Object-Oriented Programming in Java

MISM/MSIT 95-712-C

Optional Homework

Due: Monday, December 13, 2004, 7:00pm

This homework is optional. If you do it and get a score higher than any of your previous homework scores, we will replace the lowest of them with this one.

There are three exercises in this homework. The first exercise is 15 points. The second and the third exercises are 50 points each. There is additionally a write-up part, which is 25 points. Although the total makes 140 points, you can obtain credit only up to 100 points out of this homework.

Although this homework is optional, I recommend each of you doing it. It will help you develop new programming skills and acquire experience with new Java APIs. What you will do would include the following:

· Modifying existing programs in response to additional requirements while retaining the interfaces as much as possible.

· Making design decisions based on loosely defined requirements. Working with instructor, TA and classmates to evolve your design
.

· Evaluating your decisions and providing supporting arguments for them.

· Searching the Internet for APIs to implement your design decisions.

· Experimenting with new Java APIs like resources, exception handling, object repositories, collection classes including properties, random access files and threads. This will help you prepare for the final exam.

· Packing applications and applets in jar files. Deploying jar files over Internet.

In this homework, you will be modifying and extending the homework6 and homework 7 exercises. You are free to use the sample solutions for those exercises provided by the instructor. You can have separate eclipse projects for each exercise so that, this way, you can easily package them into jar files. Here are the exercises for this homework:

1. Modify homework 6 exercise 2 the following way:

· Modify it so that it runs both as an application and as an applet. Do the minimal conversion as described in the lecture notes.

· Package all executables of this exercise into a jar file, which would self-execute this application. Put that jar file in a web server (e.g. Andrew) with an html file to load this applet.

2. Modify and extend the homework 6 exercise 1 the following way:

· Modify it so that it runs both as an application and as an applet. Follow the (complete) conversion described in your textbook.

· Add a Save menu item into the File menu. If this program is running as an applet, clicking on the Save menu item should pop up a message dialog saying “Applets cannot save”. If this program is running as an application, clicking on the Save menu item should pop up a file chooser. Once a file name is given by the user, your program should write the current content of the drawing panel into a text file. A sample file, shapes.dat, is provided below:

Color|153|153|255
Line|63.0|64.0|176.0|169.0
Ellipse|142.0|81.0|257.0|202.0

Rectangle|79.0|161.0|265.0|243.0
The first line is always the color with RGB values. Other lines could be Line, Rectangle, Ellipse. For all shapes, numbers represent the (x,y) coordinates of the end points.

· Add an Open menu item into the File menu. It should ask the filename with an input dialog. It should read a text file, like the sample file above, and draw the shapes in the file onto the drawing panel. It should read from a URL for applets, and from a local file for applications.

· Have an Exit menu item in the File menu only if the program is running as an application.

· You will be populating the Draw menu and the buttons panel based on a resource file. A sample resource file, DrawerRepository.props, is below:

Line = LineDrawer
Rectangle = RectDrawer
Ellipse = EllipseDrawer
The left side is the name of a shape whereas the right side is the name of the Java class that can draw that shape. For each of the lines in the resource file, add a menu item to the Draw menu and a button to the buttons panel. The actions should set the drawer object in the drawing panel. The drawer object will be an instance of the Java class given in the resource file. Additionally, for applet only, display the message “Drawing XXX” on the status bar of the browser where XXX is the shape name. Have the “Change Color” menu item/button as before.

· Put your Java classes in packages in a way you think the most optimum that makes it easy to deploy/re-deploy this project on customer sites, to maintain it and expand it.

· Package all executables of this exercise into a jar file, which would self-execute this application. Put that jar file in a web server (e.g. Andrew) with an html file to load this applet. Note that resource file must be downloadable in application and in applet.

3. Modify and extend the homework 7 exercise the following way:

· Change XXX_students.dat file format where the XXX is the department name. The new format will use random access files, therefore will no longer be text based. The new format is summarized below:

	Field
	Type
	Size
	Description

	“G” or “U”
	String
	1 character
	Represents Grad or Undergrad student

	Name
	String
	40 characters
	Name of the student

	Id
	String
	12 characters
	Id of the student

	Major
	String
	40 characters
	Major of the student

	Minor/RA
	String
	40 characters
	Minor for Undergrad, Research Area for Grad

	GPA
	Double
	8 bytes
	GPA for Undergrad,

4.0 for Grad

I will provide the data files in this format.

· We have only used ArrayList so far in our programs. ArrayList may not be the best choice of collections. Go over all the ArrayList objects and consider changing them to more efficient collection classes, if any. Modify the code that uses the changed objects accordingly.

· Add functionality to the Save button on the Student Information pane. Assume only the research area for graduates; and minor and GPA for undergraduates may be modified by the user. Save the student record into its random access file in its correct position. However, before saving the file, introduce a 5 second delay to simulate the database access delay. Implement thread support so that the Save button remains disabled but GUI can still reply to user events during the delay for saving the record. Once the saving is complete, the Save button should be enabled.

· Think about which of the methods of the model classes should be made synchronized for thread safety in case multiple views access them. Make the ones that need to be.

· Package all executables of this exercise into a self-executable jar file.

Overall, implement exception handling especially for all IO and thread exceptions. In non-GUI code, print out the stack trace on the console if you catch an exception. In GUI code, additionally display a message via a modal message dialog. You may assume the input files are all well-formed and the user always makes the valid actions.

Create separate documentation files and zip files for each of the exercises. Put all the zip files, documentation files and jar files into a single (mega) zip file and submit it before the due time via the Drop Box. You don’t need to print your files as only electronic submission is requested in this homework.

In the write-up part, you should briefly explain the following in a text file:

· How did you read resource file into your program in exercise 2?

· How did you package the classes in exercise 2? Why?

· Which interfaces did you want to keep the same in exercise 2? Why?

· What collection classes did you use in exercises 2 and 3? Why?

· Did you use a worker thread or not in exercise 3? Why or why not?

· Which methods of the model classes in exercise 3 you synchronized for thread safety? Why?

In your write-up, mention where your applets are.

You can submit the write-up file via the Drop Box till December, 20th, 2004, 7pm.

As usual, details about how to implement this exercise will be discussed in the class. The executable files will be available in Homework8 directory of http://www.andrew.cmu.edu/user/syucel/Java/homework_solutions/ . No skeleton code will be provided for this homework.

� Make sure that any collaboration ends when you do programming.

