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ABSTRACT
This paper presents WiSh, a solution that makes ordinary sur-

faces shape-aware, relaying their real-time geometry directly to

a user’s handheld device. WiSh achieves this using inexpensive,

light-weight and battery-free RFID tags attached to these surfaces

tracked from a compact single-antenna RFID reader. In doing so,

WiSh enables several novel applications: shape-aware clothing that

can detect a user’s posture, interactive shape-aware toys or even

shape-aware bridges that report their structural health.

WiSh’s core algorithm infers the shape of ordinary surfaces using

the wireless channels of signals reflected off RFID tags received at a

single-antenna RFID reader. Indeed, locating every RFID tag using a

single channel measurement per-tag is challenging, given that nei-

ther their 3-D coordinates nor orientation are known a priori. WiSh

presents a novel algorithm that models the geometric constraints

between the coordinates of the RFID tags based on flexibility of

the surface upon which they are mounted. By inferring surface

curvature parameters rather than the locations of individual RFID

tags, we greatly reduce the number of variables our system needs to

compute. Further, WiSh overcomes a variety of system-level chal-

lenges stemming from signal multipath, stretching of fabric and

modeling large surfaces. We implement WiSh on commodity RFID

readers and tags attached to a variety of surfaces and demonstrate

mm-accurate shape-tracking across various applications.
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Figure 1: WiSh takes as input wireless channel measure-
ments from a 2-D surface (or 1-D string) instrumented with
passive RFID tags and outputs the shape of the correspond-
ing surface (or curve).
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1 INTRODUCTION
Imagine a world where every surface around us is shape-aware,

relaying its precise and real-time geometry to our handheld de-

vice. Such a system can fundamentally change the way we interact

with surfaces in our vicinity. Imagine smart fabrics that infer the

curvature of our spine to track our posture when we exercise. Or

consider objects that we grasp – plush toys, computer peripherals

and exercise equipment, responding differently based on how and

where they are depressed. At a larger scale, consider bridges that

measure their sag-over-time [34] to track the structure health.

While there has been much past work on shape sensing, using

them to make all surfaces around us shape-aware poses a chal-

lenge. On one hand, infrastructure-based solutions such as depth

cameras[37] function only in environments where they are de-

ployed and must be in line-of-sight to the surface sensed. On the

other hand, recent efforts to build shape aware materials using

advanced motion sensors [9, 57] are expensive ($100 per meter),

bulky and need batteries that have to be frequently recharged.

We present WiSh, the first wireless shape sensing solution that

allows users with a compact single-antenna RFID reader to track

the shape of surfaces around them instrumented with inexpensive

RFID tags. Passive RFID tags are battery-free, machine-washable,

lightweight, flexible and cost a few cents, making them an ideal

shape-sensing technology for a wide-range of everyday surfaces

https://doi.org/10.1145/3210240.3210328
https://doi.org/10.1145/3210240.3210328


MobiSys ’18, June 10–15, 2018, Munich, Germany Haojian Jin*, Jingxian Wang*, Zhijian Yang, Swarun Kumar, Jason Hong

(a) Body Curvature (b) Smart Carpets (c) Interactive Toys (d) Civil Engineering Sensing

Figure 2: Shape-aware surface examples instrumented with passive RFID tags: (a) smart fabrics that can track the posture
of a user in real-time as they carry on with their daily activities; (b) smart carpets that detect the presence and locations of
users on them by tracking where they are depressed; (c) interactive toys instrumented with RFID tags can respond differently
depending on where they are touched and with what level of force; (d) bridges can measure their sag-over-time to track the
structure health.

and fabrics. WiSh can be applied to any surface around us by weav-

ing the tags into the fabric (e.g. clothing, carpets) or attaching the

tags to the object surface (e.g. bridges) (Fig. 2). These tags can then

be tracked from a mobile single-antenna RFID-reader that can fit

into the user’s pocket or be attached to a moving vehicle. The RFID

reader can be recharged periodically akin to a user’s smartphone

and may even be integrated directly into future smart-phones [18].

At first glance, one might consider sensing the geometry of sur-

faces augmented with RFIDs by using wireless localization. Specifi-

cally, one can localize the relative position of individual RFID tags

to reconstruct surface geometry. Unfortunately, localizing each

RFID tag accurately using a portable handheld device is challeng-

ing. State-of-the-art solutions to track RFIDs require multi-antenna

RFID readers [50] too bulky for users to carry around. More re-

cent solutions that use a single-antenna reader [21, 42, 52] can at

best infer the orientation of an array of tags – not their individ-

ual locations. Indeed, the underlying problem of localizing RFID

tags with a single-antenna reader is fundamental: A single-antenna

RFID reader reports only one phase measurement per-tag, which is

insufficient to infer its entire 3-D (x ,y, z) coordinates. This is the
classic problem of too many variables and too few equations.

In contrast, WiSh addresses this challenge by not localizing in-

dividual tags in the first place – instead, tracking the shape of the

fabric they are attached to. Specifically, WiSh formulates mathemat-

ical models of fabrics and surfaces (higher-order Bézier curves [11])

that represent 2-D surfaces of any material by equations with a

small number of unknown coefficients. Since fabrics and surfaces

of a given material have known limits on curvature and stretch, the

number of these unknown coefficients is far fewer than the number

of RFID tags. We then find the optimal coefficients that best fit the

observed wireless channels from the tags. By directly optimizing

for surface coefficients, as opposed to attempting to find each tag’s

location, we greatly reduce the number of variables our system

needs to infer.

The rest of this paper describes our solutions to the key chal-

lenges that increase the number of variables WiSh must compute.

First, we must account for the multiple paths of the signals from the

RFID reader to the tags as they reflect off walls, furniture, and even

the user’s own body. Second, we must account for phase-changes

owing to the difference in orientation of adjacent RFID tags as they

distort to different curvatures. Finally, we develop a curve stitch-

ing technique to scale shape sensing to more complex and larger

objects, such as bridges and buildings.

Scope and Limitations: Our paper is an exploratory work that

studies and operates under two assumptions driven by industry

trends: future RFID readers would be mobile and compact, e.g.,

integrated into future smartphones [18]; RFID tags can be readily

integrated with future textiles using conductive yarns [30, 47]. In

this paper, we envision a new RFID architecture where the envi-

ronment would be massively instrumented with passive RFID tags,

and the RFID reader would be mobile.

Since the hardware technology is not well developed yet, there

are important limits to the current WiSh implementation. First, it

cannot infer wrinkles or twists in fabric that are smaller than the

size of one RFID tag (three cm). Second, it cannot obtain folds in

RFID tags that cause one RFID to be placed atop another and cause

near-field coupling. We detail the limits of WiSh in §10.

We implement WiSh prototypes using commercial passive RFID

tags and a commodity Impinj RFID-reader that is connected to a

single antenna. We mount arrays of tags on surfaces of different

materials and dimensions, and track their curvature and stretch

in a variety of settings. As a baseline, we use a fiducial tracking

system with two cameras. Our results reveal the following:

• A median displacement of the observed from the true geom-

etry of 17 mm for a 40 cm 1-D string and 24 mm for a 30 cm

× 40 cm 2-D surface.

• A 87% accuracy in location-of-touch in a 3-D touch-sensitive

smart surface.

Contributions: Our main contribution is a novel solution for

ubiquitous shape sensing using passive low-cost RFIDs attached

to object surfaces. WiSh achieves this using a single RFID reader

whose location or movement does not need to be calibrated.

Our specific contributions are as follows:

• An RFID-based shape-sensing primitive that can measure

the precise geometry of a string (1D) or surface (2D). Our

approach accounts for the multiplicity of RF signal paths

from the RFID tags to the reader.

• A solution that allows both the RFID reader and tags to move

relative to each other at unknown trajectories without prior

calibration.
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• A detailed implementation and evaluation of WiSh across

different RFID-array configurations and surfaces to demon-

strate high accuracy in shape-sensing.

2 RELATEDWORK
Related work falls under three broad categories: shape-sensing

infrastructure, smart fabrics and RFID sensing.

Shape Sensing Infrastructure: There has been much past work

on developing external infrastructure to sense the shape of observed

objects. Depth cameras [19] and LIDARs [31] have long been de-

ployed to scan the 3-D surface of objects in direct line-of-sight at

mm-accuracy. Structure-from-motion techniques in computer vi-

sion [29] and RF imaging [61] reconstruct the 3-D surface of objects

using images captured from multiple vantage points. More recent

vision-based systems use commodity cameras coupled with objects

labeled with 3-D bar codes to accurately learn the shape of an object

even from a single image [3]. There have also been 3-D imaging

solutions using ultra-wide band RADAR that require instrumenting

the environment with multiple large antennas [28].

At a larger scale, sensing the shape of large structures such as

bridges requires special instruments such as inclinometers [59]

and highly sensitive motion sensors designed for structural health

monitoring [6]. In contrast to the above, our system only requires

attaching inexpensive, light-weight and battery-free RFID tags to

any surface that is sensed. WiSh can then accurately sense the

shape of these surfaces using a handheld RFID reader even if it is

in non-line-of-sight relative to them (e.g. in the user’s pocket).

Smart Fabrics & Materials: The most straightforward approach

to measure fabric deformations is deploying the sensors on the

textile directly [40, 44, 60]. For example, FlexSense [40] uses piezo-

electric sensors to sense the applied mechanical stress and recon-

struct 2.5D surface deformations eventually. However, all these

systems require batteries and electronics in the textile which add

to the cost and are hard to maintain. In contrast, WiSh tracks shape

deformations using low-cost, lightweight, waterproof, battery-free

RFID tags.

Designing non-intrusive fashion and aesthetic smart fabrics is

another emerging topic [12, 38, 58]. Project Jacquard [38] uses con-

ductive yarns to weave the touch and gesture-sensitive areas on

the textile in a non-intrusive way. Biologic [58] takes advantage of

the hygromorphic phenomenon in living cells to build electronics-

free and wireless fabric materials. Several other recent advances

have developed touch-sensitive fabrics [36, 41], stretch-detecting

bands [8, 13] and fabric-based user interfaces [22, 60]. While these

material science breakthroughs are promising, their sensing capa-

bility is restricted to specific types of inputs – touch and humidity,

respectively, not shape. In contrast, WiSh provides general geome-

try sensing in a non-intrusive way using RFIDs. Moreover, WiSh is

complementary to most smart fabric techniques by embedding an

extra RFID layer [35] to add shape-sensing capabilities.

RFID Sensing: Unlike traditional signal strength based schemes [5,

20, 33], recent RFID localization systems [25, 42, 50, 56] track the

RFID tags based on the low-level phase information of backscattered

radio waves and achieve cm-level accuracy. However, these systems

often require a large antenna array of reader antennas [27, 50, 56]

to perform triangulation and locate the tag. Such multi-antenna

readers are too bulky to be used as handheld systems.

Recent systems investigate the use of single antenna RFIDs for a

variety of sensing goals. One common goal is to enable discrete ges-

ture classification through analyzing the phase information using

machine learning [10, 23, 24, 26]. Some recent systems use a single-

antenna reader to infer the orientation of rigid objects [52] or track

the angles of joints [21]. More recently, Rio [39] uses the technique

of impedance tracking to track users’ finger touch movements on

RFID tags. RFIDs have also been employed for health sensing. For

example, TagBreathe [16] uses a zero-crossing technique to count

breathing periods, however assumes a static user in front of a static

RFID reader antenna. In contrast, WiSh is designed to provide a

generic technique for rich continuous shape tracking. Besides, it

tackles a problem different from prior solutions [16, 27, 52], as the

position of the reader is unknown and the reader is mobile.

3 AN OVERVIEW OFWISH
WiSh aims to measure the geometry of a 1-D string or 2-D surface

instrumented with light-weight, inexpensive and passive RFID tags.

The wireless channels from these RFIDs are measured relative to a

compact reader with only one antenna at unknown trajectories. In

each geometry computation, WiSh obtains only one unique channel

measurement per-RFID tag.

These design considerations stem from three reasons. First, the

RFID reader in the user’s pocket can move with time as the user

moves about. Second, the positions of RFID tags may change over

time as the surface deforms or moves. Third, using only one antenna

reduces the cost, deployment effort, and form factor.

Extracting quasi-simultaneous signals: WiSh uses a sliding

window technique [21] to extract the quasi-simultaneous readings

for different tags from the data stream. All the tag readings need to

occur in a time span of 0.1 seconds. If the sliding window does not

include all the tag readings and the 0.1-second duration expired,

WiSh will execute based on the partial observations. In practice,

some of the tags may become invisible due to occlusion from the

body or other object. Our algorithms can then run on the partial

sensor array data at the expense of some accuracy.

Modeling the Surface: At this point, WiSh needs to infer the

geometry of the surface using one wireless channel per tag. As

mentioned previously, one channel measurement is insufficient

to find the full 3-D coordinates and orientation of each tag using

wireless localization. In contrast, WiSh exploits the fact that the

locations of RFID tags are not independent – they lie on a surface

whose geometry is constrained by the properties of the underlying

fabric or material. Specifically, we model any surface by the equa-

tion S(p) = 0, where p are a set of parameters that fully define the

surface geometry. We constrain the parameters p to only allow for

surfaces that stretch or curve to the extent that the material, the

surface is made of, supports. We then find the set of parameters p
that best fit the observed wireless channels per tag. By choosing

functions S(p) that succinctly express surfaces using a small num-

ber of elements of p, one can ensure that the size of p is significantly

smaller than the number of tags on the surface. Consequently, we

can optimize for p to fit the observed channels, even with only one

channel measurement per-tag.



MobiSys ’18, June 10–15, 2018, Munich, Germany Haojian Jin*, Jingxian Wang*, Zhijian Yang, Swarun Kumar, Jason Hong

Figure 3: WiSh’s shape sensing workflow contains the fol-
lowing steps: (1) We begin with a randomly chosen first-
generation of surfaces and model them to find RFID tag lo-
cations; (2) We infer the radio environment parameters that
best fit the observed channel for each candidate shape; (3)
We then estimate the goodness-of-fit of each shape to the ob-
served channels. The best shapes are now passed on to the
next generation after a cross-over and mutation phase. The
algorithm terminates once a shape with a sufficiently high
goodness-of-fit is found.

Radio Environment: Besides the shape of the surface S(p), the
observed channels also depend on the radio environment between

the RFID reader and tag. We define the radio environment E as a

vector composed of three specific properties: (1) Any phase shift

introduced by the RF-front end at the RFID reader; (2) The atten-

uations and phase shifts introduced by the multiple signal paths

that the signals experience between the reader and tag, as they

reflect off walls, furniture, the user’s body, etc.; (3) Any phase shift

introduced at the RFID tag, particularly due to the orientation of

the RFID tag. These unknown values constitute additional variables

our system must optimize over in order to find the shape of the

surface.

Shape Optimization: WiSh’s optimization problem aims to find

the surface parameters p that best fit the observed channels. Mathe-

matically, lethobs denote the observed channels from each RFID tag

and hest(S(p),E) denote the estimated channels based on the geom-

etry of the surface S(p), we aim to track and the radio environment

E (as described above). We then wish to compute:

p∗ = argmin

p
min

E

∑
| |hest(S(p),E) − hobs | |2 (1)

The above objective function is non-convex, ruling out most

gradient-based approaches to solve the optimization. Indeed, we

empirically find that the objective function, while continuous, has a

large number of local minima. This makes solving the optimization

efficiently and accurately, short of enumerating all possible radio

environments and shapes, a challenging task.

WiSh addresses the above challenge by using a genetic algo-

rithm [54], an approach to solve non-convex optimizations effi-

ciently inspired by natural selection. Our algorithm begins with a

population of surfaces with randomly-generated parameters called

the first generation. We then proceed with the following three steps:

• Modeling the surface: First, we infer the positions of the

RFID tags based on the shape of the surface for each param-

eter p in the generation. The key challenge in doing so is

to define the function S(p) to succinctly describe everyday

surfaces and fabrics, while accommodating constraints on

their allowed stretch and curvature.

• Radio Environment: Next, we find the optimal environ-

ment E that fits the observed channels, based on the known

shape S(p) for each member of the generation. That is, we

must investigate efficient solutions to the following opti-

mization, based on observed wireless channels at an array

of RFID tags of arbitrary shape:

E∗ = argmin

E

∑
| |hest(S(p),E) − hobs | |2 (2)

• Shape Optimization: Finally, we find the goodness-of-fit

of each member p of the generation defined as:

G(p) = 1/
∑
| |hest(S(p),E∗) − hobs | |2

We only let a small fraction σ of the generation with highest

goodness-of-fit survive (where σ is a fixed threshold). We

then design efficient approaches to find the next generation

through a series of two operations: cross-over that combines

two shapes, and mutations that apply random alterations to

some shapes. We now repeat the above steps until we find a

shape with an acceptably high goodness-of-fit.

Fig 3 visualizes the work flow of WiSh as described above. The

rest of this paper (§4-6) describes the challenges and system de-

sign decisions in each phase of WiSh above. We further discuss

the limitations of our system (§10) as well as a detailed system

implementation (§7) and evaluation (§8).

4 MODELING THE SURFACE
In this section, we find a succinct representation of a surface S(p) =
0, specified by parameters p, to characterize most surfaces, such as

carpets, clothing and toys as well as large surfaces such as bridges.

Key to modeling surfaces efficiently is to weave in constraints that

limit the maximum stretch and bend that the surface can undergo,

based on its material properties.

4.1 Curve and Surface Representation
To model the surface, we seek a representation that can express a

large space of natural shapes but requires minimal parameters. Re-

ducing the number of parameters can improve the computational

performance and avoid potential over-fitting. Besides, the ideal

shape representation capture various material properties, e.g., elon-

gation, stiffness, etc. Finally, the shape representation should also

be intuitive for real-world applications, such as touch detection,

sag of bridges, spine curvature, etc.

Based on these considerations, we model surfaces using higher-

order Bézier curves [2], which are commonly used in graphics to

approximate real-world shapes. These curves are routinely used in

fabric and textile modeling and analysis [43]. Bézier curves are rep-

resented using a series of control points which effectively “pull” (or

push) the curve along various directions (i.e., control its tangents).
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(a) Bézier Curves

(b) Bézier Surface

Figure 4: Shape examples of curves and surfaces with Bézier
control points shown as black triangles. The grey dots (in
the curves) and the intersecting points on the grid (on the
surface) denote the attached RFID tags.

In effect, this is akin to the effect that users have with common

surfaces (fabrics, carpets, bridges, etc.) as they deform different

parts of the surface.

A One-Dimensional String: As a starting point, let us consider

a one-dimensional string of RFID tags that can deform to various

shapes in 2-D space. In general, we can model an nth-order Bézier
curve in 2-D space as:

S(p = {Ci }, t) =
n∑
i=0

(
n
i

)
(1 − t)n−i (t)iCi (3)

where 0 ≤ t ≤ 1 and Ci are the n + 1 control points which define

the set of parameters p that fully specify the curve. A Bézier curve

will always start with the first control point and end with the last

control point, while the rest control points dictate the tangents of

the curve.

Our implementation uses the cubic (3
rd

order) Bézier curve

(Fig 4) which characterizes most curves on the body (e.g. spine,

stomach) as well as most everyday surfaces (e.g. carpets) with the

least amount of over-fitting. In such a case, we need four 2D control

points to represent the relative shape of an arbitrary string segment

C0(x0 = 0, y0 = 0),C1(x1, y1),C2(x2, y2),C3(x3, y3 = 0), resulting in

5 unknown variables. Note that since we only care about the shape

of the surface not its location, i.e. the relative coordinates of the

control points, as opposed to their absolute location in space, we

always set the first control point to the origin and constrain the

final control point to lie on the x axis.

We describe our approach to characterize larger and more com-

plex curves or surfaces that require a greater number of parameters

below.

A Two-Dimensional Surface: To model 2-D surfaces, our ap-

proach uses Bézier surfaces that are a generalization of the Bézier

curve in 3-D space. A general cubic Bézier surface is constructed

as the tensor product of two Bézier curves as defined below:

S(p = Ci j ,u,v) =
n∑
i=0

m∑
j=0

Bni (u)B
m
j (v)Ci j , (4)

where each underlying curve is given by:

Bni (u) =
(
n
i

)
(1 − u)n−i (u)i , (5)

While the above formulation models complex surfaces due to the

large number of control points, in practice, we observe that a smaller

number of control points is sufficient over small surface areas. We

therefore simplify the above model by using two curves that are

univariate blending functions, where the variables u,v are two or-

thogonal parametric directions. In this formulation, the surface is

controlled by two orthogonal curves, each traversing along two

orthogonal axes. The control points Ci j in a tensor-product sur-

face are organized topologically into a rectangular array, and the

blending functions corresponding to the control points are likewise

organized in an array similar to the one in Eqn. 3.

S(p = {Ci ,Cj },u,v) = Bi (u)Bj (v)CiCj (6)

Larger Curves or Surfaces: To model larger curves formed by

structures such as buildings or bridges, a cubic Bézier surfacemay be

insufficient. Simply employing even higher-order curves to address

these scenarios may lead to over-fitting, introducing a large number

of control points in specific parts of the surface. In contrast, our

approach partitions the surface into smaller segments with overlaps,

each of which can be modeled as a cubic Bézier surface. We then

stitch together the extremities of these segments to recover the

shape of the entire surface using the following process that assumes

continuity and differentiability of the surface we model: (1) First,

we intersect any two surfaces at the RFID tag(s) common to them,

typically at their extremities; (2) Second, we rotate the second

surface so that the normal vectors to the tangent of the surfaces

at the intersecting RFID tag(s) align. By partitioning surfaces into

segments in this manner, our approach distributes control points

evenly across the entire surface.

4.2 Constraints on Curvature and Stretch
While Bézier curves are an effective formulation to represent a large

variety of surfaces, not all of them may obey the constraints of the

material that the surface is made of. In particular, we focus on two

specific constraints: maximum curvature and stretch. Specifically,

rely on well known models of fabric [32, 46] to measure the amount

of energy required to deform the shape into any curve, depending

on constraints of stiffness and elasticity of the material it is made

of. We then eliminate from each generation of Bézier surfaces,

any candidates whose required energy exceeds a threshold. In this

manner, we weed out outliers whose shapes are unlikely to form in

the real-world owing to material constraints.

Modeling Elasticity: Our approach to constrain stretch measures

the energy expended to deform the surface into a specific length.

Mathematically, we compute the net displacement of each tag away

from each other, relative to their prior configuration at the time the
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RFIDs were attached to the surface:

Qelast ic =

n−1∑
i=0
|di − D | (7)

where D is the prior known gap between tags, and di is the surface
distance between tag i and i+1.

Modeling Stiffness: Having computed elasticity, next we compute

the energy required in bending the surface into a specific curvature,

starting from an initially planar surface. We use a fast energy-based

surface wrinkle model [51] to calculate the surface smoothness.

Mathematically, we compute the curvature of the Bézier surface by

computing the angular rotation between control points. Specifically,

letωj is the angle formed by the segments connecting control points

Cj−1, Cj , and Cj+1. We then compute:

Qst if f =

n−1∑
i=1

Q(Ci ) (8)

where Q(Ci ) =
i+1∑
j=i−1
(e−ωj − e−π ) (9)

When ωj = 0, Qst if f reaches its maximum when the surface is

curved sharply. The energy is fully released when ωj = π , which
means a flat surface.

Applying Constraints: At this point, we rely on well-known

fabric models to compute the total energy required to distort the

surface into a given geometry specified by the Bézier surface pa-

rameters [32, 46]:

Qtotal = keQelast ic + ksQst if f + kдQдravity (10)

where ke , ks , kд are elasticity, bending and density constants, re-

spectively. For each surface parameter in any given generation of

surfaces in our genetic algorithm, we compute the above energy

and eliminate any surfaces whose total required energy exceeds

a threshold, thereby rejecting any unrealistic surface geometries

(outliers) that our system may output.

Computing Tag Positions: Given any Bézier surface with appro-

priate constraints on curvature and elasticity (as described above),

we now seek to obtain the coordinates of the RFID tags on the

surface at its present geometry. For simplicity, we assume that at

the time of manufacture the material surface was perfectly planar

with the RFID tags placed along a rectangular array with adjacent

tags at a known mutual distance D. For any Bézier curve that the

surface deforms to, one can then apply a simple geometric projec-

tion [48, 49] of the positions of the RFID tags from its initial planar

configuration to that of the new geometry. We note that in doing

so, we both account for the curvature of the Bézier surface, as well

as the stretch that it experiences uniformly over its surface area.

In summary, WiSh’s algorithm in the shape-modeling phase

performs the following steps: (1) It takes as input a set of surface pa-

rameters (i.e. Bézier control points) forming the current generation.

At initialization, these parameters are chosen randomly. (2) For each

member of the generation, it formulates the Bézier surface (Eqn. 6);

(3) It rejects outliers based on allowed curvature and elasticity of

the material (Eqn. 10); (4) It then passes on to the next phase, the

coordinates of the RFID tags for each surface in the generation, as

described above.

Figure 5: Depicts the phase change (in degrees) of a single
RFID tag along different orientations relative to the single-
antenna RFID reader.

5 RADIO ENVIRONMENT
Besides the geometry of the surface on which the RFID tags are

mounted, the observed wireless channels from RFIDs also depend

on the radio environment. In this section, we seek to extract ra-

dio environment parameters from the observed wireless channels,

for each candidate geometry of the surface. Our algorithm takes

as input the current generation of surface geometries as well as

the locations of RFID tags upon them, as returned by the surface

modeling phase (described in §4 above). We then find the radio

environment that best fits the observed channel, for each candidate

surface geometry (mathematically formulated in Eqn. 2).

The rest of this section describes our approach to find three

components of the radio environment, all of which influence the

wireless channels as the signals traverse from the RFID tags to

the RFID reader: (1) Phase shifts at the Tag: These are primarily

produced by change in orientation of the RFID tag that causes shifts

in the phase of signals observed from it; (2) Signal Multipath: This
is the result of the multiple paths the wireless signal from the tag

traverses as it reflects off walls, furniture and even the user’s body;

(3) Phase shifts at the Reader: Finally, the radio frontend of the RFID
reader introduces an arbitrary phase shift to signals received across

RFID tags.

5.1 Effect of Tag Orientation
In an ideal world where RFID tags are perfectly omni-directional

point-objects, the orientation of an RFID tags should have no bear-

ing on the phase of the signals it reflects. In practice, however, RFID

tags do have specific beam patterns and their orientation in 3-D

space can alter the observed phase value at the receiver. In other

words, phase offsets due to the orientation of each RFID tag on

WiSh’s surface of interest are additional variables that our system

must infer.

Fortunately, two important properties help us directly estimate

this variable per tag by modeling phase shift from tag orientation.

First, for any given Bézier surface in a generation, recall that the

placement of RFID tags is already known from Sec. 4. Given that
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Figure 6: Signals from the RFID tags to the reader traverse
alongmultiple paths as they reflect off various objects in the
environment.

the RFID tags we employ are planar with the material surface at

the time of manufacture, this means that the orientation of each

tag is simply orthogonal to the tangential plane to the surface at

the location of the tag. We note that one ambiguity does remain:

whether each RFID tag faces "up" or "down" at any time instance.

This ambiguity can be eliminated during the time the RFID tags are

attached to the surface, by ensuring that all RFIDs are oriented along

the same direction a priori. Indeed, during our experiments, we

found that this was important to ensure – affixing some RFID tags

face-up and others face-down to any surface produces significant

errors in our measurements.

Second, one might wonder if the phase shifts introduced by

RFID tags can be estimated, even if their orientations are known a

priori. Fortunately, RFID tags from the same manufacturer expe-

rience predictable phase shifts with change in orientation. Fig. 5

depicts a scatter-plot of the observed phase measurements from

thirty OmniID IQ-150 RFID tags measured across orientation. We

observe that the relationship between phase shift and orientation is

predictable (subject to noise) introducing a small mean error of 10

degrees. We can, therefore, calibrate and compensate for the phase

shift introduced by an RFID tag, solely based on its orientation. In

other words, phase offsets from the orientation of RFID tags can be

corrected for by WiSh, without introducing additional variables to

estimate in its optimization.

5.2 Signal Multipath
Next, WiSh must estimate the attenuations and phase shifts experi-

enced by the signal along the different paths the signal traverses

as it reflects off various objects in the environment between each

tag and reader. Indeed, estimating each of these quantities indepen-

dently per-tag is infeasible, given that WiSh only has access to one

phase measurement per-tag. In contrast, WiSh exploits the fact that

adjacent RFID tags will experience similar multipath characteristics

owing to their proximity. Specifically, WiSh treats the RFID tags on

the surface as an array of antennas. It then applies antenna array

algorithms that process the known wireless channels at the array

of tags as well as their known geometric configuration (per surface

shape in the generation from §4), to separate the various signal

paths.

Mathematically, we build on the Multiple Signal Classification

(MUSIC) algorithm [55] to perform antenna array processing (Fig. 7).

However, recall that unlike traditional antenna arrays which form

regular shapes (linear, circular, rectangular, etc.), the RFID tags

in WiSh are distorted into arbitrary shapes whose candidate set

of geometries are known from §4. As a result, for each candidate

tag geometry, we extend the MUSIC algorithm to operate under

arbitrary array configurations. We write the power of the received

signal from any spatial azimuthal angle θ and polar angleψ as:

P(θ ,ψ ) = 1

|a(θ ,ψ )†EnE†na(θ ,ψ )|
(11)

where: a(θ ,ψ ) = [e4π jricos(θ−αi )cos(ψ−βi )/λ]i=1, ...,N
Where (ri ,αi , βi ) are the polar coordinates of the RFID tags, λ is

the signal wavelength, j is the square root of −1, En are the noise

eigenvectors of hobsh
†
obs , hobs represents the vector of observed

wireless channels across tags and (.)† is the conjugate-transpose
operator. We then estimate the locations of local maxima (peaks)

of P(θ ,ψ ) to obtain the azimuthal and polar directions-of-arrival:

{(θk ,ψk ),k = 1, . . . ,p} of the p signal paths. At this point, we can

obtain the magnitude and phase of the signals corresponding to

each path by solving the following optimization:

min

ai ,ϕi ,∀k

p∑
k=1

| |hobs − ake−j
ϕk +4π jrcos (α−θk )cos (β−ψk )

λ | |2 (12)

The above is a standard least-squares optimization and can be

solved in polynomial-time. We, therefore, apply the least-squares

method to obtain for each signal path k , the attenuation ak and

phase shift ϕk experienced.

5.3 Phase Shifts at the Reader
Finally, our solution also needs to account for any phase shifts

introduced by the RF chains of the RFID reader. Fortunately, since

our system uses a single-antenna RFID reader, it introduces only

one universal phase shift across all RFID tags. In other words, this

is effectively one unknown phase value applied across all RFID tags,

across all the signal paths they experience. Mathematically, this

phase shift is already captured as an offset to the term ϕk obtained

from Eqn. 12 and therefore need not be separately computed and

accounted for. Said differently, ϕk represents both the phase shift

introduced by path k as well as the reader.

6 SURFACE OPTIMIZATION
Given a set of candidate surface parameters (a "generation" of sur-

faces) from §4 as well as their corresponding radio environment pa-

rameters from §5, we now aim to formulate a genetic algorithm [54]

to optimize for the best candidate surface and iterate over the next

generation of candidate surfaces. The genetic algorithm has two

phases which we describe below: (1) Natural Selection: Among the

set of individuals in any generation, only the "fittest" survive. For

each shape parameter in the generation, we formulate a goodness-

of-fit metric that decides which shapes pass on to the next genera-

tion; (2) The Next Generation: We then process the individuals that

make it past the selection phase to constitute the next generation of

shapes. Specifically, we apply two operations: i) Cross-over, which
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Figure 7: WiSh generalizes the MUSIC algorithm to estimate the angle-of-arrival θ1 from a single-antenna RFID reader to
the tags. This figure illustrates the MUSIC algorithm in 2D space. The tags at a known but arbitrary geometry with polar
coordinates (ri ,αi ) as shown. The MUSIC algorithm plots the power of the signal P(θ ) received along each direction θ with a
peak(s) at the true direction(s)-of-arrival (θ1 here).

combines two shapes to result in a hybrid shape; ii) Mutation, which

randomly alters the shape.

6.1 Natural Selection
The first step of our optimization is to eliminate shapes that poorly

fit the observed channel. To do so, we must formulate a goodness-

of-fit metric that takes as input the observed channels, the shape

parameters as well as the radio environment (inferred from Sec. 5).

Mathematically, let us consider a shape S whose RFID tags are

positioned at polar coordinates are represented as n dimensional

vectors: (r,α , β). Let hobs denote the vector of n wireless channels

obtained from these tags. In addition, let the azimuthal and polar

directions-of-arrival of the signal from the reader be: {(θi ,ψi ), i =
1, . . . ,p} for the p signal paths. Let (ai ,ϕi ) denote the attenuation
and phase shift experienced by the signal along each path (from

Sec. 5). We write the goodness-of-fit of the candidate shape S as:

д(S)= 1/
p∑
i=1
| |hobs − aie−j

ϕi +4π jrcos (α−θi )cos (β−ψi )
λ | |2

We then select the top σ fraction (σ = 20% in our implementation)

of the shapes based on goodness-of-fit to pass on to the next step.

Convergence: Note that since our optimization culls (1 − σ ) frac-
tion of the individuals at any given point in time, over time, it is

guaranteed to converge in a finite number of steps (inO(log 1

1−σ
N )

steps), where N is the number of individuals initially. Our current

implementation converges in around 20 iterations from a randomly

chosen seed. Our algorithm is intrinsically also designed to favor

individuals that fit the observed channels, resulting in progressive

improvements in goodness-of-fit. Our experimental results achieve

sub-centimeter error in displacement of surfaces measuring 40cm

per-side in 80% of our runs (Fig 9d). We present a detailed experi-

mental evaluation of WiSh in §8.

6.2 The Next Generation
Next, WiSh’s genetic algorithm analyzes the goodness-of-fit of

individuals in the current generation to check if any are sufficiently

low to report. Otherwise, it proceeds to compute the next generation

of individuals which are then subsequently processed by phases

described above. WiSh performs two biology-inspired operations

on the shapes in each generation: cross-over and mutation, which

we describe below.

Crossover: Cross-over is an operation that takes two individu-

als to compute a hybrid. Cross-over is designed to amplify good

characteristics and explore fine-grained solutions. Recall that in

WiSh, the parameters of each shape (i.e. each individuals) are a set

of control points. Therefore, WiSh performs a cross-over of two

shapes by averaging their corresponding control point coordinates.

The resulting shape is a hybrid curve that inherits features from

both surfaces.

Mutation: Mutation is an operation that introduces random

changes in some individuals. Mutation is designed to help the sys-

tem opportunistically escape from local optima. WiSh performs a

mutation by imposing a random offset to one of the control points.

We draw this offset from a Gaussian distribution with a standard

deviation of D, the mean displacement between the RFID tags.

Algorithm 1 below presents the complete workflow of WiSh’s

genetic-algorithm based optimization.

Algorithm 1 WiSh Algorithm

1: P← Randomly Initialized set of control points (surface param-

eter)

Loop:
2: for each p ∈ P ▷ Control points of one surface

3: S(p) ← BézierCurve(p) ▷ Sec 4

4: [θ ,ψ ]1, ...,p ← MUSIC(S(p),hobs ) ▷ Sec5

5: [a,ϕ]1, ...,p ← Least-Sqare([θ ,ψ ]1, ...,p , S(p),hobs ) ▷ Sec5.2
6: д(p) ← 1/∑i | |hobs − aie−j

ϕi +4π jrcos (α−θi )cos (β−ψi )
λ | |2

7: Survivors ← top σ members of P by д(p)
8: P← cross-pollinate and mutate (Survivors) ▷ Sec6.2

while (∀p ∈ P;д(p) < threshold)
return argmaxp∈P д(p)

7 IMPLEMENTATION
Choice of RFID Tags: Searching for the ideal RFID tags for WiSh

was a non-trivial task. First, the human body attenuates radio sig-

nals. Although the tags will be attached to the fabric among other

surfaces, ideal RFID tags should have a consistent performance
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on/off the body. Second, radio sensitivity and directivity are im-

portant aspects to consider. If the RFID tag has a strong directivity,

the tags can be seldom detected if they do not directly face the

reader antenna. Third, ideal RFID tags should have a small and

flexible form factor, which can be embedded into clothes and ev-

eryday surfaces in a non-intrusive way. After a careful comparison

of 20 different types of RFID tags, we use Omni-ID IQ 150 On-Metal
passive UHF RFIDs in our implementation, which are 1.2 cm ×
5.2 cm in size, are light-weight, paper-thin, and have consistent

performance on/off the body.

Despite, many battery-powered single-antenna RFID readers

available today [18] with up to 12 hours of battery life, these do not

provide access to wireless channels (magnitude and phase). Our

implementation, therefore, uses the Impinj Speedway RFID reader

with a single RFID antenna [7], which reports wireless channels.

Our source code is written in Python and C++.

8 EVALUATION
We present a detailed experimental evaluation to understand the

performance and limitations of WiSh. Our evaluation varies several

key system parameters:

• Tag spacing: We test different spacings of the RFID tag array

to understand the trade-off between performance and tag

density.

• Signal Multipath: We examine the impact of multipath on

shape sensing accuracy.

• Fabric materials: We test different fabric materials in estimat-

ing both the stretch and bend to understandWiSh’s accuracy

and ubiquity.

• Stress: We evaluate WiSh under different types of stress

(stretch, bend) on 1-D strings and 2-D surfaces.

Apparatus: We build WiSh prototypes on various types of mate-

rials: (1) Paper:We attach the RFID tags on a 7 cm × 40 cm paper

frame to evaluate performance in various multipath-rich settings;

(2) Latex Sheet: Next, we consider a 0.5 mm thick latex sheet to eval-

uate system performance under stretch and curvature. We consider

two different sheet dimensions: 3 cm × 15 cm and 30 cm × 40 cm. (3)

Fabric (cotton): We use a 3 mm thick cotton fabric to evaluate per-

formance with day-to-day clothing. (4)Woven Conductive Fabrics:
We verify if our system operates even on conductive soft surfaces,

generally used to shield electromagnetic signals from the outside.

Performance Metric: To characterize WiSh’s performance, we

report the absolute error in the position of RFID tags, measured in

millimeter on the surface of the fabric. We note that other metrics

are also available to measure the shape difference such as a rotation

matrix [53]. We choose to use the mean displacement distance since

it is a more intuitive measure.

Ground truth: To obtain ground-truth tag positions, we imple-

ment a camera-based fiducial tracking system (Fig. 8a) using AR-

ToolKit [3] and affix fiducial markers to our prototypes (Fig. 8b).

The ARToolkit calibration program indicates a sub-millimeter base-

line accuracy. Based on the fiducial marker tracking results, we

perform a surface interpolation [40] to reconstruct the surface’s

shape and identify ground truth tag positions.

Figure 8: Microbenchmark Apparatus. (a) A camera-based
fiducial tracking system; (b) Three shape-aware string pro-
totypes (different tag spacings: 2cm, 3cm, 4cm) using flex-
ible paper platforms for evaluation experiments. We print
the fiducial markers on the side to obtain the shape ground
truth.

8.1 Tag Spacing
At first blush, one might assume that increasing the number of tags

leads to an improvement in accuracy as there are more measure-

ments to rely upon. In practice, however, squeezing the tags too

close can be counter-productive owing to inter-tag signal coupling.

To understand this trade-off, we conduct experiments by varying

the inter-tag spacing.

Method: We built three shape-aware string prototypes by placing

Omni ID 150 tags on flexible paper platforms (Fig. 8b). All the

prototypes have the same total length (40 cm) but different tag

spacings (2cm, 3cm, 4cm), resulting 18, 13, 10 tags respectively.

For each prototype, we examine three classes of shapes: concave,

convex and wave-like.

To avoid error due to movement of the fiducial markers, we

ensure that our setup is static when collecting ground truth data.

During the evaluation, the experimenter moves around the pro-

totype in front of the reader antenna (0.5~1 meter away), while

the RFID reader and antenna are placed on the floor. We repeat

the process three times and collect wireless channel data for each

shape. For each shape sensing experiment, we obtain at least 500

independent snapshots (average refresh rate ≈ 16Hz).

Results: Figure 9a illustrates the tag position offsets across the

different configurations. The "displacement distance" comes from

the errors in both x and y-axis. All three configurations report an

average error between 1.3 and 1.9 cm. Among the various configu-

rations, the spacing of 3cm reports a (marginally) higher accuracy.

However, the remaining configurations only experience a minor re-

duction in accuracy relative to this configuration. Our results reveal

that even a generous spacing of 4 cm with 10 tags on the string is

sufficient to compute the unknown variables that fully-characterize

each shape.

To have a more concrete understanding of what these errors

mean, we visualize the results of one of the experiments: a concave

shape with a 4cm inter-tag spacing, and tag position error of 1.6cm,

shown in Fig 9b. We plot the 500 predictions of the different tags

in different colors per tag with a transparency of 20%. The orange

triangles are the ground truth positions of the fiducial markers. We

first interpolate the fiducial markers’ positions to infer the ground
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Figure 9: Evaluation results: (a) The first graph shows the different errors in distance with 2 cm, 3 cm, 4cm tags spacing; (b)
Predicted Shape; (c) Error in Distance under different wireless channel structure; (d) CDF of error in distance under LOS, NLOS,
multipath.

truth shape (orange line). As we can see from Fig 9b, the shape

prediction, with an average error at 1.6cm, is closely aligned with

the ground truth shape, i.e., the predictions are largely close to the

orange line. A random shape prediction can have a larger than 40

cm displacement error if we consider elasticity.

8.2 Signal Multipath
In the real world, we expect WiSh to disambiguate the multiple

paths of the signals from the RFID tags to the reader as they re-

flect off walls, furniture, and even the user’s own body. In this

experiment, we evaluate the effect of signal multipath on WiSh.

Method: To evaluate the effect of signal multipath, we categorize

the environments in which our experiment was conducted into

three groups: direct line-of-sight (LOS, with minimal obstructions

in the environment), multipath-rich settings (the presence of large

metallic and other reflectors in the environment), non-line-of-sight

(NLOS: RF signals traverse only through reflected paths to the tags).

We only use the 1-D string prototype of RFID tags with a spacing

of 3 cm for this experiment. For each multipath configuration, we

test two classes of shapes (concave and wave) as described in §8.1.

Results: Figure 9c and 9d depict the error in tag position across the
different radio environments. We observe a mean error of 1.13cm,

1.77cm and 2.30cm across the three classes of environments: line-

of-sight, multipath, and non-line-of-sight, respectively. While the

accuracy diminishes marginally in the absence of direct signal paths,

WiSh remains largely robust to the multipath environments owing

to the algorithms described in §5.2.

Partial Tag Observations: In the non-line-of-sight and multipath

experiments, WiSh often cannot receive the responses from all

RFID tags. As a result, WiSh will construct fewer equations than

the line-of-sight experiments for the same number of unknown

variables. ThoughWiSh can still reconstruct the surface shape from

partial tag observations, it comes at the expense of accuracy.

8.3 Surface Materials
In this experiment, we evaluate the effect of fabric flexibility and

test WiSh’s performance under different types of stress in each

instance: stretch and bend.

Method: We build four prototypes that accommodate stretch and

bend using different types of fabric materials (Fig 10): latex rubber

Figure 10: Surface material experiment apparatus: cotton
surface, latex rubber surface, latex rubber string.

Figure 11: The mean tag position error across different ma-
terials and configurations

string (30cm), latex rubber surface (20cm × 20cm), cotton string

(30cm), cotton surface (30cm × 40cm).

To evaluate stretch only, we hang the prototypes on a wood

frame vertically and then hook different weights (0.5 kg and 1 kg)

to the bottom of the prototype. Due to gravity, the strings/surfaces

stretch differently. To test the stretch and the bend at the same

time, we stretch the prototypes slightly and place the prototypes on

frames horizontally first and then attach weights on the surfaces or

strings. We test convex, concave, wave shapes in each configuration.

Unlike past experiments, the ground truth of shape deformation

is captured by the fiducial tracking system in real-time to capture

changes in shape over time.

Results: Figure 11 plots evaluation results for different types of

materials. We observe an error between 0.5 cm-2.6 cm across dif-

ferent materials and different deformations, which indicates WiSh

can work across various types of materials despite the presence
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Figure 12: WiSh makes a 388-meter long bridge shape-aware. (a) We first build a
measurement tape by sticking 50 RFID tags on a 5-meter string with an evenly 7cm
tag spacing. A programmable iRobot drags the tape along the sidewalk of the main
bridge span (b, c) Throughout the movement, WiSh continuously senses the tape
curvature and stitches them together by intersecting the common areas. (d) Themea-
surement is well aligned with the bridge schematic.

Figure 13: WiSh 10-key touchscreen
prototype. We laser cut an acrylic
board into a 40 cm x 20 cm frame,
wrap the frame with a latex rubber
surface and place 35 RFID tags on
the back.

or absence of stretch. Among the different scenarios, the accuracy

under both stretch and bend is poorer when compared to the accu-

racy under only stretch, primarily due to the more complex shapes

that result. We also observe that WiSh requires more iterations to

converge in its optimization algorithm to find the best solution in

the "stretch and bend" scenario.

8.4 Aggregate Performance Under Stress
Finally, we present aggregate results from our measurements in the

above experiments across various types of flexible surface materials

(rubber, cotton, paper) across different environmental conditions

(multipath rich, line-of-sight and non-line-of-sight).

Method: Wemeasure system accuracy across over 20 experiments,

each evaluating different types of shapes under: (1) Only stretch

by attaching one weight at the extremity of the surface or string;

(2) Both stretch and bending by attaching multiple weights to the

surface and or string pulling along different directions.

Results: The below table lists the absolute mean errors in different

configurations. In general, WiSh can sense the tag relative positions

at a sub-centimeter accuracy and infer the fine-grained shape at

1 cm for a 0.4m string and 2 cm for a 0.3 × 0.4 m surface.

Bend Stretch Both

String 13 mm 5.3 mm 17 mm

Surface 19 mm 8.7 mm 24 mm

9 APPLICATION SCENARIOS
This section describes results obtained from deploying WiSh for a

variety of novel applications.

Shape-aware Bridges: Recent studies [17] have shown that one

in 4 of US highway bridges - 60,000 of them - are either obsolete

or in need of serious repair. However, routine visual inspections

conducted by bridge engineers are costly and time-consuming [4,

14]. WiSh offers a potential solution for low-cost routine detection:

sensing the fine-grained shape of a bridge by deploying RFID tags

and mounting an RFID reader under an inspection vehicle.

Figure 14: Confusion Matrix of Touch Accuracy (%)

We run our experiment on a 388-meter long suspension bridge

(Tenth Street Bridge [1]) in Downtown Pittsburgh (Fig. 12). To avoid

potential license issue, we do not attach the RFID tags to the bridge

directly. Instead, we build a measurement tape by sticking 50 RFID

tags on a 5-meter string with an evenly 7cm tag spacing. We then

use a programmable iRobot to drag the tape along the sidewalk of

the main bridge span (220 m) at a constant speed.

During the process, WiSh continuously senses the tape curvature

and re-associate shape predictions with bridge segments using

the timestamps and movement speed. For each bridge segment,

WiSh collects redundant shape measurements and averages them to

remove the outliers and the influence of the ground (such as water

ponds, potholes on the sidewalk). In the end, WiSh stitches the

segments (visualized in different colors in Fig. 12d) by intersecting

the common areas. Our measurements are well aligned with the

officially reported bridge surveys.
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3D Touch on Soft Surfaces: Figure 13 shows another example

use case of WiSh: turning any soft object (e.g. toys, walls, etc.) into

an interactive surface. By modeling the deformation of the shape,

our system can infer the location and the pressure with which a

user touches the surface. Our prototype implementation, shown in

Fig. 13, divides the surface into ten touch areas and places 35 RFID

tags on the back of the latex surface.

We perform four independent press actions at each key area (40

repetitions in total). Each press behavior lasts around 2 seconds,

and WiSh collects at least ten snapshots for shape prediction. We

use the shape deformation to infer the pressed key. The confusion

matrix of touch point prediction accuracy (Fig. 14) shows that WiSh

has a mean accuracy of 87%. The main errors occur because of

ambiguity between neighboring touch areas. For example, touch

area 1 is more likely to be confused with 2 and 6.

Spine Posture tracking: In this experiment, we consider a mobile

user with a body-worn RFID reader and track RFID tags on the

user’s clothes. We deploy a linear tag array with 4cm of inter-tag

spacing along the user’s spine to measure posture. As before, we use

the ARToolkit camera-based system as a baseline. Our results reveal

a median error in the positions of the RFID tags of 17 mm. This

demonstrates WiSh’s high accuracy in the presence of body-worn

tags and mobile readers.

Breath Sensing: Next, we repeat the above experiment with an

additional one-dimensional RFID array along the user’s chest. We

ask the user to self-report breathing rate for 30 seconds, 12 times

after exercises of different intensity. Our results find that WiSh can

predict the user’s breathing with a high accuracy of 95%.

Shape-aware Sofa/Chair/Carpet: We deploy our RFID tags on

soft surfaces like chairs and carpet. Our experiments achieve a

92% accuracy in detecting the presence of person that is sitting

or standing on the chair or carpet. This result shows a promising

approach that can sense the presence of individuals by leveraging

the extent of curvature of future carpets .

10 LIMITATIONS
While WiSh can infer a wide-variety of surface geometry, we high-

light and discuss some important limitations:

Wrinkles: WiSh cannot obtain curvatures, such as wrinkles that

are smaller than the dimensions of an RFID tag (3 cm). For instance,

wrinkles that occur between two RFID tags may be virtually unde-

tectable from the phases of the RFID tags alone.

Folds: WiSh cannot detect folds that cause some RFID tags to be

placed upon others. This leads to near-field coupling between RFID

tags that corrupts phase measurements on both tags, introducing

large errors in our system.

Sensing andComputational Latency: OurWiSh prototype, run-

ning on a 2015 MacBook Pro, has an end-to-end refresh rate of

around 2 Hz. This end-to-end refresh rate can be further decoupled

into computation latency and raw signal reading latency. To reduce

computation latency, we use a hybrid solution: we first find the

initial shape using genetic algorithms (≈ 5 seconds per search) and

then search for the following shapes using a gradient descent ap-

proach (≈ 0.3 second per search). The computing power of the RFID

reader determines the raw signal sampling rate. The Speedway

reader (used in our evaluation) and ThingMagic6e (a commercial

mobile reader) can process 3000/1000 readings per second, resulting

in a refresh rate at 30/10 fps respectively for a 100-tag array.

Genetic algorithm: Our evaluation and recent Deep Genetic

Learning research [45] show that the results of the genetic algo-

rithm closely match that of a brute force search. False positives stem

mainly from noise in the received signal. Adding more tags and

Kalman filtering can reduce noise and the resulting false positives.

The tag density tradeoff: Increasing the number of RFID tags

will improve the accuracy. However, doing so is limited by available

space on fabric and tag’s form factor. We do not study the specific

relationship between model of tag, their density and the accuracy,

since this relationship may not generalize across brands of tags [21].

11 DISCUSSION
Mobile Reader: In this paper, we envision a responsive environ-

ment using massively instrumented passive RFID tags, while the

RFID reader would be mobile. These tags would be only activated

if there is a nearby reader, e.g., a user, with a mobile reader in her

pocket, interacts with a WiSh toy or steps on a WiSh carpet; a

vehicle, with a reader installed, drives through a WiSh bridge.

This design may contradict the current RFID paradigm, where

users carry RFID tags (e.g., RFID badges) and the always-on readers

are stationary. Though our work is exploratory, we find this re-

versed architecture has several key advantages. First, mobile reader

solutions can be more privacy-protective as users will have the

control of RFID sensing [15]. Second, our proposed architecture

is more cost-effective in settings such as smart homes, when the

number of users is smaller than the number of objects need to be

sensed.

Signal Collisions from Massive RFID tags: Signal collisions

are a potential challenge if RFID tags are massively deployed in the

environment. We currently use the default RFID protocol to resolve

signal collisions. But the current RFID protocol is an overkill for

WiSh since our retrieved tag IDs only need to be locally unique. Sim-

plifying the RFID protocol and developing specialized backscatter

tags will reduce collisions and increase the robustness significantly.

12 CONCLUSION
This paper presents WiSh, a system that enables RFID-based shape-

aware smart surfaces. We present algorithms that track surface

geometry from a compact single-antenna RFID reader that can

be placed anywhere in the environment. Our system opens up a

variety of applications: smart textiles that can report posture of the

spine, interactive touch-sensitive toys and computer peripherals,

and smart bridges that can detect their sag under stress. We present

a prototype implementation and evaluation of WiSh on commodity

Impinj RFID readers and tags, with our results showing promising

accuracy in recovering the shape of a variety of surfaces in various

multipath-rich settings.

Acknowledgements We thank the reviewers and our shepherd,

JeremyGummeson, for their feedback.We also thank Akshay Gadre,

Diana Zhang and Revathy Narayanan for their valuable inputs. We

thank NSF and Google for their interest and general support.



WiSh: Towards a Wireless Shape-aware World using Passive RFIDs MobiSys ’18, June 10–15, 2018, Munich, Germany

REFERENCES
[1] 10th st (philip murray) bridge. http://historicbridges.org/bridges/browser/

?bridgebrowser=pennsylvania/10th/. Accessed: 2018-04-25.

[2] Bézier curve - wikipedia. https://en.wikipedia.org/wiki/B%C3%A9zier_curve.

(Accessed on 12/09/2017).

[3] Open source augmented reality sdk | artoolkit.org. https://www.artoolkit.org/.

(Accessed on 12/07/2017).

[4] D. Agdas, J. A. Rice, J. R. Martinez, and I. R. Lasa. Comparison of visual inspec-

tion and structural-health monitoring as bridge condition assessment methods.

Journal of Performance of Constructed Facilities, 30(3):04015049, 2015.
[5] A. Agrawal, G. J. Anderson, M. Shi, and R. Chierichetti. Tangible play surface

using passive rfid sensor array. In Extended Abstracts of the 2018 CHI Conference
on Human Factors in Computing Systems, CHI EA ’18, pages D101:1–D101:4, New

York, NY, USA, 2018. ACM.

[6] F. Ansari. Sensing issues in civil structural health monitoring. Springer, 2005.
[7] AtlasRFIDstore. Impinj rhcp far field rfid antenna (fcc/etsi). https://www.

atlasrfidstore.com/impinj-rhcp-far-field-rfid-antenna-fcc-etsi/. (Accessed on

04/30/2018).

[8] L. Buechley. Sensormania - mediamatic. https://www.mediamatic.net/en/page/

27491/sensormania, 2017. (Accessed on 11/29/2017).

[9] A. Dementyev, H.-L. C. Kao, and J. A. Paradiso. Sensortape: Modular and pro-

grammable 3d-aware dense sensor network on a tape. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology, pages 649–658.
ACM, 2015.

[10] H. Ding, L. Shangguan, Z. Yang, J. Han, Z. Zhou, P. Yang, W. Xi, and J. Zhao. Femo:

A platform for free-weight exercise monitoring with rfids. In Proceedings of the
13th ACM Conference on Embedded Networked Sensor Systems, pages 141–154.
ACM, 2015.

[11] G. E. Farin. Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann,

2002.

[12] S. Follmer, D. Leithinger, A. Olwal, N. Cheng, andH. Ishii. Jamming user interfaces:

programmable particle stiffness and sensing for malleable and shape-changing

devices. In Proceedings of the 25th annual ACM symposium on User interface
software and technology, pages 519–528. ACM, 2012.

[13] N. S. Foundation. Futures of the scientific imagination | explore a safer, fashion-

forward future. https://www.nsf.gov/news/special_reports/futures/. (Accessed

on 11/29/2017).

[14] A. Gastineau, T. Johnson, and A. Schultz. Bridge health monitoring and

inspections–a survey of methods. 2009.

[15] J. Hong. Toward a safe and secure internet of things - new amer-

ica. https://www.newamerica.org/cybersecurity-initiative/policy-papers/

toward-a-safe-and-secure-internet-of-things/, June, 2016. (Accessed on

05/03/2018).

[16] Y. Hou, Y. Wang, and Y. Zheng. Tagbreathe: Monitor breathing with commodity

rfid systems. In Distributed Computing Systems (ICDCS), 2017 IEEE 37th Interna-
tional Conference on, pages 404–413. IEEE, 2017.

[17] C. Ingraham. Mapping america’s most dangerous bridges - the wash-

ington post. https://www.washingtonpost.com/news/wonk/wp/2015/02/04/

mapping-americas-most-dangerous-bridges/?utm_term=.d231413e97d3, 2015.

(Accessed on 04/30/2018).

[18] R. Insider. Rfid readers for mobile phones from tsl. http://blog.atlasrfidstore.com/

rfid-readers-mobile-phones-tsl, 2014.

[19] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,

S. Hodges, D. Freeman, A. Davison, et al. Kinectfusion: real-time 3d reconstruction

and interaction using a moving depth camera. In Proceedings of the 24th annual
ACM symposium on User interface software and technology, pages 559–568. ACM,

2011.

[20] H. Jin, C. Xu, and K. Lyons. Corona: Positioning adjacent device with asymmetric

bluetooth low energy rssi distributions. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software &#38; Technology, UIST ’15, pages 175–179,

New York, NY, USA, 2015. ACM.

[21] H. Jin, Z. Yang, S. Kumar, and J. Hong. Towards wearable everyday body-frame

tracking using passive rfids. Proceedings of the ACM on Interactive, Mobile, Wear-
able and Ubiquitous Technologies, 2017.

[22] T. Karrer, M. Wittenhagen, L. Lichtschlag, F. Heller, and J. Borchers. Pinstripe:

eyes-free continuous input on interactive clothing. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 1313–1322. ACM,

2011.

[23] H. Li, E. Brockmeyer, E. J. Carter, J. Fromm, S. E. Hudson, S. N. Patel, and A. Sample.

Paperid: A technique for drawing functional battery-free wireless interfaces on

paper. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, CHI ’16, pages 5885–5896, New York, NY, USA, 2016. ACM.

[24] H. Li, C. Ye, and A. P. Sample. Idsense: A human object interaction detection sys-

tem based on passive uhf rfid. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, pages 2555–2564. ACM, 2015.

[25] H. Li, P. Zhang, S. Al Moubayed, S. N. Patel, and A. P. Sample. Id-match: A

hybrid computer vision and rfid system for recognizing individuals in groups. In

Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems,
CHI ’16, pages 4933–4944, New York, NY, USA, 2016. ACM.

[26] H. Li, P. Zhang, S. Al Moubayed, S. N. Patel, and A. P. Sample. Id-match: A

hybrid computer vision and rfid system for recognizing individuals in groups. In

Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems,
pages 4933–4944. ACM, 2016.

[27] Y. Ma, N. Selby, and F. Adib. Minding the billions: Ultra-wideband localization

for deployed rfid tags. In ACM MobiCom, 2017.

[28] P. Millot, L. Castanet, L. Casadebaig, N. Maaref, A. Gaugue, M. MÃľnard, J. Kham-

lichi, G. Louis, N. Fortino, J. Y. Dauvignac, G. Clementi, M. Schortgen, L. Quellec,

and V. Laroche. An uwb through-the-wall radar with 3d imaging, detection and

tracking capabilities. In 2015 European Radar Conference (EuRAD), pages 237–240,
Sept 2015.

[29] T. B. Moeslund and E. Granum. A survey of computer vision-based human

motion capture. Computer vision and image understanding, 81(3):231–268, 2001.
[30] R. Nayak, A. Singh, R. Padhye, and L. Wang. Rfid in textile and clothing manu-

facturing: technology and challenges. Fashion and Textiles, 2(1):9, Jun 2015.

[31] G. Neumann, J. Garvin, J. B. Blair, Bufton, Jack, and B. Coyle. Lidar imaging of to-

pography with millimeter ranging precision for proximity science and operations

from rovers or spacecraft. 2017.

[32] H. N. Ng and R. L. Grimsdale. Computer graphics techniques for modeling cloth.

IEEE Computer Graphics and Applications, 16(5):28–41, 1996.
[33] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil. Landmarc: indoor location sensing

using active rfid. Wireless networks, 10(6):701–710, 2004.
[34] NPR. Time to overhaul america’s aging bridges? https://www.npr.org/2012/

08/31/160391678/time-to-overhaul-americas-aging-bridges, 2017. (Accessed on

04/24/2018).

[35] C. Occhiuzzi, S. Cippitelli, and G. Marrocco. Modeling, design and experimenta-

tion of wearable rfid sensor tag. IEEE Transactions on Antennas and Propagation,
58(8):2490–2498, 2010.

[36] P. Parzer, A. Sharma, A. Vogl, J. Steimle, A. Olwal, and M. Haller. Smartsleeve:

Real-time sensing of surface and deformation gestures on flexible, interactive

textiles, using a hybrid gesture detection pipeline. In Proceedings of the 30th
Annual ACM Symposium on User Interface Software and Technology, pages 565–577.
ACM, 2017.

[37] N. Point. Optitrack. Natural Point, Inc.,[Online]. Available: http://www. natural-
point. com/optitrack/.[Accessed 22 2 2014], 2011.

[38] I. Poupyrev, N.-W. Gong, S. Fukuhara, M. E. Karagozler, C. Schwesig, and K. E.

Robinson. Project jacquard: interactive digital textiles at scale. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems, pages 4216–4227.
ACM, 2016.

[39] S. Pradhan, E. Chai, K. Sundaresan, L. Qiu, M. A. Khojastepour, and S. Rangarajan.

Rio: A pervasive rfid-based touch gesture interface. In Proceedings of the 23rd
Annual International Conference on Mobile Computing and Networking, MobiCom

’17, pages 261–274, New York, NY, USA, 2017. ACM.

[40] C. Rendl, D. Kim, S. Fanello, P. Parzer, C. Rhemann, J. Taylor, M. Zirkl, G. Scheipl,

T. Rothländer, M. Haller, et al. Flexsense: a transparent self-sensing deformable

surface. In Proceedings of the 27th annual ACM symposium on User interface
software and technology, pages 129–138. ACM, 2014.

[41] S. Schneegass and A. Voit. Gesturesleeve: Using touch sensitive fabrics for

gestural input on the forearm for controlling smartwatches. In Proceedings of
the 2016 ACM International Symposium on Wearable Computers, pages 108–115.
ACM, 2016.

[42] L. Shangguan, Z. Zhou, and K. Jamieson. Enabling gesture-based interactions

with objects. In Proceedings of the 15th Annual International Conference on Mobile
Systems, Applications, and Services, pages 239–251. ACM, 2017.

[43] M. Sherburn. Geometric and mechanical modelling of textiles. PhD thesis, Univer-

sity of Nottingham, 2007.

[44] T.-W. Shyr, J.-W. Shie, C.-H. Jiang, and J.-J. Li. A textile-based wearable sensing

device designed for monitoring the flexion angle of elbow and knee movements.

Sensors, 14(3):4050–4059, 2014.
[45] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune. Deep

neuroevolution: Genetic algorithms are a competitive alternative for training

deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567,
2017.

[46] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models.

In ACM Siggraph Computer Graphics, volume 21, pages 205–214. ACM, 1987.

[47] TexTrace. The textile rfid solution. http://www.textrace.com/en/index.php, 2017.

(Accessed on 04/29/2018).

[48] M. Walter and A. Fournier. Approximate arc length parameterization. In Proceed-
ings of the 9th Brazilian symposium on computer graphics and image processing,
pages 143–150, 1996.

[49] H. Wang, J. Kearney, and K. Atkinson. Arc-length parameterized spline curves for

real-time simulation. In Proc. 5th International Conference on Curves and Surfaces,
pages 387–396, 2002.

[50] J. Wang, D. Vasisht, and D. Katabi. Rf-idraw: virtual touch screen in the air using

rf signals. In ACM SIGCOMM Computer Communication Review, volume 44, pages

http://historicbridges.org/bridges/browser/?bridgebrowser=pennsylvania/10th/
http://historicbridges.org/bridges/browser/?bridgebrowser=pennsylvania/10th/
https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://www.artoolkit.org/
https://www.atlasrfidstore.com/impinj-rhcp-far-field-rfid-antenna-fcc-etsi/
https://www.atlasrfidstore.com/impinj-rhcp-far-field-rfid-antenna-fcc-etsi/
https://www.mediamatic.net/en/page/27491/sensormania
https://www.mediamatic.net/en/page/27491/sensormania
https://www.nsf.gov/news/special_reports/futures/
https://www.newamerica.org/cybersecurity-initiative/policy-papers/toward-a-safe-and-secure-internet-of-things/
https://www.newamerica.org/cybersecurity-initiative/policy-papers/toward-a-safe-and-secure-internet-of-things/
https://www.washingtonpost.com/news/wonk/wp/2015/02/04/mapping-americas-most-dangerous-bridges/?utm_term=.d231413e97d3
https://www.washingtonpost.com/news/wonk/wp/2015/02/04/mapping-americas-most-dangerous-bridges/?utm_term=.d231413e97d3
http://blog.atlasrfidstore.com/rfid-readers-mobile-phones-tsl
http://blog.atlasrfidstore.com/rfid-readers-mobile-phones-tsl
https://www.npr.org/2012/08/31/160391678/time-to-overhaul-americas-aging-bridges
https://www.npr.org/2012/08/31/160391678/time-to-overhaul-americas-aging-bridges
http://www.textrace.com/en/index.php


MobiSys ’18, June 10–15, 2018, Munich, Germany Haojian Jin*, Jingxian Wang*, Zhijian Yang, Swarun Kumar, Jason Hong

235–246. ACM, 2014.

[51] Y. Wang, C. C. Wang, and M. M. Yuen. Fast energy-based surface wrinkle

modeling. Computers & Graphics, 30(1):111–125, 2006.
[52] T. Wei and X. Zhang. Gyro in the air: tracking 3d orientation of batteryless

internet-of-things. In Proceedings of the 22nd Annual International Conference on
Mobile Computing and Networking, pages 55–68. ACM, 2016.

[53] E. W. Weisstein. Rotation matrix. 2003.

[54] Wikipedia. Genetic algorithm. https://en.wikipedia.org/wiki/Genetic_algorithm,

2017. (Accessed on 12/07/2017).

[55] J. Xiong and K. Jamieson. Arraytrack: A fine-grained indoor location system.

Usenix, 2013.

[56] L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu. Tagoram: Real-time tracking

of mobile rfid tags to high precision using cots devices. In Proceedings of the
20th annual international conference on Mobile computing and networking, pages
237–248. ACM, 2014.

[57] L. Yao, R. Niiyama, J. Ou, S. Follmer, C. Della Silva, and H. Ishii. Pneui: Pneu-

matically actuated soft composite materials for shape changing interfaces. In

Proceedings of the 26th Annual ACM Symposium on User Interface Software and
Technology, UIST ’13, pages 13–22, New York, NY, USA, 2013. ACM.

[58] L. Yao, J. Ou, C.-Y. Cheng, H. Steiner, W. Wang, G. Wang, and H. Ishii. Biologic:

natto cells as nanoactuators for shape changing interfaces. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems, pages
1–10. ACM, 2015.

[59] W. Zhang, L. M. Sun, and S. W. Sun. Bridge-deflection estimation through

inclinometer data considering structural damages. Journal of Bridge Engineering,
22(2):04016117, 2017.

[60] Y. Zhang, G. Laput, and C. Harrison. Electrick: Low-cost touch sensing using

electric field tomography. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, CHI ’17, pages 1–14, New York, NY, USA, 2017.

ACM.

[61] Y. Zhu, Y. Yao, B. Y. Zhao, and H. Zheng. Object recognition and navigation using

a single networking devic. 2017.

https://en.wikipedia.org/wiki/Genetic_algorithm

	Abstract
	1 Introduction
	2 Related Work
	3 An Overview of WiSh
	4 Modeling the surface
	4.1 Curve and Surface Representation
	4.2 Constraints on Curvature and Stretch

	5 Radio Environment
	5.1 Effect of Tag Orientation
	5.2 Signal Multipath
	5.3 Phase Shifts at the Reader

	6 Surface Optimization
	6.1 Natural Selection
	6.2 The Next Generation

	7 Implementation
	8 Evaluation
	8.1 Tag Spacing
	8.2 Signal Multipath
	8.3 Surface Materials
	8.4 Aggregate Performance Under Stress

	9 Application Scenarios
	10 Limitations
	11 Discussion
	12 Conclusion
	References

