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Tag localization is crucial for many context-aware and automation applications in smart homes, retail stores, or warehouses. 
While custom localization technologies (e.g RFID) have the potential to support low-cost battery-free tag tracking, the 
cost and complexity of commissioning a space with beacons or readers has stifled adoption. In this paper, we explore how 
WiFi backscatter localization can be realized using the existing WiFi infrastructure already deployed for data applications. 
We present a new approach that leverages existing WiFi infrastructure to enable extremely low-power and accurate tag 
localization relative to a single scanning device. First, we adopt an ultra-low power tag design in which the tag blindly 
modulates ongoing WiFi packets using On-Off Keying (OOK). Then, we utilize the underlying physical properties of multipath 
propagation to detect the passive wireless reflection from the tag in the presence of rich multipath propagations. Finally, we 
localize the tag from a single receiver by forming a triangle between the tag reflection and the LoS path between the two WiFi 
transceivers. We implement TagFi using a customized backscatter tag and off-the-shelf WiFi chipsets. Our empirical results in 
a cluttered office building demonstrate that TagFi achieves a median localization accuracy of 0.2𝑚 up to 8 meters range.
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1 INTRODUCTION
This paper asks "Can we accurately locate ultra-low-power tags using existing WiFi infrastructure?". Given the 
amount of ambient WiFi traffic in most environments, a localization system can benefit from using commodity 
WiFi devices to locate the backscatter signal from an ultra-low-power WiFi tag. Unlike RFID-based localization 
systems that require large deployments and expensive instrumentation, a WiFi backscatter system can leverage 
pre-existing WiFi infrastructure and devices. For example, consider the scenarios illustrated in Figure 1, where a 
person desires to easily locate his/her personal items such as keys, wallets, tools, or even toys in any arbitrary
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Fig. 1. TagFi’s deployability and Single-point localization capabilities provides users with a WiFi-based object finding in any
arbitrary environment without requiring a localization infrastructure in place.

environment such as home, hotel, or in restaurant. By having an ultra-low power WiFi tag attached to these
objects of interest, one can find them by only using their personal WiFi-enabled devices such as a laptop or phone
paired with the available WiFi access points without requiring any localization infrastructure in place.

In spite of the promising outcomes, achieving this vision is especially challenging due to a combination of two
practical factors. First, the users have limited control and instrumentation capabilities inside a new environment.
Second, they have a few personal handhelds (e.g. laptop, phone, tablets) to run the localization algorithms, so
ideally we need a single-point localization approach that can locally estimate the object location by just leveraging
a pre-existing WiFi access point. This naturally rules out RFID-based systems as they require dense deployment of
expensive and specialized readers, which may not exist in any arbitrary environment such as hotels or restaurants.
While Bluetooth-based solutions such as Tile tags [1] or UWB tags [2] are infrastructure-free and can operate
in recent smart phones, the tags are too power hungry with maximum of one year life-time and only provide
proximity information and not 2D location. A WiFi-based object localization can potentially satisfy all these
requirements, however, existing WiFi backscattering solutions either: (1) use specialized hardware [8, 21, 22] that
imitate the RFID reader in full-duplex operation; or, (2) use techniques such as frequency shifting or coordinated
localization between multiple devices, which are not compatible with natural operation of WiFi protocols and
devices [24, 46, 56].
More specifically, the main challenge in WiFi backscattering is that the backscatter signal from the tag is

considerably weaker than the Line-of-Sight (LoS) path between two WiFi devices, which can push the tag
reflection below the noise floor. This becomes even more challenging in rich multipath environments with signals
reflecting off of walls and furniture with people moving around. As such, the tag reflection does not create
distinctive difference in the channel measurements. The solution used in the literature to address this challenge
is to design the tag such that it shifts the frequency of the backscatter signal to a side band, thus isolating the
tag reflection from dominant multipath signals. However, this requires the WiFi transmitter and receiver to
operate in different frequency channels, or the installation of an extra WiFi chipset at the receiver to listen to the
new frequency band of tag operation, both leading to an impractical situation in existing WiFi infrastructure. In
addition, the required high frequency oscillator for frequency shifting increases the tag’s power consumption.
In contrast to these past systems that unnaturally require the receiver to switch to a different frequency, we

present TagFi, a new backscatter localization system, that allows the WiFi transmitter, receiver, and the tag to all
operate on one common frequency, as is typical in WiFi. As a result, it can work with existing WiFi infrastructure,
making deployment much more practical. The natural consequence of the tag operating on the same frequency of
operation would be reduced tag range, due to high in-band interference. However, we investigate if at least some
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(a) (b) (c)
Fig. 2. TagFi in action. Snapshots of TagFi’s (a) experimental setup, (b) AR interface at the mobile device, (c) multi-tag
localization output

of these losses can be improved through more powerful signal processing techniques at the receiver, trading off a
modest reduction in tag range for a much more practical and deployment-ready system.
TagFi’s tag design uses the least restrictive backscatter protocol that blindly modulates any ambient WiFi

signal, and focus on detecting and locating these concurrent signals at the receiver. TagFi uses Channel State
information (CSI), which is collected by commercial WiFi chipsets. Since CSI is measured from the packet
preamble, it can localize a tag by just eavesdropping ongoing WiFi traffic, and so, piggyback localization on
regular WiFi communication with minimum to zero impact on wireless networks. In addition, a single WiFi
device (e.g. laptop, desktop computer, etc) can localize the tag by forming a multipath triangle between the tag
and any arbitrary WiFi transmitter, e.g. the WiFi Access Point (AP), sending the ambient traffic without requiring
triangulation with multiple nodes. Consider the potential benefits of such single-point WiFi-compatible design.
One could envision an ultra low-power tag free of any computational logic attached to objects for tracking and
localizing it in any new environment even if only one pre-existing WiFi access point is within range.

In spite of the simplicity and elegance of this solution, it comes with major challenges. First, the lack of a MAC
protocol as well as the asynchrony of the tag and WiFi transceivers requires the tag to continuously backscatter
any existing WiFi signals. This could potentially increase the tag’s power consumption and drain battery. To
address this challenge, TagFi minimizes the power consumption of the tag by using a simple RF switch that
toggles the internal impedance to either reflect or absorb the incident signal. Such a design needs no envelop
detector, decoding, packet buffers or high-speed RF oscillator, which leads to a power consumption of 16uW,
translating to 3.6 years of operating on a 3V lithium coin cell by using the switching frequency of 200Hz.
The second challenge is that without frequency shifting, the backscatter path and other multipath signals

occupy the same channel, resulting in high dynamic range and high in-band interference. To address this challenge,
TagFi leverages the spatial structure of the modulated backscatter signal to pull the signal above the noise floor.
The high level intuition is that the tag modulated reflection is incoherent with the rest of multipath signals,
which stands out in subspace super-resolution method [37]. Therefore, to separate the tag reflection from other
multipath signals, we adapt a MUSIC-based super resolution algorithm (described in Section 3.2) to explicitly
look for a path that is modulated. We show that this code-optimized MUSIC algorithm can detect the backscatter
signals that are significantly weaker than the LoS path, even in dynamic environments with the presence of
mobile paths. Finally, TagFi triangulates the position of the tag by measuring the angle of arrival (AoA) and angle
of departure (AoD) of the tag reflection, and derives the tag’s modulation code as tag ID.
We create multiple prototypes of the WiFi tag, one using off-the-shelf components and the others with

customized hardware and on-board PCB antenna optimized for ultra low-power operations. We also implement
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TagFi using Intel 5300 WiFi chips as our WiFi transmitter and receiver, operating at 5GHz with 40MHz bandwidth
and equipped with a 3-element linear antenna array. We deploy TagFi in an office building and evaluate its
performance in multiple scenarios, in the presence of multiple tags, and different mobility scenarios. Our empirical
results show that TagFi achieves a median localization accuracy of 0.2𝑚 up to 8 meters range. This is comparable
with the best existing WiFi localization systems, all of which require an active WiFi radio on the object and
coordination between multiple APs.
Applications. TagFi’s key advantage is the ability to operate in any new environment getting a power-boost
from any pre-existing WiFi access point paired with a personal device of the user such as a laptop or tablet. As a
result, TagFi can deliver the many well-studied localization applications of RFID tags without the deployment
hassle. A few such applications include: (1) Object Finding: Finding objects of interest (toys, tools, medicine, keys,
etc.) in a new environment one steps into such as a hotel room; (2) Augmented Reality: Using TagFi tags for
calibration and context awareness from an Augmented Reality helmet that is already WiFi enabled, even if in low
visibility conditions or when the tags are not in direct-field of view – unlike for example, April Tags. (3) Tracking
Wearables: Using TagFi tags attached to the body for gesture sensing, fitness tracking, fall detection, etc. in any
environment where WiFi is available.
Scope and Limitations. (1) TagFi assumes that both the WiFi access point and receiver have multiple antennas
(i.e. are MIMO-capable). We note that most laptops, tablets and increasingly smartphones are MIMO capable.
(2) TagFi performs location tracking in 2D space. Performing 3D localization from a single transmitting and
receiving WiFi pair, each with linearly spaced antennas is a known to be theoretically impossible [42], owing to
the absence of sufficient degrees-of-freedom to resolve the third dimension. While this can potentially be resolved
by aggregating information across multiple vantage points (e.g. multiple WiFi clients), it is beyond the scope of
this paper. (3) TagFi shares some limitations common to RF backscatter systems – it operates at ranges of 6-8
meters and is vulnerable to persistent and complete blockages that further weaken the signal. We do however,
evaluate the system under temporary blockages and environmental dynamics.
Contributions: The main contributions of this paper include:

• TagFi: a novel tag localization and identification system that only uses the existing WiFi infrastructure and
commodity wireless devices. So, it fully piggybacks tag localization on regular WiFi communications without
requiring devices to operate in different frequency channels.

• Asynchronous tag design: We use a tag design that is fully asynchronous in favor of practicality, which enables
a minimal architecture at the tag while addressing the high in-band interference with more powerful signal
processing techniques at the receiver.

• Code-optimized super resolution: TagFi leverages the backscatter modulation and spatial structure of the signal
to overcome complex multipath interference. This enables extracting a weak wireless reflection in the presence
of strong line-of-sight path. While this method is general, we show that it enables tag localization with no
need for complex operations at the tag such as frequency shifting.

• Single-point localization: TagFi provides decimeter-level tag localization from a single channel in a single
WiFi receiver. So, combined with asynchronous tag architecture and its compatibility with existing WiFi
infrastructure, it enables a new primitive of ubiquitous and infrastructure-less sensing and localization.

2 BACKGROUND AND RELATED WORK
TagFi is related to previous works in three areas: localization of commercial RFID tags, device localization of
WiFi radios, and backscatter communication. In what follows, we discuss how TagFi fits into related works.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 1, Article 34. Publication date: March 2021.



TagFi: Locating Ultra-Low Power WiFi Tags Using Unmodified WiFi Infrastructure • 34:5

Table 1. Compared to the state-of-the-art of localization systems, TagFi is the only solution that provides single-point
localization and is fully compatible with existing WiFi infrastructure with no need for high power operations at the tag such
as frequency shifting.

Ultra-low Single Point Compatible with Work on Commodity
Power Tag Localization Existing Infrastructure WiFi Devices

WiTag [24] ✕ ✕ ✕ ✓
OFDMA [44] ✓ ✕ ✕ ✓
RFind [29] ✓ ✕ ✕ ✕

MonoLoco [42] ✕ ✓ ✓ ✓
TagFi ✓ ✓ ✓ ✓

RFID-based Localization. With RFID technology, one can track battery-free objects by attaching a passive
tag. In these systems, a tag backscatters the excitation signal transmitted by an RFID reader and encodes its
own information on the reflected signal. The phase and amplitude of the backscattered signal is then used for
localizing the tag by either calculating the received signal strength (RSS) [9, 10, 35, 60], the time of flight based
on phase measurements [4, 28, 47, 48, 54], or the angle of arrival (AoA) using multiple antennas [6, 17, 25, 30, 61].
However, to deal with multipath interferences, these methods require either a dense deployment of reference
tags in the area of interest [33], leveraging a moving reader’s antenna to create a synthetic aperture radar [48], or
frequency hopping across all RFID channels [29] to emulate a wider bandwidth. Additionally, all these RFID-based
approaches require dedicated infrastructure and expensive RFID readers. In contrast, TagFi leverages the available
pervasive WiFi infrastructure and enables object localization in any WiFi receiver using ambient traffic. We adapt
the on-off keying modulation and transform it into a technique for identifying the weak WiFi backscatter signal
in the presence of complex multipath propagations.

WiFi Backscatter Communication. The concept of utilizing the passive WiFi reflection is originally proposed
for connecting ultra-low-power objects to the Internet. WiFi Backscatter [21], BackFi [8], and Passive WiFi [22]
are the examples of these systems that use specialized readers for decoding WiFi backscattering signals. All
of these systems either require modification on the WiFi device or specialized hardware to cancel multipath
interference. The recent backscatter communication systems utilizes commodity WiFi devices, but they deal
with multipath interferences by either changing the phase of the signal [57, 59] or shifting the frequency of the
backscatter to a non-overlapping channel [56, 58], both of which significantly increase the power consumption
of the tag. In addition, frequency-shifted backscatter requires the WiFi transmitter and receiver to operate in
different channels, an impractical assumption for regular WiFi networks.

WiTag [24] and OFDMA backscatter [44] are the closest backscatter localization systems to our paper, which
localize low-power tags with commodity WiFi radios. However, both of these systems use the side-band modu-
lation (frequency shifting), which limits the performance and practicality of these systems in multiple ways. First,
they unnaturally require the WiFi receiver to switch to a different frequency, potentially missing useful packets
on its normal frequency of operation. Second, an explicit coordination between the two WiFi transceivers is
required to agree on the secondary frequency channel as well as installation of an extra eavesdropper to listen to
new frequency band, so it is not compatible with existing WiFi infrastructure. Third, shifting the signal frequency
requires a high-frequency oscillator which consumes more power and is not efficient for long-time operation.
In contrast, TagFi adapts an asynchronous and practical architecture that enables tag localization at a single
receiver by fully using existing infrastructure.
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Fig. 3. System Overview of TagFi

WiFi-based Localization. Active radios such as WiFi have been extensively used for localizing devices, which
require an active WiFi chipset mounted on the target. The transmitted signal is then collected by one or multiple
WiFi receivers to compute the location of the target. The first generation ofWiFi-based localization systems look at
the received signal strength and use fingerprinting to determine the location of the target [7, 11, 12, 15, 40, 43, 50].
However, these methods require an extensive effort to characterize the environment. Recent techniques eliminate
the effect of multipath interferences by directly measuring the geometric features of the line of sight (LoS) path
between the target and the WiFi receiver(s). AoA-based methods [13, 18–20, 26, 36, 38, 42, 52] use an array of
antennas to compute the direction of the LoS signal, while ToF-based methods [12, 14, 27, 31, 32, 41, 55] use
either signal measurements from multiple frequency channels or round trip propagation time to estimate the
distance between the transmitter and receiver. Since all of these systems require an active WiFi transceiver on
the target, they are not suitable for object localization with minimal to zero sources of power. In contrast, TagFi
utilizes the backscattered signal from a tag without requiring an active radio or any power hungry component.

3 SYSTEM DESIGN
TagFi is a WiFi-based object localization system, which uses ambient WiFi traffic at a single commodity WiFi
receiver. A WiFi device such as a laptop or tablet that is equipped with multiple antennas, will eavesdrop the
packets from an access point in the room. At the same time, the tag asynchronously backscatters the WiFi signals,
which is also received at the WiFi receiver. TagFi measures the CSI values of the received packets from multiple
antennas and extracts the tag reflection by exploiting the modulation of the backscatter signals across multiple
packets. Finally, it localizes the tag in the 2D space relative to the WiFi receiver. As shown in Figure 3, TagFi
works in three steps:
• Backscattering modulated WiFi signals: TagFi uses an asynchronous on-off keying modulation at the tag
in favor of practicality and low power consumption. However, this results in high in-band interference of
the weak backscatter signal with other multipaths. Section 3.1 explains how TagFi leverages the modulated
structure of backscatter path to address this challenge and recover the tag reflection from the noise floor.

• Discovering Backscatter Signal: TagFi leverages the Channel State Information (CSI) measured across
multiple antennas as well as over time to estimate the angular geometries of the tag reflection and the LoS path.
Section 3.2 elaborates how TagFi identifies the tag reflection among other recovered paths including mobile
paths.

• Localizing the Tag: TagFi then defines a triangle between the WiFi receiver, transmitter, and the tag. As
explained in Section 3.4, it constrains the geometry of this triangle by obtaining the AoA and AoD information
of the backscatter path as well as the LoS path, thus localizing the tag from a single receiver and without
requiring to know the relative location of the WiFi transmitter and receiver up front.
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3.1 Backscattering Modulated WiFi Signals
Backscatter signals are usually much weaker than the LoS path coming directly from the active WiFi transmit-
ter due to extra travel time and tag’s small radar cross section. Detecting the backscatter signal is even more
challenging in rich multipath environments due to high dynamic range. A conventional solution to address this
problem is to use frequency-shift tags that reflect the backscatter signal in an adjacent non-overlapping frequency
channel. However, this solution requires WiFi devices in different frequency channels, which is not compatible
with regular WiFi networks where devices operate in the same channel for data communication and they can
listen to one channel at a time. To address this problem, we use a simple on-off keying (OOK) modulation that
only requires an antenna and an RF switch. The switch modulates the backscatter signal at the packet level by
toggling the internal impedance between reflective and non-reflective modes. The power of the backscattered
signal is a function of the tag’s reflection coefficient

Γ =
𝑍𝑇 + 𝑍 ∗

𝐴

𝑍𝐴 − 𝑍𝑇
(1)

where 𝑍𝐴 is the antenna impedance and 𝑍𝑇 is the impedance of the tag terminal. When the switch is in the
impedance match state (𝑍𝑇 = 𝑍 ∗

𝐴
), the circuit acts as an open terminal and absorbs all the signal. However, when

𝑍𝑇 = 0, the switch is in impedance mismatch state, which acts as a short terminal and total reflection of the
received power. As such, the tag modulates the WiFi channel between the tag and the receiver by reflecting or
absorbing the WiFi packets at the same channel.
However, OOK modulation is not sufficient to detect the tag specially in longer ranges and rich multipath

environments as it does not create enough distinctions on the channel measurements and potentially falls
below the noise floor. To address this issue, we use the modulated structure of the backscatter signal and the
measurements across time and space to effectively pull the tag reflection toward the signal subspace. The intuition
is that a modulated signal is incoherent with static multipath signals (such as LoS path) over time. Let us define
the wireless channel at time 𝑡 , subcarrier 𝑓 and antenna 𝑠 as:

𝐻 (𝑡, 𝑓 , 𝑠) =
𝐿∑
𝑙=1

𝑋𝑙 (𝑡, 𝑓 , 𝑠) + 𝑁 (𝑡, 𝑓 , 𝑠) (2)

=

𝐿∑
𝑙=1

Γ𝑙 (𝑡, 𝑓 , 𝑠)𝑒−𝑗2𝜋 𝑓 𝜏𝑙 (𝑡,𝑓 ,𝑠) + 𝑁 (𝑡, 𝑓 , 𝑠) (3)

where 𝐿 is the total number of multipath components, 𝑋𝑙 is the received signal, and Γ𝑙 and 𝜏𝑙 are the complex
attenuation and propagation delay of the 𝑙𝑡ℎ path, respectively. By classifying multipath signals into static group
𝐿𝑠 and modulated group 𝐿𝑚 , the received signal can be divided to:

𝐻 (𝑡, 𝑓 , 𝑠) =
∑
𝑙𝑠 ∈𝐿𝑠

𝑋𝑙𝑠 (𝑡, 𝑓 , 𝑠) +
∑

𝑙𝑚 ∈𝐿𝑚

𝑋𝑙𝑚 (𝑡, 𝑓 , 𝑠). ∗ 𝑟𝑒𝑐𝑡 (𝑡) + 𝑁 (𝑡, 𝑓 , 𝑠) (4)

where 𝑟𝑒𝑐𝑡 (𝑡) represents the square-wave nature of the tag modulation. Without loss of generality, let us consider
two packets with different modulation states. So, the signal measurements of these two packets can be written as
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Fig. 4. Tag modulation increases the signal subspace eigenvalues which indicates the rank increase of the signal covariance
matrix.

a linear combination of the same steering vectors derived from 𝐿 paths, but linearly independent complex gains:

[𝐻1 𝐻2] = [𝑒−𝑗2𝜋 𝑓 𝜏1 , 𝑒−𝑗2𝜋 𝑓 𝜏2 , ..., 𝑒−𝑗2𝜋 𝑓 𝜏1𝑠+𝑙𝑚 ]︸                                       ︷︷                                       ︸
same steering vectors

×



Γ1 Γ1
. .

. .

Γ1𝑠 Γ1𝑠
Γ1𝑠+1 0
. 0

Γ𝑙𝑠+1𝑚 0

︸          ︷︷          ︸
Linearly independent gains

(5)

Therefore, the two packets with different modulation states will create incoherent measurements of the signal
over time, so we can potentially use signal averaging over multipath packets to boost the SNR. However, a simple
averaging and correlation does not work due to sampling frequency offset across WiFi packets. To address this
issue, TagFi combines SNR boost and tag detection by applying a MUSIC-based technique explained in the next
section.

Asynchronous Modulation. TagFi’s design choice is to keep the tag as simple as possible to minimize the cost
and energy consumption. Therefore, we let the tag to blindly modulate and backscatter the WiFi packets as they
come, and will deal with decoding these asynchronous measurements at the WiFi receiver. The basic idea is that
the tag repeatedly toggles its internal impedance using a fixed modulation rate as well as a fixed length of code,
which are both known to the WiFi receiver. The receiver periodically searches for the tag by collecting packets
for a time window larger than the tag’s modulation period. This enables concurrent localization of a tag from
different WiFi receivers. However, there is a trade off between tag’s power requirements, modulation rate and
the required scan time which are further discussed in Section 3.7. For the rest of this section, we first present our
system by assuming a single active tag and then discuss how it can be generalized for multiple tags.

3.2 Discovering Backscatter Signal
In the previous section, we see that the tag modulation combined with signal averaging effectively decorrelates
the tag signal from other multipath signals and pulls the tag reflection above the noise floor. The model presented
in equation 5 creates the basis for applying sub-space methods like MUSIC [37], which are derived from signal and
noise eigenvector estimates. Hence, combining signal measurements from multiple transmitting and receiving
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Fig. 5. Tag modulation combined with the adapted sub-space method recovers tag reflection.

antennas across multiple packets creates a new measurement matrix 𝕏 as:

𝕏 = [ ®𝐻1 ®𝐻2 ... ®𝐻𝑃 ] , ®𝐻𝑝 = [𝑥𝑃1,1 ... 𝑥
𝑝

𝑀,𝑁
]𝑇 (6)

𝑥𝑚,𝑛 =

𝐿∑
𝑖=1

Γ𝑖 (𝑒−𝑗2𝜋 (𝑚−1)𝑑 sin(\𝑖 )/_ × 𝑒−𝑗2𝜋 (𝑛−1)𝑑
′ sin(𝜑𝑖 )/_) (7)

where ®𝐻𝑝 is the CSI measurements of the 𝑝𝑡ℎ packet across𝑀 receiving antennas and 𝑁 transmitting antennas,
𝑑 and 𝑑 ′ are the distances between receiving and transmitting antennas, respectively. MUSIC-based algorithms
perform eigenstructure analysis on the covariance matrix 𝑅𝕏 of the 𝑃 CSI samples as:

𝑅𝕏 = E[𝕏𝕏𝐻 ] = 1
𝑃
[ ®𝐻1 ®𝐻2 ... ®𝐻𝑃 ]


®𝐻 ∗
1
®𝐻 ∗
2
...

®𝐻 ∗
𝑃

 =
1
𝑃

𝑃∑
𝑖=1

®𝐻𝑖
®𝐻 ∗
𝑖 (8)

, which in fact averages the covariance of the signal across modulated packets. Figure 4 compares the 10 largest
eigenvalues of 𝑅𝕏 for 1000 packets in two scenarios: (1) the tag is constantly on but not modulating (2) the tag is
constantly modulating. The significant increase of the second eigenvalue indicates the increase of the matrix
rank in the averaging process and therefore the projection of the tag reflection on signal subspace.
To separate the tag reflection from multipath signals, we adapt the super-resolution algorithms [23, 42] to

estimate the geometrical parameters of multipath signals. These parameters include (1) the direction at which the
signal is leaving the transmitter (known as AoD), (2) the direction at which the backscattered signal is arriving
from the tag to the WiFi receiver (known as AoA), and (3) the relative Time of Flight (ToF) of the tag’s reflection
with respect to the LoS. It should be noted that commodity WiFi devices suffer from random phase offset due to
sampling time offset (STO) and packet detection delay (PDD), which result in large ToF errors. We adapt the
conventional ToF sanitization algorithms [42], which remove a linear fit of the unwrapped phase shift across
subcarriers. However, this leaves only enough information to derive relative ToF between multipaths. In the next
section, we demonstrate that the relative ToF is sufficient for localizing the tag. So from now on, whenever we
refer to ToF, it can be substituted with relative ToF without loss of generality. It should be noted that these phase
offsets are constant across antennas of a device due to internal time synchronization of local oscillators, so they
do not affect AoA or AoD measurements.
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However, there are several challenges in applying MUSIC to our context. First, except the modulated backscatter
signal, the other multipath signals are highly correlated as they share the same signal source. This degrades the
rank of the covariance matrix and results in spurious peaks due to random merging of coherent multipath signals.
It should be noted that the conventional MUSIC algorithm uses smoothing techniques [39] to deal with high
multipath correlations, however, here we intentionally skip this step and leverage the natural incoherency of the
tag reflection from other multipath signals. So, to deal with spurious paths, we need to carefully filter out these
false peaks and select the peaks corresponding to the LoS and tag reflection paths. To address this challenge,
unlike the standard form of MUSIC that relies on the orthogonality of noise subspace and signal measurements,
we alternatively exploit the signal subspace which carries the tag modulation. Given 𝐿 multipath signals, the
eigenvectors corresponding to the 𝐿 largest eigenvalues create the signal subspace 𝐸𝑆 = [®𝑒1, ..., ®𝑒𝐿] for which the
subspace correlation will be maximized at the path geometry:

𝑆𝑢𝑏𝐶𝑜𝑟𝑟 (𝐸𝑠 , 𝐴(\, 𝜑, 𝜏)) =
𝐴(\, 𝜑, 𝜏)𝐻 𝐸𝑆𝐸

𝐻
𝑆
𝐴(\, 𝜑, 𝜏)

𝐴(\, 𝜑, 𝜏) 𝐴(\, 𝜑, 𝜏)𝐻
(9)

where ®𝐴(\, 𝜑, 𝜏) is the path steering vector. Figure 5 shows the effectiveness of tag modulation in shifting the
tag reflection toward the signal subspace, which is, consequently detectable by our adapted MUSIC algorithm.
In addition, the joint estimation of AoA, AoD, and ToF allows us to create a larger sensor array. For example,
measurements from 3 receiving antennas, 3 transmitting antennas and 30 subcarriers create a sensor array with
270 elements, which is significantly larger than the number of dominant paths in an indoor space. Combined
with the joint-estimation signal processing techniques [45], we can further push the resolution and accuracy,
from typical raw sample resolution of 7.5m for a 40Mhz bandwidth [53] to degree-level and sub-meter resolution
[42, 51].

Another challenge is that strong multipath signals such as the LoS path can shadow over weaker paths specially
if they are closely spaced, thus degrading the resolution of the super-resolution algorithm. This is specifically
problematic in our case as the tag reflection is much weaker than the LoS path or even static reflectors in the
environment. To address this issue, we apply MUSIC in an iterative manner. In each iteration, we first remove
the projection of already resolved paths from both the signal subspace and steering matrix and then perform
another MUSIC search to find the next path, which will be the global maxima over the modified signal subspace.
Therefore, if the signal is dominated by one path (such as the LoS path), it will be removed from the signal
subspace after an iteration, thus enabling the detection of weaker paths such as the tag reflection. The orthogonal
projection matrix of a vector space 𝐴 is calculated as

𝑃𝐴 = 1 −𝐴(𝐴𝐻𝐴)−1𝐴𝐻 (10)
The number of iterations in this process is defined by 𝐿, the expected number of paths and accordingly the size
of the signal spaces. We use the eigen-value thresholding heuristics proposed for sub-space algorithms to define
𝐿 [45]. We note that the above algorithm is similar to [34], which localizes dipoles in the human brain from EEG
and MEG measurements. TagFi uses an extension of a similar process in the AoA, AoD, and ToF dimensional
space.

3.3 Dealing with Various Multipaths
After resolving the parameters of multipath signals, TagFi’s next step is to identify the tag reflection among all
resolved multipath signals. This is particularly challenging in the presence of both static and dynamic paths.
To this end, TagFi employs the incoherent relationship of the tag’s modulating reflection and static paths to
distinguish it from other static paths such as reflections from walls and furniture, and uses the unique modulating
pattern of the tag reflection to distinguish it from other dynamic paths. The details are explained in the following
sections.
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Fig. 6. TagFi extracts candidate tag paths by comparing the resolved paths from concatenated packets in a sequence vs.
individual packets.

3.3.1 Selecting Candidate Tag Reflections. To identify which resolved path represents the parameters of the
backscatter signal, TagFi first employs the unique feature of the tag reflection which is its modulation. As
mentioned before, the backscatter signal is the only multipath component that is modulated across WiFi packets
and it is only detectable if these packets are concatenated in the super-resolution algorithm. So, a candidate
tag reflection is a path that is resolved from packet concatenations, but not the individual packets. The main
challenge is that this process may confuse tag reflections with dynamic paths such as reflections from a mobile
person or object. So, in this step, we first separate the list of candidate tag reflections and then filter out the
mobile paths.
Let assume a sequence of 𝑃 modulated packets. The geometric parameters of Φ = {\𝑙 , 𝜑𝑙 } are estimated for 𝐿

paths using this ensemble of the packets and the proposed adapted MUSIC. Then, TagFi finds this parameter set
for each individual packet by applying the adapted MUSIC on single ®𝐻𝑝 , which results in a set of resolved paths
as ⋃

𝑝∈𝑃

⋃
𝑙 ∈𝐿 (𝑝 )

{\ ′
𝑙
, 𝜑 ′

𝑙
} (11)

As shown in Figure 6, TagFi then matches the parameters of different packets and extracts the unique elements
of the above set through a clustering algorithm. This will eliminate the spurious paths resolved due to signal
distortions. Then, the candidate backscatter signals are extracted by calculating the relative complement of the
cluster centroids Z = {\ ′𝑐 , 𝜑 ′

𝑐 }, Z ∈ C derived from individual packets with respect to elements of Φ:

Φ \ Z = { {\𝑙 , 𝜑𝑙 } | 𝑙 ∈ 𝐿 𝑎𝑛𝑑 {\𝑙 , 𝜑𝑙 } ± Y ∉ C } (12)

Y is the threshold used to account for the noise in measurements and the estimation variances and is set to 3° in our
current implementation. It should be noted that TagFi assumes that the candidate backscatter paths are first-order
reflections. In practice, there are usually more than one multipath signal incident at the tag as the emitted signal
reflects off of objects before arriving at the tag. Similarly, the signal backscattered by the tag bounces off of objects
and reaches the receiver along multiple paths. However, the second-order reflections are significantly attenuated
and won’t be among the 6-8 dominant paths resolved by the super-resolution algorithms [42].
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Fig. 7. Localization using AoA and AoD of the tag
reflection and LoS path

Fig. 8. TagFi uses the correlation of the steering vector and
CSI of each packet to find the modulation code.

3.3.2 Mobile Path Filtration. In practice, it is necessary for a tag localization system to work robustly in a dynamic
environment with people moving around. However, movement of a person introduces Doppler frequency on the
reflected signal from the body, which changes the length of the path over time. This makes the mobile paths
incoherent with the static paths as well as the backscatter signal, so it can be mistakenly selected as a candidate
backscatter signal in the previous step. TagFi handles these cases by employing 𝑣 sequences of 𝑃 modulated
packets and a clustering technique on their corresponding candidate tag reflections. The intuition is that the AoA
and AoD of the backscatter signal have smaller variations over time compared to falsely resolved or mobile paths.
TagFi first applies a K-means clustering algorithm on the collective candidate paths extracted for 𝑣 sequence of
𝑃 packets. Then it calculates the maximum density of each cluster using a bivariate Kernel Density Estimator
(KDE) with a Gaussian kernel, which fits a 2 dimensional spatial probability density function to each cluster. The
cluster with the highest density will be eventually determined as the backscatter path.
Mobility of The Tag orWiFi Devices: In mobile scenarios such as when a handheld device (e.g. tablet or laptop)
is used as the WiFi reader/receiver or the user carries the tag while moving, all multipath signals experience
Doppler shift, thus degrading the incoherence of the modulated backscatter signal with other paths. However,
this is only problematic when the modulation frequency and the Doppler frequency fall on the same range. Given
the typical walking velocity of 1m/s [3], we avoid this issue by selecting the tag modulation period between 5ms
to 10ms. Therefore, the tag modulation has enough separation from potential Doppler shifts of other multipath
signals.

3.4 Localizing the Target Tag

TagFi localizes the tag with the derived AoA and AoD of the backscatter path along with the ones for the LoS
path between the WiFi transmitter and receiver. It defines the LoS path to be the path with the shortest ToF value
since it does not go under any reflection before reaching the receiver. It is worth noting that commodity WiFi
radios can only estimate the relative ToF between multipath signals due to the sampling frequency offset (SFO)
and sampling time offset (STO) caused by lack of time synchronization between the two nodes. However, the
relative ToF is sufficient for determining the LoS path from other reflections.

As shown in Figure 7, the LoS signal transmits with the AoD of 𝜑1, propagates a distance 𝑎, and arrives at the
receiver with the AoA of \1. Similarly, the backscatter path from the tag has left the WiFi transmitter with the
AoD of 𝜑2 and arrives at the WiFi receiver with AoA of \2. Given these values, we denote the locations of the tag,
WiFi transmitter, and receiver as (𝑥,𝑦), (𝑥𝑡 , 𝑦𝑡 ), and (0, 0). The tag’s location with respect to the receiver is then
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derived from the intersection of the semi-ellipse determined by the range and the semi-line determined by AoAs:

𝑥 =
𝑎 sin(𝜑1 − 𝜑2) cos\2
sin(𝜑2 + 𝜑1 + \1 − \2)

, 𝑦 =
𝑎 sin(𝜑1 − 𝜑2) sin\2
sin(𝜑2 + 𝜑1 + \1 − \2)

(13)

where 𝑎 =

√
𝑥2𝑡 + 𝑦2𝑡 and is either known to the receiver or jointly estimated with the tag location using Multipath

Triangulation [42]. It should be noted that Multipath Triangulation proposed in [42] jointly localizes the WiFi
devices and a reflection surface. So by adapting a similar technique, we can jointly localize the WiFi transceivers
as well as the the tag relative to the receiver without requiring any apriori knowledge of the distance between
the two WiFi devices. This is further evaluated in Section 3.4 and the end to end localization algorithm is shown
in pseudo code in Algorithm 1.

In the case of having multiple WiFi transmitters in the monitoring area, we can further improve the localization
performance by solving the following optimization problem:

𝑎𝑟𝑔𝑚𝑖𝑛

𝑄∑
𝑖=1

(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 (14)

where 𝑄 is the number of WiFi transmitters. It should be noted that this is only for further improvements in case
more than one transmitter is available. TagFi works properly with a single pair of WiFi transmitter and receiver.

Algorithm 1: TagFi Localization Algorithm
Data: CSI Measurement at the WiFi receiver
Result: Location of the tag
initialization;
for each packet 𝑖 ∈ 1, 2, ...𝑃 do

- Sanitize CSI phase response from offsets using procedure in [42].
- Append the vectorized CSI to measurement matrix 𝑋 as in Equation 7.

end
Compute signal eigen values 𝐸𝑠 of 𝑋𝑋𝐻

for paths 𝑖 ∈ 1, 2, ...𝐿 do
- Calculate the orthogonal projection of 𝑖 − 1 estimated paths 𝑃𝐴 = 1 −𝐴(𝐴𝐻𝐴)−1𝐴𝐻 , 𝐴 = [𝐴1, ...𝐴𝑖−1]
where, 𝐴(\, 𝜑, 𝜏) is the steering vector of estimated paths with AoA \ , AoD 𝜑 , and rToF 𝜏 with unit
attenuation.

- Evaluate RAP-MUSIC spectrum 𝑠𝑢𝑏𝑐𝑜𝑟𝑟 (𝐸 ′
𝑠 , 𝐴

′) = (𝐴′)𝐻𝐸′
𝑠 (𝐸′

𝑠 )𝐻𝐴′

𝐴′ (𝐴′)𝐻 , where 𝐸 ′
𝑠 = 𝐸𝑠𝑃𝐴, 𝐴

′ = 𝑃𝐴𝐴

- Obtain AoA, AoD, rToF of multipath component 𝑖 as 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑠𝑢𝑏𝑐𝑜𝑟𝑟 )
- Append the steering vector of the new paths 𝐴𝑖 to 𝐴

end
- Declare the direct path between WiFi transceivers as the path with shortest rToF
- Cluster AoAs and AoD, from multiple packets of the remaining resolved peaks
- Select the cluster with highest probability density as the backscatter path
- Minimize objective in Equation 14 and solve for the tag’s x,y location relative to the WiFi receiver.

3.5 TagFi PHY Design
Each tag has a unique modulation code consisting of a balanced sequence of 0s and 1s that defines when to
toggle the switch’s impedance. The tag periodically switches the internal impedance using this code and a fixed
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period to stay in each state. TagFi identifies each tag by decoding the received backscatter signal. To extract
this modulation code, TagFi first computes the steering vector ®𝑎(\𝑏, 𝜑𝑏) corresponding to the tag’s reflection
path. The steering vector defines the expected phase shifts across the transmitting and receiving antenna arrays,
given the tag’s AoA and AoD extracted in the previous steps. Then, it finds the tag’s state during each packet by
computing the correlation of the tag’s steering vector with the CSI of every packet in a sequence. We expect this
correlation to be higher for packets with the tag in reflective mode since the corresponding steering vector is
contained within the signal subspace. As such, we define a thresholding mechanism on the following correlation
function

𝐶𝑜𝑟𝑟𝑝 =

®𝑎(\𝑏, 𝜑𝑏) × ®𝐻𝑝

 , 𝑝 = [1, 2, ..., 𝑃] (15)

where ®𝐻𝑝 is the CSI of the 𝑝𝑡ℎ packet. If 𝐶𝑜𝑟𝑟𝑝 is greater than 𝑇𝑟𝑒𝑠𝑐 , the modulation mode (or the code bit) is
determined as 1 (or reflective) for that packet and 0 (or non-reflective) otherwise. We define threshold𝑇𝑟𝑒𝑠𝑐 to be
` ± 𝜎 , where ` and 𝜎 are the mean and standard deviation of 𝐶𝑜𝑟𝑟𝑝 across the 𝑃 packets. To filter out the noisy
estimates, the correlations that fall between ` − 𝜎 and ` + 𝜎 are ignored.

However, the extracted code bits do not map directly to the tag’s ID. First of all, the WiFi network is known for
its bursty behavior, so the number of WiFi packets affected by each modulation state will be different over time.
Second, there is no synchronization between the tag modulation and WiFi devices, so we don’t know at what
position the sequence becomes periodic. To address these challenges, TagFi first uses the timestamp information
from the packet header to define the relative position of the code bits. Then, it temporally localizes the edges by
looking at the differential between sequential code bits. As shown in Figure 8, TagFi divides the period between
two sequential edges by the expected modulation period to calculate the modulation sequence. As mentioned
before, the duration that the tag stays in one mode (known as modulation period) is adapted to the packet rate of
the WiFi network and is known to the WiFi receiver. Finally, TagFi searches for a periodic code of known length
to find the tag’s ID.

3.6 TagFi MAC Design
Existing WiFi backscatter systems implement MAC-layer techniques and wake-up procedures for supporting
multiple access as well as handshaking with the tag to initiate backscattering. However, in the presence of a
wake-up protocol, the WiFi transmitter (e.g the WiFi access point), the receiver (the user’s handheld device) and
the tag need to coordinate together and synchronize the procedure. However, this is not going to be compatible
with current WiFi infrastructure and requires modification in the pre-existing WiFi access points. To address this
issue, we adapt a fully asynchronous model, in which the tag is blindly backscattering the ambient WiFi traffic in
favor of simple and ultra-low power tag design. Then, the WiFi receiver sniffs packets transmitted from any WiFi
access point or other devices in the room and analyzes the signal locally to extract the piggybacked tag reflection
on top of ongoing WiFi packets.
However, such asynchronous protocol requires the tag to constantly perform the switching, which could

potentially drain battery faster in long term. TagFi uses two tricks to avoid this potential issue. First, TagFi’s
tag adapts a slow switching rate at the expense of longer scan time. The intuition is that RF switches usually
have extremely low static power consumption and only draw significant power when changing the state. So, the
WiFi receiver, which is fully powered, can scan for a longer period to capture enough samples for tag detection
and localization. Our empirical analyses based on the average size of packets and the WiFi packet rate show
that a minimum modulation period of 5𝑚𝑠 (equal to modulation rate of 200𝐻𝑧) provides the best performance in
practice. More detailed analysis on tag’s power consumption is provided in Section 4.2. In addition, to further
reduce the power consumption as well as scaling TagFi to multi-tag scenarios, we adapt a pulse-width modulation
(PWM) for our coding scheme, in which each tag selects a modulation frequency that corresponds to different
number of consecutive 0s and 1s (as shown in Figure 9a). This essentially reduces the number of switch toggling

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 1, Article 34. Publication date: March 2021.



TagFi: Locating Ultra-Low Power WiFi Tags Using Unmodified WiFi Infrastructure • 34:15

(a) Frequency-based coding scheme (b) Codes correlations

(c) Incoherent reflections of multiple tags

Fig. 9. TagFi leverages a (a) frequency-based coding scheme. (b) The low cross correlation of the codes and (c) the resulting
incoherent reflections enables TagFi to differentiate multiple active tags from each other.

at the tag specially at longer code lengths, while providing low cross-correlation between different tags (Figure
9b). In the next section, we discuss how this coding scheme affects the localization delay in multi-tag scenarios.

3.7 Concurrent Operation
TagFi’s asynchronous architecture supports both multiple tag and multiple reader operations at the expense of
slightly higher delay in localization.
Multiple Tags: One of the important improvements of TagFi over conventional RFID or WiFi-based localization
systems is its potential to localize multiple tags simultaneously. The key intuition is that the backscatter signals
of different modulations not only are incoherent with the other multipath signals, but also incoherent with each
other. So, by assigning unique modulation schemes to each tag, we can separate their reflections from each other
even when operating concurrently. While there are different coding schemes that can be used here (e.g. Gold
codes, PN codes, etc), we define the ID of each code based on their switching rate as shown in Figure 9a. In this
scheme, the period of each bit is fixed and common between all tags (here defined as 5 ms) and the switching rate
is controlled by the number of consecutive 1s and 0s. The low cross-correlation of the codes (shown in Figure
9b) allows us to distinguish reflections from concurrently active tags even without synchronization. To better
explain this capability, let’s say there are two active tags with the modulations of 1010 and 11001100, where “1”
means the tag is in the reflective mode and “0” indicates the non-reflective mode. Without loss of generality, let
us assume there is only the line-of-sight path and the backscatter signals from the tag. As shown in Figure 9c,
different modulation modes of the two tags create different signal superpositions across packets with linearly
independent coefficient gains, thus resulting in incoherent paths.
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Fig. 10. Two prototypes of TagFi’s tag (a) using off-the-shelf components, and (b) a custom design with (c) the radiation
pattern of the on-board PCB antenna.

Even though such semi-orthogonal codes provide the desired separation between different tags, the code
length is linearly proportional to the number of active tags, which could result in increasing delay in localization.
To provide a ballpark estimate of this delay, let us consider 10 active tags in the vicinity of a WiFi receiver. We
require 20 bits to define 10 unique orthogonal codes, representing each tag’s ID and let’s consider five repetitions
of the code for mobile path filtration (explained in Section 3.3.2). So, the receiver’s scan time for localizing 10
tags will be on the order of 5𝑚𝑠 (𝑚𝑜𝑑 𝑝𝑒𝑟𝑖𝑜𝑑) × 20(𝑐𝑜𝑑𝑒 𝑙𝑒𝑛) × 5(𝑐𝑜𝑑𝑒 𝑟𝑒𝑝) = 0.5 seconds. It should be noted that
the tag identification resolution is also dependent to the receiver’s multipath resolution capabilities. Given the
number of antennas and subcarriers available in commodity WiFi devices, our empirical studies show that TagFi
requires at least 20-50 cm distance separation between tags to be able to distinguish them from each other. This
effect is further studied in Sec. 5.4.
Multiple Readers can co-exist: In our setup, any WiFi-enabled device that is equipped with multiple antennas
can act as the reader – each perhaps serving different applications. With recent developments in MIMO com-
munication, most personal devices including laptops, tablets, and even some smartphone models are equipped
with multiple antennas. In addition, given the inherent shared medium of wireless channels, any WiFi receiver
in the vicinity of the access point can sniff and collect the broadcasting packets and estimate the CSI matrices.
Each device can operate independently and locally, computing the location of the tags. We note that our system
can piggyback on pre-existing WiFi traffic in the network without necessarily injecting new traffic or any
communication overhead. Our system also does not affect the reception quality of ongoing WiFi transmissions,
since reflections from TagFi tags can effectively be modeled as signal multipath – much like reflections from
other surfaces (e.g. walls, furniture) that are automatically compensated for by WiFi receivers.

4 EVALUATION

4.1 Prototype Implementation
We developed multiple prototypes of the WiFi tag, shown in Figure 10. Our first design uses off-the-shelf
components such as an IDT-F2977EVBI1 RF switch evaluation kit that is connected to a 5 𝐺𝐻𝑧 WiFi antenna, a
50Ω termination and a short circuit termination to emulate “reflective/non-reflective" states. It should be noted
that the tag does not need a WiFi transceiver as it passively backscatters the available WiFi signals. Next, we

1https://www.idt.com/document/dst/f2977-datasheet-rev-o
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Fig. 11. TagFi’s tag consumes an average power of
11.74𝑢𝑊 at 100𝐻𝑧 switching rate.

Fig. 12. Experimental Setup

prototype the on-board antenna design and RF circuitry using a high-isolation Analog Devices HMC849ALP4CERF
RF switch2. The antenna is designed to have high gain on 5GHz WiFi band. The gain pattern of the antenna
(Figure 10-C) shows that it has a uniform directivity over the upper hemisphere. In our final prototype, we focus
on lowering power consumption while maintaining similar detection performance. This tag design uses a CEL
CG2415 low-power RF switch 3 and a TI MSP430G2210 low-power microcontroller4 (MCU) to control the switch.
This MCU does not use an external oscillator and can thus save significant power while maintaining RAM and
peripheral states as the MCU core is sleeping.
Our WiFi transmitter and receiver are Intel NUCs equipped with Intel 5300 NIC. We install Linux 802.11n

CSI tool [16] in the receiver to collect CSI measurements from 3-element antenna arrays at each of the WiFi
transmitter and receiver, and 30 frequency subcarriers. Devices are set to work in monitor mode using channel 128
at 5.63𝐺𝐻𝑧 frequency with a 40𝑀𝐻𝑧 bandwidth, and MIMO-OFDM spatial multiplexing mode. The transmission
rate of packets is set to 3000 𝐻𝑧.

4.2 Tag Power Consumption
The CEL CG2415 RF switch in our final tag prototype was selected for its power and ability to function at 6
GHz. A power trace from this prototype was captured on a Keysight DC power analyzer and is shown in Fig.
11. Both the MCU and the RF switch in this design have extremely low static power consumption i.e. the tag
only draws significant power when the MCU has to wake up, process the next state and change the state of the
RF switch. Normally, the MCU remains in a low-power sleep mode with an internal low-power low-frequency
oscillator running (LPM3) and the RF switch maintaining it’s reflective or non-reflective state. Periodically, an
interrupt will fire on the MCU indicating that it is time to change the state of the RF switch. The entire process of
waking up the MCU, computing the next tag state and changing the state of the RF switch takes around 50 `s and
consumes 0.042 `J of energy per switching cycle. Thus, the overall power consumption of the tag is dependent
on the number of switch state changes. For a rate of 25, 50, 100, 200 state changes per sec, we end up with an
amortized power consumption of 8.5, 9.6, 11.7 and 16.0 `W. We estimate that this tag could operate on a 3V
CR2032 lithium coin cell for 6.7, 6.0, 4.9, 3.6 years respectively, assuming an efficiency of 75 %. Alternatively,
this amount of power can easily be supplied by a number of energy harvesting systems in existing literature. A
well-placed bank of bypass capacitors would deal with any problems that might occur in the energy harvesting

2https://www.analog.com/en/products/hmc849a.html
3http://www.cel.com/pdf/datasheets/CG2415M6.pdf
4http://www.ti.com/product/MSP430G2210
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system due to the 1 mW peak power consumption. We should note that the energy harvesting implementation is
outside of the scope of this paper.

4.3 Experimental Setup
We deploy our system in a regular office building that spans an area of 12 × 30𝑚, as illustrated in Figure 12, in
the presence of 1-5 occupants and a lot of furniture and electrical equipment with rich multipath propagation.
We place the transmitter-receiver pair in 5 different locations, shown in Figure 12, and place the tag in random
locations for a total of 51 test spots. In addition, for any tested location in Figure 12, we collect CSI measurements
in both directions and estimate the location of the tag for both communication directions, which results in a
total of 102 different experimental scenarios. In each experiment, 1000 packets are transmitted with a 3𝑚𝑠 time
interval and the tag modulates constantly using 1010 code with the rate of 100𝐻𝑧. The main results are calculated
based on the sequences of 10 modulated packets (time window of 30𝑚𝑠) and the impact of the number of packets
on localization is discussed in Section 5.3.
We obtain the ground truth AoA, AoD, and tag locations with a combination of laser range finder and

construction protractor as well as an Aruco-marker and camera for mobile experiments. Note that the previous
WiFi-based tag localization systems either use frequency shifting [24], or require specialized WiFi helpers to
communicate with the tag [57], none of which is compatible with our setup. Instead, we compare TagFi with
MonoLoco [42], which is the state-of-the-art single-point localization system based on active WiFi radios. In
Monoloco, the target is equipped with an activeWiFi transmitter instead of a passive tag as in TagFi. Therefore, the
localization algorithm is estimating the direct path parameters instead of the reflection. However, this technique
is closest to our algorithm in terms of only requiring a single receiver with no triangulation or coordination
between multiple anchor points. We also compare the performance of TagFi under two situations: when (1) the
distance between the WiFi AP and the WiFi receiver is known (such as scenarios where two APs or one AP and
a fixed WiFi device in the room are used for localization), and (2) the distance of the AP and WiFi receive is
unknown (such as when the handheld devices are used to find the object of interest in a new environment).

4.4 Evaluation Overview
We deployed TagFi at different locations in various rich-multipath environments. Here is a summary of the main
results from the evaluation.

• TagFi achieves similar localization accuracy as MonoLoco, which requires an active WiFi radio at the object
of interest. TagFi’s median localization error is 30cm without requiring an active radio at the tag, by only
using a single WiFi receiver and without knowing the relative distance of the WiFi transmitter and receiver.

• TagFi is capable of localizing multiple tags simultaneously with minimal performance degradation as
opposed to the time-multiplexing mechanism used in RFID or other WiFi backscattering systems. For cases
with close-by tags, the median localization accuracy drops to 43cm with a 90th percentile below 1m. A
snapshot of multi-tag localization performance is shown in Figure 2c.

• In challenging conditions such as a dynamic environment where the tag is blocked from the WiFi reader
or in the case of a mobile device, TagFi’s performance does degrade, however, it still provides useful
localization accuracy within 0.7 to 0.95m. Such errors can be compensated by integrating measurements
over time as shown in Figure 21a.

• Compatibility of TagFi with commodity WiFi devices as well as its single-point localization capabilities
enable a ubiquitous and deployable platform for object tracking and localization with AR-enhanced
visualization (shown in Figure 2b).
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(a) Benchmark setup (b) Tag is continuously on (c) Tag is modulating
(d) CSI of the two modula-
tion modes

Fig. 13. Benchmark experiments. The tag reflection with AoA and AoD of 0° is only detectable when the tag starts modulating
the WiFi packets by switching between reflective/non-reflective modes. This is despite the fact that no obvious variation can
be observed in the raw CSI values as the tag modulation changes.

4.5 Benchmark Verification
We first verify the key innovation of TagFi, which is utilizing path modulation for eliminating the coherence of the
backscatter signal with other multipath reflections. We place a pair of WiFi transceivers in an empty environment
at proximity of 1 meter to each other, shown in Figure 13a. The tag is equipped with a 10 dBi directional antenna5,
to enforce a stronger reflection for better visualization, and is placed between the transmitter and receiver in a
position that creates a backscatter path with AoA and AoD of 0° for verification. First, we switch the tag into
“reflective" mode, so a backscattered path is expected from the transmitter to the tag to the receiver. However,
we can see in Figure 13b that only one cluster of AoA-AoDs is obtained, which corresponds to the strong LoS
path between the transmitter and receiver. The tag’s reflection is not detected in this case due to significant
attenuation.

Next, the tag modulates the backscatter signal by continuously switching the antenna between reflective and
non-reflective modes. We can see in Figure 13c that two clusters of AoA-AoDs are derived in this case: one
belongs to the LoS path and the other belongs to the backscatter path. The AoA and AoD of the new derived path
are clustered at 0°, matching the angles of the tag. This confirms the mathematical formulations presented in
Section 3.1 and the expected rank increase in the system of equations due to the backscatter modulation. Finally,
Figure 13d demonstrates that this approach effectively detects the tag reflection even though there is no obvious
change in the raw CSI values as the tag switches the modulation mode. This confirms the importance of this
realization and the significant improvement over the state-of-the-art WiFi backscattering techniques [21] that
rely on the changes of the raw CSI amplitude to extract the modulated information.

4.6 Tag Localization Accuracy
We evaluate TagFi localization accuracy by deploying the system in two spaces of 12 × 13𝑚 and 12 × 18𝑚 with
rich multipath propagation that replicates the scenarios used for evaluation of state-of-the-art systems like [5].
It should be noted that the experiments of this paper are conducted in the presence of moving people, which
confirms the robustness of TagFi in dynamic environments. We first place the tag at each of the tested locations
shown in Figure 12. we also vary the location of the TX-RX link throughout the evaluation area between locations
1-5. For each tag location shown in blue, the closest TX-RX link localizes the tag. Since the detection range of the
tag is constrained by the power of the backscattered signal, we discard instances where the tag does not respond
and will analyze the tag detection rate later in Section 4.7.
5Alfa APA-M25 dual band 2.4GHz/5GHz 10dBi high gain directional indoor panel antenna with RP-SMA connector
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Fig. 14. TagFi can achieve median error
of 17 and 30 cm in tag localization with
and without knowing the WiFi trans-
mitter’s location, respectively.

Fig. 15. The detection rate decreases
from 100% in 1m to 50% in 8m dis-
tance from the links.

Fig. 16. TagFi identifies the tag
modulation code with 100% accu-
racy in 1-3m to 80% in 5-8m.

(a) (b)

Fig. 17. The high performance of TagFi in tag localization is the result of the high-resolution AoA and AoD estimations.

Figure 14 shows the CDF of TagFi’s localization error in two cases: (1) the location of the transmitter is known
to WiFi receiver or estimated using a separate localization system (2) the WiFi receiver jointly localizes both the
tag and WiFi transmitter using multipath triangulation [42]. TagFi can achieve a median error of 17𝑐𝑚 and 30𝑐𝑚,
as well as 80𝑡ℎ percentile errors of 62𝑐𝑚 and 1.3𝑚 in cases 1 and 2, respectively. As expected, the localization
error of transmitter adds to the error of the tag location system. However, these results are comparable to
state-of-the-art WiFi-based tag localization systems that use multiple APs and frequency shifting [5, 24]. In
addition, TagFi’s localization performance is comparable with MonoLoco that uses an active WiFi transmitter at
the target. Theoretically, MonoLoco should have achieved higher accuracy because the signal to noise ratio of
the signal from an active transmitter is much higher than a passive backscatter tag. However, Monoloco uses an
arbitrary reflection in the environment combined with the direct path to achieve single-point localization, as
opposed to TagFi which leverages the reflection from tag with known modulation pattern. So this allows TagFi to
achieve a similar performance as MonoLoco in similar setups. In addition, the primary reason behind the high
performance of TagFi is its ability to separate the backscatter signal from multipath interferences. Generally, the
tag localization accuracy depends on several factors including the profile of multipath propagation, the distance
from WiFi link, and the presence of obstacles, which are studied in the next sections.
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4.7 Tag Detection Range
To test the working range of TagFi, we first fix the tag-to-TX distance at 0.7𝑚, while varying the tag-to-RX
distance, and vice versa. Figure 15 shows the tag detection rate with respect to its distance from the WiFi
transmitter and receiver. As the tag moves away from the WiFi transmitter, the detection rate decreases from
100% in 1𝑚 to 53% in 8𝑚 distance. Similarly, as the tag moves away from the WiFi receiver, the tag detection
rate decreases from 100% to 50% in 1𝑚 and 8𝑚 distances, respectively. Theoretically, the power loss of a radio
signal is proportional to the inverse square of the distance, so as the length of the backscattered signal increases,
it undergoes more attenuation and a smaller fraction of the signal arrives at the receiver along the backscatter
path. In general, TagFi has smaller localization range compared to frequency shifting tags due to higher in-band
interference between the backscatter signal and the LoS path. We consciously sacrifice range to improve ease of
deployment and practicality of the localization system.

We can also see that the detectability of the tag is more sensitive to the tag’s proximity from the WiFi receiver,
so we can ensure high detection performance by maintaining a clean direct path between the tag and the WiFi
receiver. This requirement can be fairly satisfied in regular office buildings, considering that there are usually
multiple WiFi devices locating in different rooms. In addition, TagFi only requires a single WiFi receiver to locate
the tag with no additional coordination with any other devices. So to locate a tag in practice, the smart building
controller will inquiry all WiFi devices, they independently eavesdrop the transmitted packets and apply TagFi.
So, we can expect that the WiFi device in the vicinity of the tag to accurately locate it, which compensates for
the limited range of the system.
We also evaluate the performance of TagFi in extracting the tag’s modulation code. As shown in Figure 16,

the tag identification accuracy starts from 100% in ranges between 1-3m and degrades to 80% for ranges as large
as 5 to 8 meters.

5 SENSITIVITY ANALYSIS

5.1 AoA-AoD Estimation Accuracy
We measure the accuracy of AoA and AoD estimations using the absolute difference between the ground truth
and estimated values for both the backscatter path and the LoS path between WiFi transceivers. Figure 17a shows
the CDF of the AoA estimation errors. TagFi can achieve median errors of 7° and 5° and 80𝑡ℎ percentile of 10°
and 13° for the LoS and backscatter paths, respectively. In addition, Figure 17b shows the performance of AoD
estimations, for which TagFi achieves median accuracy of 6° and 5° for the LoS and backscatter paths, respectively.
The 80𝑡ℎ percentile accuracy of AoD estimations degrades to 10° and 18°. These results are comparable to WiTag’s
performance [24], which also reports a median accuracy of 7° to 14° in AoA estimation. The key point is that
TagFi achieves similar accuracy without requiring to shift the frequency of backscatter signal or a high-power
circuitry in the tag.
As can be seen in Figure 17, the LoS estimates in both the AoA and AoD CDFs have shorter tails compared

to the ones for the backscatter path. Since a higher signal power propagates along the LoS path, the angular
estimates are more accurate for this path. Another factor affecting the performance of super-resolution algorithms
is the direction of the incident signals. We expect a higher estimation error is expected as the incident angle of
the signal approaches the angle of the array. For example, when the direction of the backscatter signal is close to
90°, it is hard to identify the direction since similar phase differences will be introduced across the antennas for
both 90° − Y and −90° + Y for 0° ≤ Y ≤ 20°. In our current experiments, the majority of the tag positions (78%)
create a backscattered signal at AoAs or AoDs larger than 40°, which results in a higher super-resolution error
for the backscatter signal. This though is a limitation of the linear antenna arrays and can be addressed by using
circular antenna arrays in future extensions of TagFi. Finally, the relative angle between the LoS path and the
tag reflection can affect TagFi’s performance. The smaller this relative angle is, the higher localization error
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Fig. 18. Tag detection rate for different TX-RX locations. Fig. 19. Tag range improves by integrating more packets.

is expected as it is limited by the angular resolution of the super-resolution algorithm as well as the narrow
geometry of the multipath triangle created by the two paths. However, our analyses show that TagFi still achieves
0.73𝑚 localization accuracy even when the relative angle of the two paths are as small as 10 degree. This can be
further improved as the user walks around the space, creating different multipath triangles.

5.2 Impact of TX-RX Location
Next, we evaluate the effects of the WiFi link location on detecting the tag’s backscatter signal. In each location,
we place the WiFi transmitter and receiver such that they are 0.7 to 6𝑚 away from each other. The WiFi link
locations are shown as 1-5 in Figure 12. For each tag location shown in blue, the closest TX-RX link to the tag
performs the localization. We see in Figure 18 that the probability of detecting the tag is changing from 98%
in location 1 to 60% for location 5. The main factors affecting these variations are a combination of destruc-
tive/constructive interference and the distance of the tag from the WiFi link. For example, in locations 3 and
4, the tag is located between cluttered tables and multiple electronic and metallic items, creating rich multipath
propagation, which results in lower detection rate. In addition, in location 5, the tag is located in longer ranges
from the WiFi transmitter and receiver, for which the strong LoS path between the WiFi transmitter and receiver
swamps the backscatter signal, making the tag detection more challenging. In more practical setups, the user
can walk around with the WiFi receiver to collect more spatially diverse measurements over time.

5.3 Effect of Number of Modulated Packets
TagFi primarily relies on the modulation of the tag reflection to identify this weak backscatter signal from complex
multipath propagations. So, receiving WiFi packets with different modulation modes is critical for achieving high
accuracy in tag localization. Figure 19 measures the tag detection rate for different number of packets grouped
based on the Euclidean distance of the estimated tag and tx-rx link. Utilizing more packets improves the range
by filtering the noise in measurements. However, our analyses show that the number of packets has minimal
impact on localization accuracy, which means our adapted super-resolution algorithm can accurately extract the
geometry of the tag as long as the backscatter signal is above the noise floor.

5.4 Multi-tag Performance
TagFi asynchronous MAC protocol allows the WiFi receiver to localize multiple tags at the same time. We evaluate
this by placing three different tags in a small indoor space in different ranges from each other (from 20cm to
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(a) Multiple tags (b) Dynamic environment

Fig. 20. TagFi can robustly identify and locate multiple active tags, even in dynamic and multipath-rich environments.

(a) Ranging output with a mobile device (b) 2D tracking with TagFi

Fig. 21. Snapshots of TagFi’s localization output used in tracking applications.

1m). We vary the number of active tags from 1 to 3. In all of these experiments, the transmitter and receiver
where 5m apart in two corners of the room (showed in Figure 2a). A snapshot of the tags locations is shown
in Figure 2c. In each experiment, we look for any number of active tags in the collected data and estimate the
location of the detected tags. Figure 20a shows the median localization accuracy in each of these setups. We
see that the accuracy slightly reduces from 20cm to 43cm when 3 tags are active. We found that most of the
errors with additional tags occur when they are co-located and hence very close to each other. This is due to the
limited aperture of WiFi devices in resolving nearby paths. This can be addressed by using signal measurements
from multiple locations (when the user slightly moves the WiFi receiver) or through tracking approaches (an
additional layer that could be done as future work). It should be noted that TagFi can simultaneously estimate
the relative location of the WiFi receiver with respect to the AP as well as the location of the tag with respect
to the WiFi receiver (leveraging Multipath Triangulation [42]). This demonstrates that we can localize without
needing to know the distance between the WiFi receiver and the AP.
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5.5 Impact of Mobility
The single-point localization capabilities of TagFi makes it a perfect object localization approach in any arbitrary
environments that may not have a localization infrastructure in place (e.g. public and shared places such as
hotels, restaurants, AirBnB, and guest homes). The user only requires a personal WiFi device like a tablet or
laptop associated with the access point in the building and a tag attached to their objects of interest. However,
robustness of TagFi against various multipaths and mobility scenarios is essential for such applications. So, we
evaluated the performance of TagFi in different mobility scenarios including different environment dynamics
with moving people creating various multipaths as well as mobility of the WiFi receiver itself.

5.5.1 Dynamic Environment. We conducted indoor experiments in a rich-multipath environment when the
tag is approximately 5m away from the WiFi receiver and have one or two people walking very close to tag
and sometimes blocking the LoS. As shown in Figure 20b, we notice negligible impact on TagFi’s localization
performance even in such mobility scenarios. However, the tag is missed a few times in the blockage scenarios as
the reception of the direct path is essential for detecting and locating the tag. However, such missed detections
can be easily handled by integrating measurements across multiple packets in more crowded areas. To show
this, we used 100 packets instead of 10 packets in the experiment with 2 people walking in the LoS. The average
localization accuracy improved from 78cm to 41cm, showing the effectiveness of larger time integration in highly
dynamic environments. This is mainly due to the clustering techniques defined in Section 3.3.2 for differentiating
tag reflection from mobile paths.

5.5.2 Mobile WiFi Devices. Next, we evaluated the performance of TagFi for a mobile client such as when a
user locates an object from her handheld devices such as tablet or laptop. We perform several experiments while
the tag and WiFi access points are fixed and the WiFi receiver walks toward the tag, walks away, or moves
randomly in the space. To calculate the ground truth, we use a camera co-located with the WiFi receiver and an
Aruco-marker co-located with the tag. We see that TagFi can achieve an average accuracy of 17cm with 90𝑡ℎ
percentile of 61cm even with a mobile client as a result of tag’s high switching rate (every 5ms) compared to the
typical walking velocity. Figure 21a depicts a snapshot of user’s walking trace and range estimates compared
with the ground truth and Figure 21b shows the 2D tracking capability of TagFi in mobile scenarios.

5.6 Effect of Interfering WiFi Traffic
In spite of the previous backscattering systems such as RFID that rely on a sequence of handshaking protocol
between the tag and the reader, TagFi performs localization by double purposing the on-going data packets. This
is specifically possible since any commodity WiFi receiver can collect CSI data by just sniffing the broadcasting
packets from an AP. In addition, the asynchronous MAC protocol of TagFi allows the WiFi receiver to locate
the tag without requiring any explicit coordination between the tag and WiFi transceivers, injecting any new
traffic or any communication overhead. In addition, TagFi does not affect the reception quality of ongoing WiFi
transmission, since tag reflection can effective be modeled as a multipath signal similar to reflections from other
surfaces such as walls or furniture. We evaluated this effect by comparing the average packet loss of our network
when the tag is on and off. Our analyses show that 99.3% of the packets transmitted in the conducted experiments
has been received properly during the tag modulation. This is comparable to the packet delivery rate of our
wireless network without an active tag ( 99.4%). This is mainly because the tag reflection is considerably weaker
than the typical indoor multipaths. As shown in Figure 13d, the modulation of the backscatter signal has minimal
impact on the raw CSI values so it does not really interfere with existing WiFi traffic.
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6 APPLICATIONS
TagFi’s core advantage is its ease of deployability and compatibility with pre-existing WiFi infrastructure. Any
WiFi device that is equipped with multiple antennas can be converted to a tag reader without requiring new
localization infrastructure in place. Contrast this with state-of-the-art RFID-based localization solutions that
require expensive and complex sensor deployment, or Bluetooth-based solutions that require frequent battery
exchange. In terms of versatility, the numerous applications of RFID localization also apply to TagFi, with TagFi
having the added benefit of running on pre-existing WiFi infrastructure. This leads a new paradigm of converting
commodity WiFi devices into sensing hubs can enable rapidly deployable IoT sensing applications. Some of these
applications are presented as follows.
Object Finding in Arbitrary Environments: The aforementioned features of TagFi allows us to build a
ubiquitous localization ecosystem for any object, powered or battery-free, with or without WiFi radios, and in any
arbitrary environment such as hotels, restaurants, or AirBnBs with no pre-installed localization infrastructure.
So, if the occupants are looking for an object (e.g. keys, toys, tools, etc), they can just use their personal WiFi
devices paired with the access point in the room to find and locate it relative to their personal device, without
requiring any extra information such as the layout of the building or the location of the WiFi access point in
the room. TagFi enables such an automated ecosystem with only software updates in all devices involved and
minimal deployment effort.
Augmented Reality: TagFi is a natural fit to improve context-awareness for augmented reality. Several AR
helmets are already WiFi enabled and can therefore serve as WiFi access points to search for TagFi tags in the
environment. These could serve as beacons for calibration or object tagging, much akin to how April Tags are
used today [49], with the added advantage of not requiring the tag to be in direct field-of-view of the AR helmet.
Tracking Wearables and the Body: Similar to RFID, different interference algorithms can be built on top of
TagFi’s object tracking and localization. When tracking wearable devices equipped with TagFi tags, one can
enable applications ranging from behavioral monitoring, activity or gesture recognition, fall detection in elderly
monitoring, etc. TagFi’s ability to perform single-point localization and compatibility with commodity WiFi
devices, allows us to enable such services in any environment without pre-installed sensing infrastructure.

7 DISCUSSION
In this section, we discuss future extensions of TagFi and mechanisms to relax assumptions made in our current
implementation of the system.
Operating range: In our current implementation, we show that TagFi can operate up to ranges of 6-8 m, while
achieving sub-meter accuracy. However, some applications such as asset tracking in industrial contexts may
require longer range operations and higher resolution, especially in dense deployments. This paper provides a
proof of concept deployment for seamless WiFi backscatter localization and there are several potential avenues
for range and resolution improvement in future work. Specifically, our work can naturally benefit from recent
advances and emerging technologies in wireless systems (e.g. 802.11ac, WiFi 6, larger antenna arrays, and massive
MIMO). These remain fully compatible with our architecture and can result in higher accuracy and resolution
owing to their larger bandwidth (e.g. 160MHz in 802.11ac), higher sampling rate, and larger number of antennas
available. In addition, the operating range of the tag can be improved by increasing the radar-cross section (RCS)
of the tag’s antenna and the differential RCS between the two states of the tag. We believe this can be achieved
with innovations on the antenna design and low-loss RF circuitry at the tag.
3D Localization: TagFi currently localizes the tag in the 2D space. This is a theoretical limitation of single-point
localization systems with planer antenna arrays (e.g. TagFi or MonoLoco). However, by relaxing one of these
two assumptions, 3D localization can be achieved such as leveraging triangulation between multiple receivers,
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3D antenna arrays at the WiFi receiver, or leveraging the motion of the tag/WiFi receiver. However, for our
application set (finding and searching for objects of interest), 2D localization is still useful to provide room-level
localization.
Impact of Blockage: TagFi assumes a direct path from the WiFi transmitter to the tag to the WiFi receiver. As a
result, the performance of TagFi degrades in the case of complete tag blockage. However, we see in Section 5.5.1
that temporary blockages due to human motion or environment dynamics can be compensated by combining
temporal estimates. This is a long-standing challenge in object localization systems which share this limitation
and localizing tags under complete blockage of the direct reflection continues to be an open problem.
Robustness to CertainOrientations: The current implementation of TagFi assumes linearly polarized antennas
on the WiFi transceivers and the tag, so detecting the tag reflection at certain orientations are more challenging.
However, this can be simply addressed by adapting a circularly polarized antenna at the tag without requiring
any modification on the localization algorithm. We leave this extension and a thorough study of free tag motion
in 3D space for future work.
High Mobility: We evaluate our system on different mobility scenarios such as a highly dynamic environment
with various mobile users as well as mobile clients as WiFi reader and demonstrate that TagFi is fairly robust in
these scenarios. By additional post-processing or tracking techniques such as Particle or Kalman filters, temporal
measurements can be better integrated to further improve TagFi for highly mobile scenarios and extend it to
other applications such as gesture recognition. It should be noted that such techniques are widely studied in the
radio backscatter and RFID domains, and these also apply to our tag design.
Scalability: TagFi requires multiple antennas on both the WiFi transmitter and receiver. In our applications,
we assume the WiFi transmitter is the WiFi Access Point inside the room and the WiFi receiver/reader is a
WiFi-enabled device, either static or handheld, that is equipped with an antenna array. With the ubiquity of
MIMO technology in communication, most of the WiFi devices such as laptops, tablets, smart appliances and
even newer models of smart phones do have multiple antennas. However, small devices such as smart watches
or certain types of older phones cannot be used as WiFi readers since they typically have only one antenna.
Nevertheless, TagFi requires multiple antennas to enable single-point localization and localizing targets from a
single vantage point through a single antenna device continues to be an open problem. It should be noted that
TagFi is compatible with any array configuration and does not necessarily need a linear antenna array.

In addition, the current coding scheme of the tag is designed for home and personal use cases that cover tens
of objects spread in a room-size area. To scale this system to a larger number of closely-spaced tags, for contexts
such as asset tracking in warehouses or super-markets, we suggest the use of PN codes at the tag that offers
improved collision resilience and scalability, albeit with additional implementation complexity at the tag.

8 CONCLUSION AND FUTURE WORK
This paper presents TagFi, a novel WiFi-based tag localization system that leverages the passive wireless reflection
from an ultra-low-power tag. The key innovation of TagFi is its unique mechanism to extract the weak tag
reflection from complex multipath propagations in indoor environments. TagFi shows that modulating the
backscatter path across WiFi packets eliminates the coherence of this signal with other multipaths, enabling
super-resolution algorithms to estimate the parameters of the backscatter signal. Unlike frequency-shifting tags,
TagFi allows the WiFi transmitter, receiver, and the tag to operate on one common frequency as is typical in
WiFi, thus improving the practicality of WiFi backscatter localization. In addition, the proposed asynchronous
ultra-low power architecture of TagFi can be applied beyond WiFi. In our future work, we plan to scale TagFi
to higher frequency ranges and ultra wideband radios.
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