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ABSTRACT
LoRa is a popular Low-Power Wide-Area Networking (LP-

WAN) technology that allows devices powered by a ten year

AA battery to connect to radio infrastructure miles away.

One of the most promising features of LoRa is the ability to

track the location of radios from a distance, enabling applica-

tions ranging from inventory tracking, smart infrastructure

monitoring and structural health sensing. Yet, state-of-the-

art LoRa localization systems experience errors of several

tens or even hundreds of meters in location tracking, owing

to the narrow bandwidth and limited battery life of LoRa

devices.

This paper presents OwLL, a LoRa localization system that

limits location error to few meters with commodity LoRa

clients in a wide-area network. Our key innovation is the

development of a distributed base station network made of

individually low-cost components that together span a wide

bandwidth that encompasses the TV whitespaces and offers

high aperture, crucial to localization accuracy. We demon-

strate how this network can aggregate signal measurements

made across multiple different narrowband channels of a

LoRa client to triangulate it at fine accuracy. We implement

and evaluate OwLL on a testbed spanning a large university

campus centered in a major U.S. city and demonstrate a 9 m

(across line-of-sight and non-line-of-sight) median error in

localization.
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1 INTRODUCTION
Low Power Wide Area Networks (LP-WANs) are touted to

provide long range ubiquitous connectivity for everyday

devices with a AA battery. One such LP-WAN technology

is LoRa that aims to enable IoT devices to send data at a

few kbps to a base station several kilometers away while

maintaining a 10 year battery life. An important vision with

which LoRa was designed was to provide accurate asset

tracking solutions with high accuracy in urban environments

enabling many applications such as wide-area inventory

tracking, infrastructure monitoring, and structural health

sensing. Yet, there remains a gap in the literature for a LoRa

localization system which can provide enough accuracy to

realize this vision.

While there have been several attempts in both academia

and industry to build LoRa localization solutions [17, 27, 34],

they have achieved accuracy in tens or even hundreds of

meters, depending on topography and testbed size. A key cul-

prit behind this low accuracy is LoRa’s narrow bandwidth–

125 KHz–which only allows for range resolution of more

than a kilometer (with the traditional 𝑐/𝐵 resolution being

2.4 km). Indeed, this low bandwidth rules out most types of

localization approaches which have worked well for other

technologies – time [45], time-difference of arrival [32, 49]

and phase-based location tracking systems [21, 22]. In addi-

tion, traditional RSSI or fingerprinting systems [32] prove

challenging to deploy at high accuracy in the wide-area con-

text due to channel dynamics, multipath and the large area

of coverage.

https://doi.org/10.1145/3412382.3458263
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Figure 1: OwLL enables accurate outdoor LoRa local-
ization using TV whitespace bands. We use a TDOA
based approach where a LoRa client hops multiple
frequencies spanning a wide bandwidth at TV whites-
paces and ISM bands

This paper presents OwLL
1
– a LoRa localization system

which can provide high localization accuracy (∼9 meters)

over long range using off-the-shelf commodity LoRa radios.

Our approach circumvents the low-bandwidth of LoRa by

stitching together channel responses at multiple TV white-

space and ISM frequency bands. We show how we can piece

together samples of wireless spectrum available in these fre-

quencies to improve the effective range resolution of LoRa

and achieve resilience against multipath. We deploy a net-

work of software radio base stations that operate on the TV

whitespaces based on FCC experimental licenses available to

us. Future commodity LoRa base stations which support ISM

and TV whitespace bands would not require these experi-

mental licenses. Our system deployment achieves 9 meters

median accuracy across both line-of-sight and non-line-of-

sight contexts which is a considerable improvement over

state-of-the-art LoRa localization approaches (∼ 50m)[27].

OwLL’s fundamental approach is to give the illusion that

the infrastructure is a network of wideband and perfectly

phase synchronized base stations whose antennas are geo-

distributed to collectively span a wide area. This effective

geo-distributed antenna array can now measure signals re-

ceived from any low-power LoRa client to measure phase

difference across its antennas, which loosely can be trans-

lated to time-difference-of-arrival when measured across

multiple frequencies spanning the wide bandwidth. The time-

difference-of-arrival can then be measured across the wide-

band geo-distributed antenna array to trilaterate the LoRa

device in the cloud. In order to realize such a system, we have

to overcome two critical challenges: (1) We need to create the

illusion of the presence of wideband radios using low-cost

1
Outdoor whitespace-band LoRa Localization

client and base station hardware; (2) We need to develop

a distributed phase synchronized array of base stations to

mitigate the impact of signal multipath, especially blockages

in city environments.

EmulatingWide Bandwidth in LP-WAN: A OwLL client

performs frequency hopping on new TV whitespaces so that

the channels can be stitched together at the base station.

However, designing base stations that listen across wide

bandwidths of the order of a GHz would significantly in-

crease cost. A more practical solution is to make narrowband

base stations hop along with the client to frequencies on

which the client transmits. This fits in very naturally with

the design of LoRa as the base stations can feedback this fre-

quency information to the client during acknowledgement

packets. While the notion of stitching many narrow band

frequencies to emulate wide bandwidth has been explored

in other contexts (e.g. WiFi [45] and RF backscatter [30]),

the LP-WAN context brings unique challenges. Specifically,

LoRa packets are extremely narrowband (125 kHz), long (up

to seconds each) and energy consuming, meaning that the

act of hopping through all frequencies in the whitespaces is

both time and energy-draining.

To tackle this problem OwLL performs an extensive out-

door experimental study and discovers that sampling LoRa

packets at small number of carefully chosen frequencies re-

sults in highly accurate localization. We believe this stems

from the fact that even while multipath outdoors is rich, it

tends to have a sparse number of dominant paths that can be

discovered from sparse sampling of the spectrum [13]. We

then develop a search space exploration system running in

the cloud that iteratively instructs clients to hop frequency

bands and actively learns which frequency bands to next ex-

plore and maximize localization accuracy. We demonstrate

that our approach achieves significant savings in time and

energy, with minimal impact on localization accuracy. We

further show how our system is designed to be compati-

ble with FCC regulations on access to TV whitespaces and

respects the presence of incumbents.

EmulatingDistributedArrays in LP-WAN:Our approach
leverages the aperture provided by wide bandwidth to ac-

curately localize clients outdoors. A key challenge is signal

multipath which could often cause the line-of-sight path

to disappear. While some multipath resilience is offered by

the wide bandwidth of our system, dealing with blocked

line-of-sight paths in urban contexts is a major challenge.

Our observation is that while the line-of-sight paths could

often be blocked, they are unlikely to completely disappear

across a large number of antennas, each spanning a wide

aperture in terms of bandwidth at sub-GHz frequencies. In

addition, certain large, dominant reflectors in the environ-

ment (e.g. buildings) are likely to affect multiple clients in a
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predictable manner that allows them to be weeded out of con-

sideration. We present a particle filter inspired optimization

problem that explores consistency in the wireless channels

measured from diverse locations to weed out reflected signal

paths and identify the direct path to at least some locations

in the environment. We further tackle various challenges

pertaining to efficient phase synchronization of LoRa base

stations to emulate distributed arrays.

Limitations: (1) OwLL targets localization of quasi-static

devices and is not designed for moving objects owing to

the need for clients to frequency hop and the slow data

rates of LoRa. This should not pose a problem for most LoRa

deployments that are quasi-static (e.g. sensor networks). (2)

The evaluation of this paper is restricted to localization in

2-D space and primarily outdoors, where social distancing

is easier. This is due to COVID-19 related university campus

access restrictions that limited access to multiple buildings

and high vantage points. (3) Like most wireless localization

systems, our system struggles under extreme occlusion, e.g.

deep indoors or underground, where all line-of-sight paths

are completely obscured across frequencies.

Implementation and Evaluation: We implement OwLL

onUSRPN210 base stations and off-the-shelf Semtech SX1262

radios as LP-WAN clients. These clients enable us to hop

across a wide spectrum ranging from 500 MHz to 960 MHz.

We hold experimental FCC licenses to operate on the TV

whitespace bands across all our hardware. We evaluate the

system on a testbed spanning 66,000 sq.m. at Carnegie Mel-

lon University campus in Pittsburgh. We also evaluate our

system in the presence of occlusions due to buildings, trees

and topography that obscure line-of-sight. Our results reveal

the following:

• A median error in time-difference of arrival of 3.6 and

14.8 meters respectively in line-of-sight and non-line-

of-sight environments

• A median error in localization of 3.9 and 15.7 meters

respectively in line-of-sight and non-line-of-sight en-

vironments

• Time and energy savings of 67% compared to exhaus-

tive sampling of available frequencies.

Contributions : This paper’s contributions are as follows:

• The development of the first accurate localization sys-

tem in whitespace frequencies that operates on com-

modity LoRa devices and achieves an accuracy of 9

meters.

• An approach that treats diverse base stations as a wide-

band distributed array, withminimal overhead in terms

of battery life of client devices.

• A detailed experimental evaluation on a large neigh-

borhood of a city, demonstrating high performance.

2 RELATEDWORK
Low-PowerWide-AreaNetworks: Recent years have wit-
nessed accelerated growth in the field of Low Power Wide

Area Networks (LP-WANs) [14] encompassing various imple-

mentations and protocols, both proprietary and open source,

supported by various hardware platforms. While cellular

providers use standards like LTE-M [16] and NB-IoT [35] for

low-power IoT communication in licensed spectrum, compa-

nies like Semtech [1, 40] and SigFox [37] focus more on uti-

lizing unlicensed spectrum including the available channels

in the TV whitespaces [12], thereby improving the spectral

availability. Hence, even though the former offers better data

rates, MAC sophistication, and better features for routing,

firmware broadcast, etc., the latter offers a cheaper and a

battery efficient solution for larger city scale deployments.

Localization: As the number of deployed IoT clients has in-

creased, there has been a rising interest in leveraging LPWAN

technologies for real time tracking and tagging of objects.

As localization accuracy is a pre-requisite for these applica-

tions, there have been extensive research done in the field

of localization – both indoor and outdoor systems, satisfy-

ing different constraints on power, range, cost, multi-path

resilience, etc. Based on these constraints, a simple classifica-

tion on RF-localization systems can be done. This is captured

in Table. 1. A key observation across technologies is that

there remains a gap for a solution that is simultaneously

accurate, long-range (i.e., operates over hundreds of meters)

and low-power (i.e., supports a 10-year battery life).

Long range systems with high accuracy: Till date, global
positioning systems (GPS) dominate in the category of ex-

isting long range localization systems in terms of accuracy.

However, a key disadvantage of GPS is its power consump-

tion. Military grade GPS systems are expensive with high

power consumption – restricting its reach across smaller

devices. Also, off-the-shelf GPS chips which consume about

the same power as Semtech LoRa devices would incur extra

energy and hardware costs if deployed on an already energy

constrained IoT device leading to significant drop in bat-

tery life. Cost-effective positioning systems involving Blue-

tooth [7, 19, 26] andWiFi [22, 45, 47] provide low power local-

ization with centimeter level accuracy, but are constrained in

their range. Systems for sensor positioning [15, 38], wildlife

tracking [5, 29] and LP-WAN based systems [17, 24, 25, 27],

operate over long distances at low-power outdoors, yet are

highly susceptible to multipath effects, thereby losing accu-

racy in urban environments. Most LoRa based localization

approaches have leveraged extensive RSSI + Fingerprinting

Datasets [3, 9, 11] with some of them being restricted to the-

oretical evaluation [31, 42, 43] or are evaluated indoors[18]
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Papers Features
Class Range Low Accuracy

Power
[22, 45, 47] WiFi 12-15m - < 50 cm

[7, 19, 26] Bluetooth <10m ✓ ≈ 100 cm

[23, 41] Cellular 35-60m X ≈ 85 cm

[4, 15] Sensor-

based

≈ 50m ✓ ≈ 3-5 m

[29, 46] Wildlife

Track-

ing

500m+ ✓ 15-24m

[28, 30, 48] Back-

scatter

tens of m ✓ < 50 cm

[2, 33] Prior LP-

WAN

500 m+ ✓ 100s of m

OwLL LP-

WANs

500 m+ ✓ ≈ 9 m

Table 1: Comparison of Related Work

Figure 2: OwLL iteratively requests client trans-
missions at specific frequencies to localize accu-
rately at low power.

or outdoors in very controlled setting[36]. Using only times-

tamping or RSSI based approaches [2, 33], demonstrate rela-

tively high errors in estimating the location of the client.

Indeed, there remains a gap for accurate RF-based posi-

tioning that spans outdoor spaces that is suited to low-power

wide-area networks.

3 OVERVIEW OF OWLL
OwLL aims to achieve a few meters of localization accuracy

using commodity LoRa radios. Our choice of system design

is motivated by two important constraints: (1) First, we seek

to be compatible with commodity LoRa clients. This will

allow our system to be deployed at scale on existing LoRa

deployments; (2) Second, we do not seek to build complex

multi-antenna base stations, since these antennas would be

bulky and expensive to deploy at sub-GHz frequencies. In

other words, we seek to preserve the simplicity of LoRa

infrastructure that has been key to its adoption.

Our constraint on the simplicity of base stations leads

us to a natural design point – what if we can fuse multiple

individual base stations together to operate as one virtual

multi-antenna array. Specifically, we aim to develop algo-

rithms that synchronize distributed base stations in time,

frequency and phase. We further allow these base stations

to hop frequency bands without losing synchronization – ef-

fectively behaving as a wide band distributed array. We then

fuse signal measurements received on multiple frequency

bands from a commodity LoRa client to triangulate its loca-

tion. Our system will span frequencies starting from the TV

whitespaces through the unlicensed 915 MHz ISM band. The

resulting array has two desirable properties that are key to

achieving high localization accuracy: (1) It emulates wide

bandwidth that is key to accurate time-of-flight and there-

fore range estimates of the LoRa clients; (2) It achieves wide

spatial aperture owing to the significant spatial separation

between base stations, allowing for effective triangulation

of LoRa clients.

The rest of this paper describes two key components of

OwLL’s design that relate to the above two properties: how

do we achieve high bandwidth and coordinate distributed

base stations?

Emulating Wide Bandwidth: We first describe our ap-

proach to emulate wide bandwidths by frequency hopping

over available spectrum in the TV whitespace bands and 915

MHz ISM band. While there has been much literature on

frequency stitching in Wi-Fi, LoRa packets often last much

longer (∼seconds) and are energy constrained, meaning that

we would need to minimize this hopping. We also consider

the policy implications as well as the choice of frequencies in

the TV whitespaces needed to perform effective frequency

hopping to optimize for multipath resilience. Sec. 4 describes

our solution to these challenges.

Emulating Distributed Arrays: Next, we describe our so-
lution to deal with signal multipath, a common problem in

localization systems in general. We focus especially on block-

ages of the direct path in urban settings – demonstrating

how the distributed location of base stations, as well as an

effective modeling of multipath due to dominant reflectors,
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can help mitigate this problem to some degree. We also con-

sider challenges pertaining to phase synchronizing these

base stations. Sec. 5 describes our approach.

4 EMULATINGWIDE BANDWIDTH
The core idea of OwLL is to combine wide swaths of band-

widths available at the TV whitespaces to improve local-

ization accuracy of LoRa. We use phase information from

the I/Q samples received at 2 different base stations across

all frequencies to estimate the Time Difference of Arrival

(TDOA) between them, which in turn provides the location

of the client if extended to multiple such pairs. While the

notion of stitching together frequencies has been explored

in prior work in domains such as Wi-Fi [45], UWB [20] and

RFIDs [28], the LP-WAN context brings forth unique chal-

lenges and policy implications. We discuss these challenges

and our solutions to overcome them in this section.

4.1 Challenges unique to LP-WAN
The core challenge that makes frequency stitching challeng-

ing to implement on LP-WANs is that it can be quite expen-

sive in terms of both time and energy. This is in contrast to

Wi-Fi where hopping across all frequency bands can be effi-

ciently performed with tiny packets over a few milliseconds.

LP-WAN Packets are Long: First, LP-WAN packets are

much longer – often lasting seconds. This is not accidental –

it is designed as such to provide low data rate connectivity

at extended distances over which LP-WAN packets need

to be decoded from extremely battery-starved clients. This

means that simply transmitting short packets on any given

frequency band is latency-intensive.

LP-WAN Clients are Narrowband: Another challenge

that complicates the aforementioned problem is the fact that

LP-WAN clients are narrowband. This once again is by de-

sign, due to the battery-constraints of Low-power clients.

For instance, LoRa’s bandwidth is 125 kHz – a factor of 160×
smaller than that of Wi-Fi. A natural consequence of this low

bandwidth is the huge number of frequencies that need to

be hopped to span even a modest bandwidth (∼160 packets
for 20 MHz). This scales to an inordinately large number of

packets required to span the 400 MHz of frequency bands

available in the TV whitespaces.

LP-WAN Clients are Energy-Starved: A third challenge

that makes hopping difficult is that LP-WAN clients are

energy-starved. Prior work has shown that data transmission,

particularly transmission time is a critical power bottleneck

in LoRa sensor networks [10]. This means that the simple act

of hopping between frequency bands and transmitting short

packets, when repeated over many frequencies can quickly

lead to energy drain.

4.2 Can we Minimize Frequency Hopping?
The above challenges lead us to a simple conclusion: to per-

form localization in a both time and energy-efficient manner,

OwLL must minimize the number of frequencies that need

to be hopped. Thus, it is critical for OwLL to carefully se-

lect frequencies that provide the most bang for the buck –

i.e.maximize localization accuracywith theminimum
number of frequencies hopped. However, which subset

of frequencies need to be hopped to achieve this may vary

depending on the location of an LP-WAN radio and its en-

vironment. This leads us to a natural question: “how do we

choose which frequencies to hop to if we do not already

know where the radio is located in the first place?”.

A Strawman Solution: Prior to answering this question,

let us design a näive version of the frequency-hopping sys-

tem that relies on all frequencies available to OwLL, and

therefore can maximize localization accuracy. For simplicity,

we consider the case of estimating the Time-Difference of

Arrival (TDOA) between the signals received at two different

LP-WAN base stations from an LP-WAN client. We note that

should this time-difference be accurately calculated relative

to four or more base stations, the location of the client can be

accurately triangulated. We also assume in this section that

the clocks of the two LP-WAN base stations are perfectly

synchronized in time, frequency and phase – we explain how

this can be achieved later in Sec. 5.1.

Mathematically, let us estimate the time-of-flight between

two base stations that estimate wireless channels of ℎ1,𝑖 and

ℎ2,𝑖 (where 𝑖 = 1, . . . , 𝑁 ) respectively on a set of 𝑁 frequen-

cies among {𝑓1, . . . , 𝑓𝑛} that are uniformly spaced. We then

leverage the Bartlett algorithm [8], which effectively has the

structure of the Discrete Fourier transform to compute 𝑃 (𝜏),
the power of the signal component received corresponding

to a time-difference of arrival of 𝜏 :

𝑃 (𝜏) =
𝑛∑
𝑖=1

ℎ1,𝑖ℎ
∗
2,𝑖𝑒
−2𝜋 𝑓𝑖𝜏

We note that the above 𝑃 (𝜏) function could peak at multiple

time-difference of arrival values due to signal multipath –

a topic we discuss in Sec. 5.2. Clearly however, the above

formulation does assume that frequencies are uniformly sep-

arated and finely sampled. If they are not, this would cause

artifacts such as spurious peaks that would appear in the 𝑃 (𝜏)
profile due to aliasing, when frequencies are not sufficiently

separated. It should be noted that to maximize accuracy, one

should choose as many frequencies that are available – both

finely sampled and measured across a wide bandwidth. Un-

fortunately, this remains impractical in the real world for two

reasons: (1) First, hopping all frequencies across 400 MHz



IPSN ’21, May 18–21, 2021, Nashville, TN, USA

Figure 3: Carefully hopping over a small fraction ( 20%)
of all frequencies leads to dramatic performance im-
provements.

bands would consume 3%
2
of client battery life and require

several minutes to hours making it latency-impractical. (2)

FCC rules only allow LoRa clients to utilize unutilized TV

whitespace bands. This means across the wide bandwidth,

OwLL client can only hop in a few frequency bands that

change every day and must be constantly monitored.

Does Sub-sampling Frequencies Work? A trivial opti-

mization on the above approach would then be to choose a

subset of frequencies to hop from the expansive list of fre-

quencies that may be available in the TV whitespaces. Of

course, in this case, we should not directly use the Discrete

Fourier Transform based Bartlett algorithm which would

cause unnecessary artifacts in 𝑃 (𝜏) due to the non-uniformity

of frequencies sampled. Instead, we would use the Non-

Uniform Discrete Fourier Transform (NDFT), an approach

that extends the Fourier Transform to non-uniform frequen-

cies and has been used in other localization contexts (e.g.

Wi-Fi [45]). The flavor of the NDFT algorithm we use that is

LoRa compatible is summarized in Algm. 1. Inherently, NDFT

removes artifacts by making an assumption that the number

of dominant multipath peaks in 𝑃 (𝜏) is sparse. Fortunately,
prior studies specific to LoRa have shown that this is indeed

the case [13] in urban outdoor testbeds, which means NDFT

could indeed hold promise.

We now empirically evaluate based on field measurements

in a large outdoor testbed (details of the testbed are described

in Sec. 7) consisting of two LP-WAN base stations and a client

moved across line-of-sight and non-line-of-sight locations.

We then choose a large number of random sub-samples

of these frequencies containing a different number of them

ranging from 10% through 90%. Note that the fraction is

only in relation to available bands, and not all bands in the

TV whitespaces (typically, about 30 MHz of total bandwidth

inter-spersed between 500 to 800MHz is available in our city).

2
Available Battery Energy: 2900 mAh; 125 kHz channels in 400 MHz: 3200;

Energy of a typical LoRa packet: 100 mAs; Battery spent: 3.06%

Algorithm 1: Algorithm to estimate TDOA

Input : h̃: Measured relative channels at selected

frequencies 𝑓𝑖
F : Non-Uniform DFT matrix such that

𝐹𝑖,𝑘 = 𝑒−𝑗2𝜋 𝑓𝑖𝜏𝑘 for some set of 𝜏𝑘
𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥 : range of sparsity parameter

𝛼 𝜖 : 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

Initialize 𝛾 = 1

∥𝐹 ∥2
2

;

while 𝛼 < 𝛼𝑚𝑎𝑥 do
Initialize p0 to a random value,

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 = 𝑓 𝑎𝑙𝑠𝑒 , 𝑡 = 0;

while ∥pt+1 − pt∥2 > 𝜖 do
pt+1 = pt − 𝛾𝐹 ∗ (𝐹pt − h̃) with values < 𝛾𝛼

zeroed;

𝑡 = 𝑡 + 1;
𝑛𝑢𝑚𝑏𝑒𝑟𝑝𝑒𝑎𝑘𝑠 = Number of peaks in pt+1;
if 𝑛𝑢𝑚𝑏𝑒𝑟𝑝𝑒𝑎𝑘𝑠 ≠ 1 then

Increase 𝛼 ;

else
return 𝜏𝑇𝐷𝑂𝐴 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑡

pt+1;

In each instance, we report the max accuracy across these

sub-samples. Fig. 3 plots the accuracy achieved in estimat-

ing time-difference of arrival vs. the fraction of frequencies

chosen (%) among the entire range of available frequencies.

Our experiments reveal two surprising results:

• Sampling a small number of frequencies is sufficient:
First, we observe that sampling as few as 20% of all

available frequencies yields localization error that is

equivalent to the 75%ile error achieved across these

locations when all frequencies are used. This shows

that one can gain remarkable benefits in hopping la-

tency and energy overhead should we somehow know

which frequencies to hop in advance.

• Optimal Frequencies change over time: Second, we see
that these so-called optimal frequencies do not remain

static over time or across clients. We observe that

changes in the environment or client locations can

substantially change which frequencies are sampled.

This tells us that a static approach (∼ say uniformly

sub-sampled) to choose these frequencies would not

suffice.

Observation #1: Hopping a small fraction of available

frequencies suffices for accurate localization with mini-

mal loss, yet these optimal frequencies vary dynamically.
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Figure 4: OwLL’s approach to select initial frequen-
cies.

4.3 OwLL’s Frequency Hopping Design
Based on our observations in the previous section, our ap-

proach to localize a client in a time and energy-efficient

manner hinges on selecting this small set of optimal fre-

quencies instead of exhaustively sampling all possible fre-

quencies. Our approach must naturally be dynamic – i.e.

learn progressively which frequencies to hop based on prior

measurements. There is a natural exploration vs. exploita-

tion trade-off here however. To achieve better accuracy, we

need to explore as many frequencies as possible. However,

at some point, we do also need to terminate our algorithm to

report time-difference of arrival ( and in turn remain energy

efficient). To counter this problem, we design an iterative

maximum-likelihood algorithm which tries to progressively

glean on an increasingly clear view of multipath propagation

through the space to guide its choice of frequencies in an

environment-invariant manner.

An Iterative Approach to Model Multipath: OwLL’s al-

gorithm effectively seeks to build a model of signal multipath

based on measurements seen so far to then guide which mea-

surements to take next. (see Fig. 2). Initially, OwLL begins

with a small number (10% in our implementation) of initial

frequencies among our available frequencies (see Observa-

tions). We then run the NDFT algorithm ( Algm. 1) to obtain

a sparse set of candidate TDOA values and their correspond-

ing signal amplitudes and phases. Now, we identify the fact

that given the amplitudes and phases of these TDOA peaks,

there exists a frequency (𝑓𝑜𝑝𝑡 ) which, given this prior, would

amplify the peaks the most. The best case scenario would be

to transmit a packet at that 𝑓𝑜𝑝𝑡 , and only pick out the peaks

that get amplified (the ones that did not are likely spurious).

Unfortunately, this frequency 𝑓𝑜𝑝𝑡 is often not one of the

frequencies that we are allowed to transmit on (e.g. due to

incumbents or licensed users).

Thus, to select a frequency from within our spectrum

constraints we define a goodness metric which measures

how much a given frequency theoretically should amplify

our prior belief of the TDOA. In other words, should this

frequency be added to our pool of frequencies, it would max-

imize the amplitudes of TDOAs seen so far. We iterate over

all available frequencies and select a few (5% in our imple-

mentation) that maximize goodness. We then explore those

frequencies and validate whether the TDOAs discovered are

truly amplified, new peaks emerge or spurious peaks are

dampened. If the former occurs (to within a threshold), we

terminate – otherwise, we repeat the algorithm with newly

discovered peaks.

Mathematical Details: More formally, let us assume that

the result of the NDFT algorithm based on the channels

from the frequencies sampled so far ℎ𝑝𝑟𝑒𝑣 are a set of time

of flights 𝜏 and the corresponding amplitudes and phases

p. Should our NDFT algorithm be a good approximation

of our observed channels, the wireless channel at any new

frequency 𝑓 should be given by:

ℎ𝑝𝑟𝑒𝑑,𝑓 =
∑

𝛼 ∈p,𝜏 ∈𝜏
𝛼𝑒−2𝜋 𝑓 𝜏

We then define the goodness metric as the frequencies that

would truly maximize the powers at the peaks previously

observed, i.e.

goodness(𝑓 ) =
∑

𝛼 ∈p𝑓 ,𝑛𝑒𝑤
| |𝛼 | |2,

where pf,new ← 𝑁𝐷𝐹𝑇 (ℎ𝑝𝑟𝑒𝑣, ℎ𝑝𝑟𝑒𝑑,𝑓 )
We then pick the set of frequencies thatmaximize goodness(𝑓 )

and stop when the goodness measured from observed chan-

nels closely aligns (or exceeds) that of the predicted channels.

Algm. 2 summarizes our approach in greater detail.

Algorithm 2: Identify next frequency to be queried

®h𝑝𝑟𝑒𝑣 ,®p𝑝𝑟𝑒𝑣 :Current channels and current estimate of

TDOA

𝑓𝑜𝑝𝑡 :Next Frequency to be queried

∀𝑓 ∈ Unoccupied Frequency Bands

ℎ𝑝𝑟𝑒𝑑,𝑓 =
∑

𝛼 ∈p,𝜏 ∈𝜏 𝛼𝑒
−2𝜋 𝑓 𝜏

;

goodness(𝑓 ) = ∑
𝛼 ∈p𝑓 ,𝑛𝑒𝑤 | |𝛼 | |2

where pf,new ← 𝑁𝐷𝐹𝑇 (ℎ𝑝𝑟𝑒𝑣, ℎ𝑝𝑟𝑒𝑑,𝑓 ) ;
return 𝑓𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑓

goodness(f);

Compatibility with LoRa: We note that our system can

be designed without modifications to the LoRa protocol on

the client’s end. OwLL can provide the clients an initial set

of frequencies to hop with further suggestions on which



IPSN ’21, May 18–21, 2021, Nashville, TN, USA

frequencies to hop piggy-backed on acknowledgment pack-

ets. Note that all of this computation is performed at the

resource-rich cloud connected to the base stations and not

on the low-power client devices themselves.

Observations: A few points are worth noting:

• Choice of Initial Frequencies: A natural question one

might ask is if the system could be misled by a poor

choice of initial frequencies that mislead us with er-

roneous peaks. Further, the choice of these initial fre-

quencies cannot be highly environment specific. To

circumvent this, we require a minimum of extra 10%

frequencies to be hopped to ensure that our data is not

entirely dominated by our initial choices. Furthermore,

we provide a very intuitive approach to choose initial

frequencies which would be true for any environment.

We ensure that this choice of frequencies allows us

to fully span the desired range of TDOAs based on

testbed geometry. However, choosing frequencies that

are individually well separated could lead to aliasing,

where a measured channel leads to multiple TDOA

peaks due to 2𝜋 wraparound. This problem is particu-

larly acute outdoors where the range of possible TDOA

values can be large. However, this phenomenon can be

easily avoided by ensuring the set of frequencies also

include a few that are closely separated. How close

these frequencies should be is easily calculated using

the maximum TDOA value possible in the testbed ge-

ometry. We compare in Fig. 4 the different approaches

one can take to decide initial frequencies, including our

own which maximizes bandwidth while minimizing

aliasing amongst the various TDOA values.

• Energy and Time Overhead: Our results in Sec. 8.3 show
that in practice, we need to hop around 40 frequencies,

requiring 20% (∼ 20.97s) of time required by exhaus-

tive sampling to achieve roughly 75th percentile error

bound of our TDOA estimation, effectively increas-

ing energy efficiency by 66%. We note that the time

overhead is practical for most quasi-static LoRa deploy-

ments such as sensor networks, given the slow data

transmission rate of the LoRa protocol. Our system is

therefore limited to quasi-static LoRa localization.

4.4 TV Whitespace Policy Considerations
OwLL leverages 400 MHz of available bandwidth in the TV

whitespaces and ISM bands between 500 to 960 MHz. Thus,

it is critical to understand the implication of TV whitespace

policy on OwLL.

Hardware Compatibility: OwLL exploits readily avail-

able LoRa hardware that is increasingly allowing for support

on the TV whitespace bands. We use the SemTech SX-1262

client devices which operate in the TV whitespaces and have

native support for a wide frequency range from 150 MHz to

960 MHz. While effectively they traverse upto 800 MHz of

spectrum, FCC rules in US enable us to only leverage the va-

cant TV whitespace spectrum spanning from 500 to 960 MHz.

Our base stations are USRP N210 software radios to allow for

maximum flexibility in I/Q channel processing and we hold

FCC experimental licenses to operate these USRPs in the TV

whitespaces in the U.S. city where our network operates. We

believe that with recent SemTech hardware allowing for I/Q

channel measurement (e.g. SX1257), our approach can be ex-

tended to future commodity LoRa base station deployments

with no license requirements whatsoever.

Policy and Impact on System: We note that recent policy

changes to the TVwhitespaces [39] allow dedicated powered-

radios (e.g. base stations) to periodically (every day) check

the shared whitespace database on behalf of the clients to

check for and avoid incumbents. This eliminates the bur-

den from low-power clients to coordinate with the database.

It further aligns well with our design where base stations

guide clients on which frequencies to hop. We note that the

presence of whitespace incumbents may necessitate OwLL

base stations to identify vacant frequency bands from the

TV whitespaces every 12 hours and only run its optimiza-

tion algorithm (Algm. 2) over available frequencies in the

whitespaces.

5 EMULATING DISTRIBUTED ARRAYS
In this section, we describe the various challenges in building

a localization system that uses distributed LP-WAN base

stations that serve as a wideband and multi-antenna array.

We discuss challenges such as synchronization and signal

multipath.

5.1 Ensuring Phase Synchronization
Our discussion so far has assumed that base stations are

synchronized in time, frequency and phase – however this

is challenging to implement with geo-distributed base sta-

tions, some potentially indoors. To this end, we build on

Chime [13], a prior approach that has demonstrated syn-

chronization across base stations for a different problem –

radio configuration. At a high level, this approach uses a

known reference transmitter (typically a base station) that

transmits a long LoRa packet concurrently at a frequency ad-

jacent to the LoRa client. The algorithm then interpolates the

wireless channel from both the reference and client across

two different base stations at the common guard band be-

tween these frequencies. It then shows that if the location

of the reference transmitter is known, a combination of four

wireless channels (reference and client to each base station)

can be used to infer time-difference of arrival to the desired

client. We refer the reader to Chime [13] for more details on
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Figure 5: OwLL Enhanced Phase Estimation balances
between SNR resilience and phase accuracy outdoors

the algorithm. While Chime was intended for radio config-

uration, we highlight two important modifications that are

needed to extend it to OwLL’s localization context:

Interpolation at the Guard Band: In performing interpo-

lation at the guard band, OwLL must ensure that the phases

of the wireless channel obtained are extremely stable for a

static client in a quasi-static environment. Thus, OwLL de-

signs the reference base station to sense and align its chirps

at sample accuracy (∼ 10 𝜇𝑠) by listening for the client’s

preamble and turning around to transmit on the adjacent

band. Further, we note that we must only interpolate phases

at specific points in the guard band when two chirps – one

each of the reference and the client “meet” as highlighted

in Fig. 5. This is important because chirps are sparse signals

transmitting at different frequencies over time and the high-

lighted spot is one of the few where both transmitters truly

agree in time and frequency (modulo time-of-flight, that we

seek to measure).

One important consideration when performing this in-

terpolation is the case of low-signal to noise ratio ( SNR).

In noisy settings, interpolation of the chirp signals (espe-

cially in phase) tends to loose robustness. To mitigate this,

one approach could be to rely on correlation rather than

interpolation. Specifically, one could correlate each received

preamble symbol with the corresponding ideal up-chirp in

both bands to compute phase values. Unlike interpolation of

phase, correlation is known to be highly noise resilient. How-

ever, correlation would not allow for the ability to find the

phase value at the guard band, meaning that the result would

still be error-prone to timing offsets due to the frequency

separation between the bands. OwLL therefore adopts a hy-

brid approach between these two extremes of interpolation

and correlation. Rather than correlating with an ideal pream-

ble up-chirp that spans all frequencies, we splice this chirp

into smaller chunks that span smaller chunks of frequen-

cies. We use the computed correlations to obtain multiple

noise-resilient phase values. This allows us to then perform

interpolation across these phase values at the guard band.

Fig. 5 illustrates our enhanced phase estimation approach.

Our results in Sec. 8.1 demonstrate the utility of this solution

in achieving phase stability and noise resilience simultane-

ously.

Designing the Reference: We note that unlike Chime,

the reference must hop alongside OwLL on an adjacent fre-

quency based on the pre-determined schedule provided by

the base stations. Should the adjacent frequency be unavail-

able (e.g. due to the presence of incumbents), the reference

could transmit a non-interfering simultaneous LoRa packet

on the same frequency using a different spreading factor, but

at the expense of some resilience owing to the near-far effect.

It is also prudent to choose the base station closest to the

client as reference to ensure minimal detection delays as well

as low TDOA values which are more noise resilient. Thus,

before localizing any client, we run a quick calibration step

where client transmits a packet to enable us to determine

which base station to designate as the reference base station

(coarsely, based on similarity of RSSI values). We elaborate

in Sec. 5.3.

5.2 Impact of Multipath
Next, we make some experimental observations regarding

signal multipath – a key challenge in any localization sys-

tem. We specifically ask: “How frequently is the direct path

between the clients and base station completely blocked in

the urban LP-WAN context?”. Given that our system has

multiple base station locations and spans multiple frequency

bands, we want to characterize the importance of both of

these factors in truly discovering the TDOA corresponding

to the direct path even in completely occluded settings.

Fig. 6 describes the accuracy of localization measured

across the number of base station pairs based on our wide-

area testbed described in Sec. 7. This result demonstrates

that as we use more number of base stations pairs from the

raw samples, we get better and better accuracy improving

from 10.5 m for 3 pairs to 6.2 m for 6 pairs for the chosen

clients.

We make the following broad conclusions based on these

observations that guide our localization algorithm that fol-

lows:

• Adding more base stations to take multiple views of

the object increases the likelihood that we check con-

sistency across more base stations. Given that base

stations are highly distributed, the likelihood that the

line-of-sight across all of them is severely attenuated

becomes low.
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Figure 6: OwLL location accuracy across base station
pairs

Figure 7: OwLL uses particle filtering atop the mea-
sured TDOAhyperbolas to estimate the location of the
client

• A similar argument can be made about more diverse

frequencies over thewide TVwhitespaces bands, where

frequency selective fading allows the direct path to

survive in some frequency bands even while being

attenuated at others.

• We note that the low frequencies of the LoRa band

and TV whitespaces have an improved ability to pene-

trate through obstacles compared to higher frequen-

cies. This in part contributes to some of our observa-

tions above.

Observation #2: Even in occluded settings, combin-

ing wireless channels from multiple base stations and

frequencies can improve detection of the line-of-sight

path.

5.3 Localization Design
Motivated by the above observations, we now seek to com-

bine the diverse TDOA measurements made across base

stations to obtain the true location of the device. While we

could naïvely do so by trilateration across base stations, this

misses two key additional advantages of our system: (1) First,

the synchronization approach in Sec. 5.1 ensures that all

base stations are phase-sychronized, which means that we

could effectively treat the entire system as one holistic dis-

tributed array; (2) Second, trilateration may miss opportuni-

ties from considering obvious geometric constraints of the

layout of our testbed. (3) Third, choosing a relatively proxi-

mate reference (based on RSSI) helps constrain the range of

possible locations of the client even further (see Sec. 5.1). (4)

Finally, OwLL can account for sources of known multipath

from large, dominant reflectors that have previously been

observed for other clients in the environment, if any.

A Particle Filter Based Search: Our approach to iden-

tify the true location of the device uses a particle filter [44]

to weave in the geometric constraints of the system along

with prior TDOA estimates as well as phase estimates from

distributed base stations. We point to Fig. 7 that visualizes

our solution. Our approach initially chooses a set of ran-

domly chosen candidate locations in the space of interest

uniformly sampled while respecting geometric constraints

of the testbed. For each sample, we compute a goodness met-

ric that is the sum of two components: (1) How well does

this estimate fit the observed TDOA peak values (inverse

of the mean squared error) across pairs of base stations? (2)

How well does this location agree with the observed wireless

channels across base stations and frequencies (we define this

quantity in Algm. 3 below)? (3) Are the TDOA values consis-

tent with the location of the chosen reference base station

based on RSSI? (i.e., locations extremely far from the refer-

ence are unlikely) (4) We further add a penalty discounting

consistent sources of multipath peaks resulting from large

reflectors discovered in localizing prior clients (or reference

base stations).

Based on these four observations, we assign probabilities

to each region of space surrounding where the particles were

originally obtained. We now re-sample the space while re-

specting geometric constraints, with the sampling biased by

this new probability distribution. We repeat this process un-

til the probability of a specific location within the geometric

constraints surpasses a set threshold.

Mathematical Details: Algm. 3 describes the design of

our particle filter and the goodness metric used to assign

probabilities to the different particles.

Observations: A few points are worth noting:

• Geometry of Base Stations: Our approach is agnostic to

the arrangement of base stations, however the precise

layout can impact accuracy just as in any antenna ar-

ray. In this paper, we assume that the relative geometry

of the base station is given (e.g. based on logistic con-

straints) and leave to the precise optimization of this

geometry to improve localization accuracy to future

work.



OwLL: Accurate LoRa Localization using the TV Whitespaces IPSN ’21, May 18–21, 2021, Nashville, TN, USA

Algorithm 3: Localization algorithm

Input :Base Station locations BSi,j and Reference

locations Ri,j, (h̃, f) for all possible Base
station pairs (𝐵𝑆𝑚, 𝐵𝑆𝑛) from a client

Set of Geometric constraints - (X,Y)𝑎𝑙𝑙𝑜𝑤𝑒𝑑 ,

TDOA margin𝑚𝑎𝑟 , Probability distribution

variance 𝜎 , Penalty(x,y): penalizes dominant

reflectors discovered when localizing other

clients

Output :Estimated Client location (𝑥𝑜𝑝𝑡 , 𝑦𝑜𝑝𝑡 )

Initial Calibration:- Reference Base Stations R
receive a single packet from client 𝐶 to select

𝑅𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ;

𝑅𝑚𝑎𝑠𝑘 (𝑥,𝑦) = 1 ∀(𝑥,𝑦) | ( | | (𝑥,𝑦) − 𝑅𝑜𝑝𝑡𝑖𝑚𝑎𝑙 | |2 <
| | (𝑥,𝑦) − 𝑅 | |2∀𝑅 ≠ 𝑅𝑜𝑝𝑡𝑖𝑚𝑎𝑙 )
(X,Y)𝑎𝑙𝑙𝑜𝑤𝑒𝑑 = (X,Y)𝑎𝑙𝑙𝑜𝑤𝑒𝑑 . ∗ 𝑅𝑚𝑎𝑠𝑘 ;

𝑃 (𝑥,𝑦) = 0 ∀(𝑥,𝑦) ∈ (X,Y)𝑎𝑙𝑙𝑜𝑤𝑒𝑑 ;

for each (𝐵𝑆𝑚, 𝐵𝑆𝑛) pair do
𝑡𝑑𝑜𝑎𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑚,𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑡

𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑁𝐷𝐹𝑇 (h̃, f)

𝑡𝑑𝑜𝑎𝐴𝑐𝑡𝑢𝑎𝑙𝑚,𝑛 = 𝑡𝑑𝑜𝑎𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑚,𝑛 + 𝑡𝑑𝑜𝑎𝑅𝑒 𝑓𝑚,𝑛

𝑅𝑜𝑝𝑡𝑖𝑚𝑎𝑙
;

return ParticleFilter((X,Y)𝑎𝑙𝑙𝑜𝑤𝑒𝑑 , GetProbability);

/* Run Particle filter [44] sampling

allowed space using GetProbability(.) */

Function GetProbability(𝑥,𝑦):
for each (𝐵𝑆𝑚, 𝐵𝑆𝑛) pair do

if 𝑧 = | | | (𝑥,𝑦) − 𝐵𝑆𝑚 | |2 − ||(𝑥,𝑦) − 𝐵𝑆𝑛 | |2 −
𝑡𝑑𝑜𝑎𝐴𝑐𝑡𝑢𝑎𝑙𝑚,𝑛 | < 𝑚𝑎𝑟/Penalty(𝑥,𝑦) then

𝑃 (𝑥,𝑦) = 𝑃 (𝑥,𝑦) + 𝑒−𝑧/2𝜎2

• Temporal Constraints:We note that our algorithm does

not implement additional temporal filters (e.g. Kalman

Filtering), however these can readily be incorporated

to improve accuracy (at the cost of energy).

6 DISCUSSIONS AND LIMITATIONS
We highlight a few important limitations of OwLL:

Mobility: Our system is not designed for moving objects

owing to the need for clients to frequency hop. This should

not pose a problem for most LoRa deployments are quasi-

static (e.g. building sensor networks). We believe it may be

possible to extend OwLL to aggregate measurements across

frequency hops for a continuously moving object to trace

out its trajectory, if the object moves relatively slowly. We

leave this for future work.

Extending to 3-D: The evaluation of this paper is restricted
to localization in 2-D space owing to COVID-19 related re-

strictions that reduced our access to multiple buildings and

Figure 8: OwLL’s campus-scale deployment.

different floors. We had to place our base stations on tem-

porary mobile platforms in open spaces outdoors, where

social distancing was easier to ensure, both in line-of-sight

and occluded settings. We expect new challenges to arise for

extending it to 3-D localization which remains an exciting

direction for future work.

Extreme Multipath/Occlusion: While our system does

consider the impact of obstructions, including buildings, it

assumes that the line-of-sight path is present (i.e. above

noise) at least in a subset of frequencies and base stations,

even if intermingled with other paths. However, under ex-

treme occlusion (e.g. devices in the basement, or deep inside

buildings), this assumption may not hold. One may be able to

detect these extreme occlusion cases by carefully observing

the phase trends across frequencies, but this has not been

evaluated in this paper. However, performing localization

even in these occluded scenarios continues to remain an

open problem for future work.

7 IMPLEMENTATION AND EVALUATION
We implement OwLL using off-the-shelf Semtech SX1262

radios as LP-WAN clients, and NI USRP N210s as software-

radio base stations. These clients enable us to hop across a

wide spectrum ranging from 500 MHz to 960 MHz. We hold

experimental FCC licenses to operate on the TV whitespace

bands across all our hardware and explicitly avoid bands

with incumbent transmitters.

An important factor to take into consideration is the choice

of antenna. Most off-the-shelf antennas either have narrow-

band gains in signal or provide a low gain or directionality
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10 cm

28 cm

23 cm

Figure 9: Log Periodic Ettus LP0410 antenna used in
OwLL’s evaluation.

across such a wide bandwidth. This is due to the large differ-

ence in wavelength (31cm - 75cm) across the spectrum we

are aiming to hop. While there exist highly specialized white-

space antennae providing high gains across this spectrum

(and there remain interesting open questions in this regard),

we used multiple Ettus LP0410 log-periodic directional an-

tennas (shown in Fig. 9) connected using SMA splitters to

emulate a high gain omnidirectional whitespace antenna.

With scale, omnidirectional white space antennas will be-

come cheaper and ubiquitously deployed commercially

We receive packets from the USRP base stations using

UHD/C++. Our base station software is implemented in

python for live processing of packets as they are collected

and a hybrid python/MATLAB script in the cloud to localize

the client. Note that this live processing of packets provides

upto 25× compression by only transferring the I/Q data when

the packet was transmitted.

We evaluate our system on a campus-scale testbed of

66,000 sq. m. with 4 base stations and client moved across 50

locations. Our client locations face various outdoor wireless

obstructions such as hills, trees, buildings, etc. Chosen client

locations ensure diversity in terms of being in LOS or NLOS

to every base station and deployed across a varied topogra-

phy. To enable our solution, we also place the reference at 4

locations to ensure coverage across all areas.

Ground Truth: An important problem with measuring ac-

curate localization errors in outdoor environments is mea-

suring the locations with enough accuracy. In fact, a typical

GPS receiver has a 3-5 m median variance in location track-

ing. Instead, we use a Nikon Forestry Pro II to accurately

survey our testbed with a central reference point. We use

these measured distances between points to formulate a

L2-minimization to estimate the location of all clients, base

stations and references. The average error in our estimates

falls below 10 cm between any two locations surveyed.

Base Line: LoRa localization has been explored with vari-

ous side channels using satellite images, GPS locations along

with other sensors[27]. However, our system localizes off-

the-shelf LoRa clients, without using other side-channel in-

formation, and thus we compare OwLL to a LoRa localization

system purely based on RSSI. For every client, we calculate

the distances from the client to all the base stations using rel-

ative RSSI value taken with respect to the RSSI of the signal

from the reference base station. We find the location of the

client using simple trilateration. This acts as baseline system

to compare our results against.

8 EXPERIMENTAL RESULTS
We first evaluate the primitives that work together to enable

OwLL’s time difference of arrival estimates (Sec. 8.1-8.3). We

then evaluate OwLL’s capability to accurately estimate the

time difference of arrival and location across LOS and NLOS

scenarios across our campus-scale testbed. (Sec. 8.4-8.5)

8.1 Phase Stability and SNR resilience
In this experiment, we attempt to ascertain the SNR resilience

and phase stability of OwLL’s approach over prior work.

Method: We transmit 100 packets from transmitter and ref-

erence at known locations at a single frequency (915 MHz).

We compute the phase after synchronization (described in

Sec. 5.1) from their signals using two approaches: (i) Interpo-

lation approach (Fig. 5 left) and (ii) OwLL Enhanced Phase

Estimation (Fig. 5 center). We then find the error in measured

phase from the actual phase to demonstrate SNR resilience

and phase stability.

Results: Fig.10a shows that OwLL’s enhanced phase esti-

mation is ∼ 25 dB more resilient when compared to direct

interpolation of phase across frequencies. Due to the inher-

ent error in interpolating the phase across frequencies from

a large number of points, we see that even at high SNRs,

enhanced phase estimation outperforms the interpolation

method. The smaller graph on the top right depicts the phase

over 100 packets for both approaches.

8.2 Initial Frequency Selection
In this section, we compare OwLL’s approach of identifying

the initial frequencies vs. other baseline approaches.

Method:We chose 10 locations with less than median local-

ization error to identify what choice of frequencies contain

the most amount of information in identifying the accurate

time-difference-of-arrival of client across base stations. As

proposed in Sec. 4.3, we typically choose a few initial frequen-

cies to create a rough estimate of TDOA which we reinforce



OwLL: Accurate LoRa Localization using the TV Whitespaces IPSN ’21, May 18–21, 2021, Nashville, TN, USA

(a) (b) (c)
Figure 10: OwLL Design Considerations: (a) Stability and SNR resilience of OwLL Enhanced Phase Estimation (b)
Impact of choice of initial frequencies; (c) Accuracy-Power Tradeoff

(a) (b) (c)
Figure 11: Localization Results: (a) CDF of time-difference-of-arrival estimation error (b) CDF of location estima-
tion error (c) Impact of Multipath on location estimation

using Algm. 2. However, it is critical to understand that a bad

choice in these initial frequencies can adversely change the

TDOA as well as localization accuracy. Based on our obser-

vations in Sec. 4.3, we devise a custom initial frequency se-

lection policy that chooses two chunks of frequencies across

the first and last available band for transmission. We also

choose the frequencies near the center frequencies of re-

ceivers as typical software radio filters provide the highest

SNR gain at these frequencies. We compare OwLL’s initial

frequency selection policy with two baselines: (i) choosing

the frequencies randomly and (ii) choosing the frequencies

uniformly.

Results: Fig. 10b shows significant benefits of OwLL when

the number of initial frequencies chosen is small. This is es-

pecially important as we would like to minimize the number

of frequencies queried to save power on these power-starved

LoRa clients. However, as we choose more frequencies we

see that the baseline policies do approach similar errors to

that of OwLL. Note, however, in really large TDOA scenarios

OwLL’s policy will be superior to others due to its ability to

disambiguate large range of TDOA values as well as provid-

ing reasonably large bandwidth.

8.3 Accuracy-Power Tradeoff
In this result, we address the key drawback of hopping fre-

quencies – the additional power consumption incurred.

Method:We attempt to identify how much power overhead

is incurred due to hopping multiple frequencies to estimate

the location of the client. We assume that the client needs to

be localized twice everyday. We assume the typical battery

energy of a AA battery of 2900 mAh and a typical LoRa client

consumes 100 mAs of energy for every packet (based on bat-

tery life model used in [13]). This means that a typical LoRa

client can send approximately 104400 packets in its whole

lifetime. We then study how OwLL’s localization accuracy

changes as we transmit more and more packets.

Results: As shown in Fig. 10c, we see that after transmit-

ting around 80 packets per localization query, we are able to

achieve the 75th percentile localization error for the chosen

points enabling us a 1.8 year battery life assuming the client
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is getting localized twice a day. Further to achieve the 50th

percentile localization error, we need to transmit 40 more

packets per localization query leading to 1 year battery life.

Note that here we have assumed that the client transmits

only to get localized. Any other transmissions by the client

to communicate sensor data will reduce the battery life fur-

ther. However, we would also like to note that it is quite

atypical to localize a quasi-static client at the frequency we

have considered and the behavior will likely be more energy-

efficient in real world (∼ localizing once a month) removing

localization as the energy bottleneck.

8.4 Time Difference of Arrival Accuracy
In this result, we identify the estimation error in the time-

difference-of-arrival across the client and reference at the

two base stations.

Method:We evaluate our system across 50 locations on our

campus scale testbed - 20 line-of-sight (LOS) and 30 non-

line-of-sight (NLOS) points. Note that some of the NLOS

points may be in line-of-sight of one or two base stations (we

differentiate between the accuracy of these points from those

completely non-line-of-sight in Sec. 8.5). We implement our

TDOA estimation algorithm as defined in Algm. 1 using three

available TV whitespace + ISM bands from 580 MHz to 920

MHz. (the available bands change over time but the edge

bands were vacant across all experiments).

Results: Fig. 11a depicts a 3.6m median error for OwLL in

estimating the TDOA of LOS clients across 4 base stations.

This median error becomes 14.8m for the NLOS locations.

We surmise that across some of these NLOS pairs, the path

corresponding to the LOS TDOA is severely attenuated thus

denying our algorithm the ability to extract it from the phase

of the signals. Note that we still significantly outperform the

baseline system of localizing using RSSI, which provides a

poor median accuracy of 90m across all scenarios. Note that

this is not surprising as it is quite close to observations in

prior work [27].

8.5 Localization Error
Next, we evaluate the localization error using OwLL.

Method: We implement OwLL across the same 50 loca-

tions as the previous experiment and attempt to localize the

clients based on their estimated TDOA distances as shown

in Algm. 3.

Overall Results: Our results in Fig. 11b demonstrate a me-

dian accuracy of 3.9 m for the LOS locations. This accuracy

drops to 15.7m for localizing the NLOS points. This reduction

in accuracy directly corresponds to the reduced accuracy of

estimating the TDOA across base stations for the client lo-

cation. We note that despite the increased error, our system

significantly outperforms the state-of-the-art baseline un-

der identical settings. We also note the longer tail for NLOS

settings due to certain locations that experience significant

occlusions compared to others. We believe new techniques

are required to inherently understand the multipath around

a client and reinforce the severely attenuated LOS TDOA

paths to improve the accuracy. Note that while recent work

has shown promise using deep learning for addressing this

problem in the WiFi context [6], the same for LoRa remains

a direction for future work. The accuracy of the RSSI-based

baseline is 53.6 m across all points.

Impact of Multipath: It is important to note in the above

evaluation that some of the NLOS points were partially in

line-of-sight (PLOS) of some of the base stations. Thus, it is

critical to differentiate the accuracy in such scenarios from

locations which are completely NLOS of the base stations.

Fig.11c shows the localization errors across the three scenar-

ios using OwLL. As we can clearly see the mean errors for

PLOS and NLOS scenarios are 15.5 m and 24.9 m respectively.

However, the median errors for both scenarios are 14.8 m

and 16.1 m. This means much of the error in purely NLOS

scenarios is dominated by a few locations with poor localiza-

tion accuracy (highlighting the importance of both metrics).

The mean localization error for LOS scenarios is 4.4 m.

9 CONCLUSION AND FUTUREWORK
This paper presents OwLL, a LoRa localization system that

achieves fewmeters accurate localization of commodity LoRa

clients. We design a distributed base station network made

of individually low-cost components that together spans a

wide-bandwidth and offers high aperture. We show how this

network can aggregate signal measurements made across

multiple different narrowband channels of a LoRa client

to triangulate it at fine accuracy. We further optimize our

system to demonstrate accurate localization with minimal

energy overhead from the clients. We deploy OwLL on a

testbed spanning 66,000 sq.m. centered in a major U.S. city

and show a 9 m median error in location estimation. While

the evaluation in this paper is restricted to 2-D, we believe 3-

D is possible with careful placement of the base stations and

leave this for future work. We further believe that handling

moving objects and addressing significant attenuation of the

direct path for devices deep inside buildings or underground

remain important problems for future work.
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