
Modern

· Strong Typing

· Garbage Collections

· Exception Handling

· Multi-threading

· Reflection

Simple

· Similar to C/C++, but

· Eliminates their troublesome features:

· Pointer arithmetic

· Multiple inheritance

· Implicit type coercions

· Explicit memory management

· Operator overloading by the programmer

· Preprocessor (#include, #define)

· Other features eliminated

· structs and unions

· enumeration types

· bit fields

· variable-length argument lists

· templates

· Architecture-neutral and Portable

· Byte-codes are architecture neutral
· Primitive type sizes are explicit - not architecture dependent
· Strings and characters are (16-bit) Unicode compliant
· Packages provide portable code for GUI, networking, distributed computing.

· Robust

· Strongly-typed language
· Compile and runtime checking
· Safe programming with automatic memory management, with true arrays and with no pointer arithmetic
· Exception handling
· Multithreaded

· Thread support built into language
· Thread synchronization primitives supplied based on well-known mechanisms
· Garbage collector runs in background
· Distributed

· Network programming support built into JDK class library
· Packages enable distributed computing with RMI, ORB, Web Services, JDBC, etc.
· Byte-codes promote mobile code

· High performance

· Depends what you compare it
· Interpreting leads to quicker development cycle but performance suffers by using bytecodes
· JIT compilers lead to a large performance increase
· Can use native language code for mission-critical performance
· Dynamic

· Runtime binding
· Runtime Type Information (RTTI) available
· Objects can use reflection and introspection to recognize each other
Review of Java Compile Cycle

Reference: Chapter 2 of textbook

Applications

1. Compile Java source files

2. Execute the class file that contains the main function

Applets

1. Compile Java source files

2. Create an HTML file for loading the applet

3. Load the HTML file in web browser or in applet viewer.

A minimal HTML tag for loading the applets:

<applet code="WelcomeApplet.class" width="400" height="200"> </applet>

A typical HTML tag

<applet code="WelcomeApplet.class" width="400" height="200"

 codebase=”http://www.phptr.com/corejava”

 <param name="greeting" value ="Welcome to Core Java!"/>

</applet>

Run the Chapter 1 programs in Eclipse

Control Structures

Reference: Chapter 3 of textbook

See the Slides.

Strings
See at http://java.sun.com/j2se/1.4.2/docs/api/index.html

String s = "John";

String s1 = new String(); // no characters and the length is 0.

String s1 = new String (s2); // copy of s.

Methods

s1.length(); // returns length

s1.charAt(I); // returns character at position I+1.

s1.equals(s2); // compares two strings, returns true or false.

s1.equalsIgnoreCase(s2); // compares two strings ignoring the case.

s1.compareTo(s2); // compares two strings. 0 if equal, negative if s1 < s2, positive if s1 > s2

s1.regionMatches(int toffset, String other, int offset, int len);

s1.regionMatches(boolean ignoreCase, int toffset, String other, int ooffset, int len);

s1.indexOf(c, i); // locates the first occurrence of character c in s1 starting at i and returns the index of the character if it is found, otherwise -1.

s1.concat(s2); // adds the characters of s2 to s1 and returns a new String. s1 and s2 remain the same.
s1.replace(c1, c2); // generates a new String replacing c1's with c2 in s1.

s1.upperCase(); // returns a new String that is uppercase of s1.

s1.lowerCase();
Arrays

An array is collection of variables all of the same type. Java doesn't allow access to outside the limits of an array.

int a[]; // declares the array

a = new int[10]; // allocates the array

int a[] = new int[10];

Initialization: int a[] = {0, 1, 2, 3, 4 };

Unlike C++, the number of elements is not specified in array's brackets.

int a[10]; // is syntax error

Using Arrays

a.length returns the length of the array. a[5] refers to 6th element of the array.

To access the elements using the for loop

for (int i = 0; i < a.length; i++)
 sum += a[i];

2-dimentional Arrays

int a[][] = new int[3][3];

Initialization int a[][] = { {1], {1, 2}, {1, 2, 3},{1,2,3,4} };

Using

for (int i = 0; i < a.length; i++)
 for (int j = 0; j < a[i].length; j++)
 System.out.println(a[i][j]); }

For sorting arrays, use java.util.Arrays.sort() method.
For copying arrays, use System.arraycopy() method.
ArrayList
ArrayList is a library class representing an array-like container that can shrink and grow automatically. You don’t need to know its size in advance.

See at http://java.sun.com/j2se/1.4.2/docs/api/index.html
Create one with ArrayList integers = new ArrayList();
Add element with integers.add(new Integer(10));

Get element at index i with integers.get(i); You need to cast like (Integer)integers.get(i);
Get the number of elements in it with integers.size();
Constant members

Constant members are defined with the final keyword.

public static final int k = 10;
It is common to define constant members as static.
Static members

A static variable is also called class variable and there is only one copy of it shared by all the instantiated objects. The static variables can be used even if the class does not have any objects.

A static method cannot refer to instance variables of its class, and cannot have this reference. The static variables and the static methods are independent of any object of a class. However, an instance method can refer to the class variables.

Math class methods
See at http://java.sun.com/j2se/1.4.2/docs/api/index.html
Reading Input

We will study the input and output streams in detail later. For the time being, please use JOptionPane.showInputDialog() method as suggested by the textbook.

See the InputTest.java
Formatting Output

Use the NumberFormat. See at http://java.sun.com/j2se/1.4.2/docs/api/index.html
double x = 10000.0/3.0;

NumberFormat formatter = NumberFormat.getNumberInstance();

String s = formatter.format(x);
Eclipse features

Reference: Eclipse help and online help at www.eclipse.org

· Java Development Basics: This was demonstrated last week. Make sure you are comfortable with:

· Creating Java projects

· Adding Java classes

· Editing Java classes

· Running Java applications

· Using debugger to toggle breakpoints and to execute code step by step.

· Expand and collapse definitions

· Accessing Java API documentation
· Using Content Assist: Ctrl-Space
· Examine overridden methods
· Add import statements

· Code formatting

· Add Java comments
· Generate getter/setter methods

· Command-line arguments
