95713 Lecture Notes

1. Event Handling

Reference: Chapter 8 of Core Java, Chapter 14 of Thinking in Java.

Note that some sections of Chapter 8 of Core Java will be skipped.

1.1. Events, Event Sources and Event Listeners

Some Basic Facts:

· Event sources generate events.

· Event listeners may register with the event sources to receive notification about particular events. Event delivery is on registration bases.

· When an event is generated, the event source walks over the registered listeners and notifies them about the event.

· Event listeners implement interface methods to be executed when a particular event occurs.

· Event sources encapsulate necessary information in the event objects and pass them to event listeners.

· All events derive from the java.util.EventObject class.

Consider ActionEvent as an example:

· When a button is clicked, it generates an ActionEvent.

· An ActionListener object may register with a button to be notified about action events. Button notifies the actionListener objects by invoking its actionPerformed() method and passing the ActionEvent reference.

· ActionEvent object contains information such as the source and the action command.

· ActionEvent is additionally generated when, for example,

· When a certain amount of time is elapsed for a Timer object

· When a menu item is selected

· When the enter key is pressed in a text field

· When an item is selected from a list box with double click

See ButtonTest.java
Event listener can be implemented in variety of ways:

· It delegates that functionality to an inner class. It is common to place the listener class inside the class whose state would be modified by the listener class.

· It creates an anonymous inner class and delegates the event handling to that anonymous class. Helper methods make the programs even compact.

· The ButtonPanel could become the action listener by implementing the ActionListener interface.

Note that interface objects eliminate the need for type based conditional checking.

1.2. Changing Look and Feel

See PlafTest.java

Note the PlafPanel.this parameter to the updateComponentTreeUI method.

1.3. AWT Event Hierarchy

See Figure 8-5 and Table 8-1 in CoreJava.

Objects of ComponentEvent and its subclasses are considered as low level events. Others are semantic events. Low level events compose semantic events.

1.4. Adapter Classes

A listener interface that has more than one method comes with a companion adapter class that provides empty implementation for all of the methods defined in the interface.

See Table 8-1 of CoreJava.

1.5. Mouse Events

There are separate MouseListener and MouseMotionListener interfaces for processing MouseEvent events. This is done for efficiency.

Mouse events are handled by components and translated into semantic events, such as an ActionEvent. For drawing graphics though, for example, we need to process the mouse events.

See MouseTest.java

Use:

· getX(), getY, getPoint(), getClickCount() methods of the MouseEvent class.

· setCursor(Cursor c) method of the Component() to change the mouse cursor.

1.6. Actions

Actions can be used to encapsulate commands and attach them to multiple event sources. This way, the same actions can be executed in response to several events. For example, the same action can be executed for a button click, a menu item selection, a tool selection, or a keystroke.

See Action interface at http://java.sun.com/j2se/1.5.0/docs/api/index.html.

AbstractAction class implements all but the actionPerformed() method of the Action interface. See athttp://java.sun.com/j2se/1.5.0/docs/api/index.html.

See ActionTest.java
2. GUI Programming with Swing

Reference: Chapter 8 of Core Java, Chapter 14 of Thinking in Java.

2.1. The Model-View-Controller Design Pattern

Design patterns offer common solutions to common problems. They describe the solution in terms of

· The context which is the situation that gives rise to a design problem

· The problem description

· A set of conflicting forces

· The description of the solution

In the Model-View-Controller design pattern:

· Model stores the complete content

· View gives a complete or incomplete visual representation of the content

· Controller handles the interaction with external entities, e.g. the users

There could be multiple views for a model. An example model is the daily stock price of a security and example views are tabular and graphics views.

Swing GUI components use the model-view-controller design pattern. We will be using the model directly when programming for the spinners and the tables.

2.2. Layout Managers

Layout managers arrange the components in containers.

Use setLayout(LayoutManager) method of container object to set the layout manager.

Use validate() method of the container object to rearrange the components after changing the size/location of a component.

2.2.1. BorderLayout Manager

BorderLayout manager places the components in the center, north, south, east or west of the container objects. This is the default layout manager for frame objects.

Panels are used to hold other components in a BorderLayout.

Use:

· BorderLayout()

· BorderLayout(int hgap, int vgap)

· add(Component, BorderLayout.XXX) of the container object.

2.2.2. FlowLayout Manager

FlowLayout manager lines the components horizontally until there is no room and then starts a new row of components. It can arrange the components vertically as well, if configured so. This is the default layout manager for panel objects.

Use

· FlowLayout()

· FlowLayout(int align)

· FlowLayout(int align, int hgap, int vgap)

2.2.3. GridLayout Manager

GridLayout manager arranges the components in rows and columns like a spreadsheet.

See Calculator.java
2.3. Menus

See MenuTest.java
2.4. Tool Bars and Tool Tips

See ToolBarTest.java
2.5. Color Chooser

See ColorChooserTest.java
2.6. Text Input

JTextField can accept a single line of text.

See TextTest.java
Use JPasswordField(String text, int columns) for passwords.

Use JFormattedTextField(). If the input text doesn’t conform the format, the input text is not accepted.

See FormatTest.java
2.7. Text Areas

JTextArea can accept multiple lines of text.

Use setLineWrap(true) to wrap the long lines.

Use a JScrollPane to enclose the text area with scroll bars.

Use JEditorPane or JTextPane to display and edit formatted text in HTML or in RTF.

See TextAreaTest.java
The text field and the text area classes inherit methods from the JTextComponent class for selecting and replacing texts.

See TextEditTest.java
2.8. Labels

Labels don’t respond to user events. Use JLabel(String text) or JLabel(Icon icon) or JLabel(String text, int alignment), and try to place them close to the components that you want to identify with.

2.9. Choices

Check boxes allow the user to toggle an option on and off.

See CheckBoxTest.java
Radio buttons are group of buttons where only one of them can be true. Selecting a radio button makes every other radio button in the same group unselected. You need to create a ButtonGroup object and add the radio buttons into that object. Usually, the ButtonGroup object is added into a panel.

See RadioButtonTest.java
You can put a border around the panel that contains the ButtonGroup. Actually, you can put border around any Swing components.

See BorderTest.java
Combo boxes allow the user to make a selection out of a list of items. If enabled, combo boxes allow editing the list items.

Use addItem(), insertItemAt(), removeItem(), removeItemAt(), removeAllItems() and getSelectedItem() methods.

See ComboBoxTest.java
Sliders allow the user to select from a range of values. Use JSlider(min, max, initial). The default constructor JSlider() will create a slider with 0, 100 and 50 for minimum, maximum and initial value.

Sliders generate change events. Such events can be listened via ChangeListener interface which has a stateChanged(ChangeEvent) method.

Use getValue(), setMajorTickSpacing(), setMinorTickSpacing(), setPaintTicks(), setPaintLabels(), setSnapToTicks() methods.

See SliderTest.java

