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Abstract

We describe and illustrate a forward modeling method for quantitatively reconstructing the

geometry and orientation of microstructural features inside of bulk samples from high en-

ergy x-ray diffraction microscopy data. Data sets are comprised of CCD images of Bragg

diffracted beams originating from individual grains in a thin planar section of sample. Our

analysis approach first reduces the raw images to a binary data set in which peaks have been

thresholded at a fraction of their height after noise reduction processing. We then use a

computer simulation of the measurement and the sample microstructure to generate calcu-

lated diffraction patterns over the same range of sample orientations used in the experiment.

The crystallographic orientation at each of an array of area elements in the sample space is

adjusted to optimize overlap between experimental and simulated scattering. In the present

verification exercise, data are collected at the Advanced Photon Source beamline 1-ID using

microfocused 50keV x-rays. Our sample is a thin silicon wafer. By choosing the appropriate

threshold fraction and convergence criteria, we are able to reconstruct to ≤ 10µm errors the

sub-region of the silicon wafer that remains in the incident beam throughout the rotation

range of the measurement. The standard deviation of area element orientations is ≈ 0.3

degrees. Our forward modeling approach offers a degree of noise immunity, is applicable

to polycrystals and composite materials, and can be extended to include scattering rules

appropriate for defected materials.
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I. INTRODUCTION

X-ray diffraction microscopy[1, 2] constitutes a set of techniques that can be used to

probe microstructure deep inside of bulk materials. Because the measurements are non-

destructive, they give access to the dynamic response of ensembles of grains to stimuli such

as heat, stress, or chemistry. Using focused beams of high energy photons with E ≥ 40

keV that penetrate millimeters to centimeters of materials, these techniques can spatially

resolve local crystallographic orientation, grain shapes, and strain states. While high energy

x-rays are available at a number synchrotron beam lines around the world, the undulator

radiation from third generation sources has the spectral range, brilliance, and source size most

desirable for the experimental requirements. At present, there is apparatus at ID-11 at the

European Synchrotron Radiation Facility (ESRF) that is dedicated to such measurements[1]

and, as illustrated here, similar capability is being developed at the Advanced Photon Source.

Studies to date have probed, for example, in-situ response to stress,[3, 4] internal grain growth

in real time,[5, 6] and observation of phase transformations.[7]

In this paper, we are concerned with the problem of reconstructing location and shape

of ensembles of grains in three dimensions. This is done by isolating and imaging diffracted

beams originating from individual grains and tracking their path through space in order

to locate their position of origin.[8, 9] Position and shape resolution are expected to reach

∼ 1 micron while orientations can be measured to well below a degree. However, the recon-

struction problem is formidable even for ideal samples with sharp Bragg scattering and it

is more so in the case of samples with significant defect content.[1, 9] We report here on a

new approach involving forward modeling or computer simulation and we demonstrate its

application using a simple, single crystal sample of silicon. It should be possible to generalize

this approach to treat not only to simple polycrystals but defected and composite materials

as well.

The development of a three dimensional polycrystal mapping ability is timely. For ex-

ample, recent work using electron probes [10, 11] has provided new statistical measures of

grain boundary character distributions in a variety of polycrystals and has revealed that

systematic anisotropic distributions emerge from simple thermal grain growth treatments.

Volumetric measurements are now needed to understand, on a grain-by-grain basis, how
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these distributions arise, how they are affected by different starting conditions, and how

they can be influenced by defect content, impurities, inclusions, and other factors. Recent

three dimensional grain growth simulations [12, 13] using model driving forces appear to

yield grain boundary character distributions that are statistically similar to experimental

measurements. Measurements of the evolution of real materials can be used to test and

constrain the growth rules used in such simulations.

Fig. 1 shows a schematic of the experimental geometry. This is configuration B as

described by Poulsen and we use the same coordinate system conventions.[1] A line focused,

monochromatic beam of x-rays illuminates a thin section (∼ 1µm thick by ∼ 1 mm wide)

of the sample which is mounted on a rotation stage, ω, with axis normal to the illuminated

plane. A beam stop prevents the transmitted beam from striking the downstream area

detector. The high spatial resolution detector (ex., 4µm pixels) images diffracted beams

emanating from crystallites that happen to satisfy a Bragg condition at orientation ω. The

detector is positioned close to the sample (∼ 5 to 10 mm) so that the position of a diffracted

beam spot is sensitive to both the diffracted beam direction (specified by 2θ and η) and the

position-of-origin within the sample. This information is encoded in the data by measuring

the diffraction pattern at a number, NL ∼ 3, of rotation axis-to-detector distances, L. In

order to observe as many diffracted beams as possible, continuous coverage of the rotation

ω is needed. Detector images are therefore collected while the sample is rotated through

an interval, δω ∼ 1 degree and Nω adjacent intervals are measured so as to cover a range

∆ω = Nωδω large enough to ensure observation of several Bragg peaks from grains of

arbitrary orientation.

Another technique for non-destructive probing of internal microstructure is the poly-

chromatic x-ray microbeam method developed by Ice and Larson.[14] This method, using

a spot focused beam, has better (sub-micron) spatial resolution but has less penetration

depth making it appropriate for thin and small grained structures. Recent work, for exam-

ple, has characterized deformation microstructures of individual grains.[15] Volumetric data

collection requires roughly an image per voxel whereas the current method collects data in

transmission from planar sections through many grains in parallel.[8]

The next section gives a detailed account of our data analysis and map construction

approach along with comparisons to other approaches. This is followed by a description of
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FIG. 1: Schematic of the x-ray beam, sample, and detector. We use a single detector and move

it sequentially to the positions shown. Diffraction from one particular grain is shown together

with notation (2θ and η) for specifying the direction of the diffracted wavevector, kf = kv̂, with

k = 2π/λ. Note that a circular grain in the illuminated plane generates an elliptical spot on the

detector due to the projection along v̂. The coordinate system origin is at the intersection of the

rotation axis and the beam plane and the beam is incident in the x̂ direction.

the apparatus at the Advanced Photon Source and a verification exercise using the simplest

possible microstructure: a single crystal of silicon. Evaluation of the results, implications

for applications to polycrystal samples, and prospects for further development are discussed

in Sec. IV.

II. ANALYSIS METHOD

Reconstruction of a three dimensional microstructure requires the processing of thousands

of detector images. Each two dimensional slice requires 100 to 300 images and many slices

are required to extend into three dimensions. In a polycrystal, each image may include ten

to 100 diffraction spots originating from different regions of the illuminated sample space.
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Since a primary purpose of the non-destructive measurement is to allow observation of the

response of the microstructure to external stimuli, many three dimensional maps may be

needed. It is clear that analysis of such data sets must be extensively automated.

We describe here an analysis method in which we simulate or forward model the entire

measurement process including the x-ray beam and detector, experimental geometry, and

sample microstructure. Sample microstructure is described on a discretized grid represent-

ing the illuminated plane of the sample with each area element having associated phase,

orientation, and, possibly, defect structure. Software can adjust parameters describing both

the sample and experiment to make simulated diffraction match the observed data as well

as possible. As presently implemented, this is an ab initio approach that requires no initial

cross-correlation of the diffraction images and no prior knowledge of orientations present in

the sample. What is required is a reasonably well defined set of experimental parameters and

a known nominal crystal structure. This initial information must be sufficient that at least

some regions in the sample can be made to generate scattering that overlaps a minimal set

of experimentally observed diffracted beams. With this initial success, experimental param-

eters can be refined as can the spatial resolution of the simulated or fitted microstructure.

One advantage of this approach is that the simulation can use and adjust realistic scattering

physics appropriate for the sample under consideration. Lattice bending that gives rise to

mosaic spread in observed data can be modeled directly in the crystal frame of reference.

Also, detector point spread functions can be modeled so as to avoid the complications of

attempting to deconvolve observed data sets.

Our forward modeling approach is an alternative to several current analysis schemes[1, 7,

8, 14-19] including GRAINDEX, GRAINSWEEPER, and the algebraic reconstruction tech-

nique (ART). To put our work in context, we give a very brief comparison to other methods

but refer the reader to the references for detailed descriptions. GRAINDEX is an indexing

scheme that correlates observed diffraction spots into groups that are crystallographically

consistent so as to yield a list of grain orientations with center of mass positions in the illu-

minated sample plane. ART combines the set of intensity patterns corresponding to a given

orientation and uses tomographic algorithms to reconstruct the grain shape. GRAINDEX

and ART work primarily in the data space to deduce properties of diffracting entities in the

sample; in this sense, they attempt to solve the inverse problem. These approaches are quite
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sensitive to the overlap of spots as diffracted beams from different sample regions cross at

the detector position[18] and to broadening effects due to defect scattering.

GRAINSWEEPER and our simulation approach analyze the possible scattering from lo-

calized sample regions and search for optimum orientations over a gridded sample space; these

can be characterized as forward modeling or data fitting procedures. GRAINSWEEPER

identifies detector regions where a primary Bragg peak type could appear and searches for

intensity therein. The detector region for a second peak, crystallographically consistent with

the first, is then searched. This constrained search is computationally efficient but requires

the specification of preferred Bragg peak types that must be in the observed data set for all

grains. Our approach is less computationally efficient but treats a large number of peaks

equally. We use Monte Carlo optimization of orientations which uses all the scattering gener-

ated by the simulation and attempts to minimize a global cost function. Occasional overlap

of spots does not limit convergence. Further, Monte Carlo variation of scattering parameters

and experimental geometry is trivial to implement (at least in its simplest form). As pointed

out previously,[1, 9] combining an efficient initial computation with a Monte Carlo based

final step is quite desirable. We have implemented this to the extent that we first perform a

search over a discrete orientation set before beginning the Monte Carlo optimization. Finally,

other experimental configurations, such as use of a large or “box” beam,[1] can be treated

with a generalization of our current model. The flexibility of the simulation approach com-

bined with availability of ever more computational power should allow simulations to play a

significant role in analysis of x-ray diffraction microscope data.

A. Sample Simulation

Approximating the incident x-ray beam as illuminating a thin section of the experimental

sample allows analysis to be done on a layer-by-layer basis. The planar section of microstruc-

ture is simulated as a mesh of area elements each with independent parameters describing

the local crystallographic orientation, a switch, φ, to indicate the type of scattering gener-

ated by the element, and other parameters describing the state of convergence in the fitting

process (Sec. II D). A list of Bragg peaks that are candidates for being generated by each

area element is specified. The area covered by the mesh may be smaller or larger than the
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actual sample being measured. φ can be a binary indicator of the presence or absence of

scattering from the element or, more generally, can take on different values to indicate the

presence of a particular crystallographic phase as appropriate for measurements of composite

materials.

In our implementation, the sample mesh is a triangular grid of area elements (Fig. 2).

The initial mesh can be adaptively refined by dividing selected parent triangles into four

smaller ones with the offspring having the same properties as the parents. The fitting pro-

cedures can then determine optimized parameters so as to better define boundaries where,

for example, orientations change rapidly. Crystallographic orientation, ĝ, (specified in the

sample reference frame) is relative to unit cells being aligned with the laboratory axes of

Fig. 1 when ω = 0. The list of reciprocal lattice vectors, Ghkl, is generated from elementary

specification of unit cell dimensions, basis atom positions, and atomic form factors (approx-

imated in the small scattering vector limit). A maximum Ghkl (i.e., 2θ) can be specified and

peaks with intensities greater than a specified fraction of the maximum intensity are put into

the list of candidates. This approach makes it straightforward to model any type of crystal,

from elemental to complex molecular.[22]

B. Scattering Calculations

For a given set of parameters, (ĝ, φ), an area element will generate Bragg scattering in

several different ω intervals. The simulation needs to determine which candidate peaks are

generated in experimentally measured intervals and, of these, which diffracted beams actually

hit the detectors at each position, L. The geometry of the area element is then projected

onto the relevant detectors to determine the detector pixels that are illuminated. In the

fitting process, we then ask whether the corresponding experimental pixels are illuminated.

The detector space is four dimensional and can be parameterized as D(j, k, iL, iω), where j

and k are pixel indices, iL picks one of the detector distances (Fig. 1), and iω specifies the

ω interval in which the Bragg peak falls.

In the simplest case, the Bragg condition is evaluated and scattering is assumed to be

sharp, i.e., a δ-function at

Q ≡ kf − ki = Ghkl, (1)
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FIG. 2: Schematic diagram of the simulation geometry. The sample is represented by a hexagonal

grid with each element assigned its own crystallographic phase and orientation, (φj , ĝj). For ele-

ments that generate scattering at this ω (dark triangles), the grid element vertices are projected

along a unit vector, v̂, parallel to the scattered wavevector, kf , onto the detector (black dots

in magnified view at right). Any detector pixel inside or intersected by the projected triangle is

considered to be illuminated by this Bragg peak (filled squares).

with kf and ki being the final and incident wavevectors. However, many generalizations are

possible and desirable: the incident beam may not be perfectly monochromatic or parallel,

the crystal structure may be distorted by homogeneous strain or local defect content. If the

consequent motion and/or broadening of Bragg scattering can be parameterized, then these

effects can be included here and adjusted by fitting procedures.

For a particular Ghkl (specified in conventional crystal notation) the Bragg condition

(1) in the laboratory frame of reference determines ω and η (the scattering angle 2θ being

already defined by Ghkl = 2k sin θ):

(Glab
hkl)x = −|Ghkl|2

2k
, (2)

where the incident wavevector is ki = kx̂ and Glab
hkl = Ω−1(ω)U−1(ĝ)Ghkl. Here, U−1(ĝ) is

the matrix giving the crystal lattice orientation relative to the sample coordinates and Ω(ω)

is the matrix corresponding to rotation by ω about the ẑ axis. Eq. (2) yields either zero or
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two Bragg values, ωB. If U−1(ĝ)Ghkl lies too close to the rotation axis, the component in

the xy plane will be too small to ever satisfy (2); the condition for a solution is that χ ≥ θB,

where χ is the angle between the z-axis and U−1(ĝ)Ghkl and θB is the Bragg angle. At high

energies, many Bragg angles are small, so a large region of reciprocal space is covered by the

single ω rotation in combination with an area detector. For χ > θB, there are two solutions

to (2) having the in-plane projection of U−1(ĝ)Glab
hkl on either side of the incident beam.

Once a relevant Bragg condition has been determined, the simulated detector image is

updated. The triangle vertices are moved to laboratory coordinates with Ω−1(ω). The area

element is then projected along kf = kv̂ onto the detectors for the appropriate ω and L and

the detector images are updated following the procedure outlined in Fig. 2.

We have incorporated a number of correction parameters to mimic possible experimental

realities. Misalignment of the detector translation is included by specifying the detector

origin, (j0, k0), separately at each detector distance, L. Rotation stage (x, y) offsets can be

entered for each ω interval. Detector plane misorientation is specified by rotations about the

laboratory axes. Finite incident x-ray beam height is incorporated by summing contributions

from different z elevations.

Finally, we illustrate here broadening effects due to incident beam properties. These prop-

erties are governed by the monochromator and focusing optics and can significantly affect

observed scattering under realistic conditions. The effects illustrated here can be difficult to

handle in data inversion approaches to analysis. We model finite energy bandwidth, ∆E and

variations in angle of incidence relative to the nominal beam plane, δχ, by summing a set of

discrete contributions. Fig. 3 compares three incident beam models: (i) ∆E = δχ = 0 (ideal

case), (ii) ∆E/E = 0.02, with δχ = 0, and (iii) ∆E/E = 0.02 with δχ ≈ 0.1 degree with

χ being correlated with E in a manner appropriate for a bent silicon (111) Laue monochro-

mator crystal.[23, 24] ∆E/E is chosen as 2% in order to make effects visible in the images.

Model (i) yields triangular diffraction spots that are projections, at the appropriate ω, of the

triangular sample area element. The higher order spots are more extended in the z-direction

due to the larger projection angle. The broadened spots of model (ii) are the result of dif-

ferent diffraction angles for the different energy contributions. Spots progressively broaden

as the sample-to-detector distance increases. The more obvious effect is that some peaks

cross over to different ω intervals as the energy varies: the high order peak near the center
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FIG. 3: Demonstration of imaging of a single triangular area element (200µm side length) and the

effect of incident beam models (see text). Each image contains scattering generated over a δω = 1

degree interval as observed at three sample-to-detector distances (6, 8, 10 mm in red, green, and

blue, respectively); the detector covers a 4 × 4 mm2 area. The nominal energy is 50 keV. The

projection of the incident beam is shown near the bottom (centered on pixel row 1000). Each row

of images shows intensity at the same three successive ω positions. (a)-(c) show model (i), (d)-(f)

model (ii), and (g)-(i) model (iii).

of (b) is spread over all three images (d)-(f). The split spots appear rather sharp in (d) and

(f), indicating that only a narrow part of the bandwidth contributes here. Other such split

peaks can also be identified by comparison with (a)-(c). For model (iii), not surprisingly,

additional broadening and crossings of ω intervals occurs.

C. Raw Data and Image Analysis

Raw experimental data is in the form of images of diffraction patterns observed with a two

dimensional x-ray detector. Detector hardware and characterization are discussed in Sec.

III A. Here, we describe the process of taking raw CCD based images and generating a binary

reduced data set that yields geometrical information about the diffracting entities in the

sample. In other words, from the continuous intensity distributions in observed diffraction
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FIG. 4: A typical detector image obtained from an aluminum polycrystal. The gray scale is in

CCD counts per pixel. The uniform background is slightly under 600 counts. Diffraction spots are

horizontally extended (10 to 50 pixels) darker regions. The direct beam projects onto the image at

zdet = 1004, below the long horizontal streak which is stray scattering out of the direct beam. Note

that the most intense points (those that saturate the gray scale) are isolated “hot” pixels rather

than diffraction spots. The maximum intensity in the image is 3997. The following figures show

the effects of image processing steps on the boxed region.

spots, we attempt to deduce shapes on the detector that correspond to projections of the

shapes of individual crystalline grains. Because the reconstructed orientation of each area

element in the sample depends on matching its diffraction to many Bragg spots, some random

errors in deduced shapes can be tolerated. However, in the averaged sense, accurate shapes

are critical.

Due to the combination of data collection time constraints and the inefficiency of the

detector system (Sec. III A), signal levels can be quite low and this complicates the above

process. Fig. 4 shows a typical diffraction pattern obtained from an aluminum polycrystal.

Even with better statistics on low order Bragg peaks, we expect to have to deal with weak

signals in higher order peaks. Because of their larger scattering angle, these peaks tend to

have better projection geometries than low order peaks, so deducing their shapes accurately

can yield improved spatial resolution in the reconstruction. Thus, image processing is a

critical and challenging aspect of the reconstruction process.
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The image reduction process is illustrated in Figs. 5 and 6 which show a sub-region of

the image in Fig. 4. The uniform background in Fig. 4 or 5a is due to dark current in

the CCD. Simple background subtraction yields improved contrast but leaves many isolated

“hot” pixels. These anomalous points must be removed in order to allow consistent intensity

estimates within the diffraction spots. Fig. 5c demonstrates that this can be done using a

median filter. The filter passes a 3 × 3 pixel mask over the image and replaces the center

pixel intensity with the median of values within the mask. This non-linear process has the

effect of removing isolated high (or low) pixels without strongly affecting smooth intensity

variations. The next step is to identify, in images like Fig. 5c, sets of contiguous pixels with

above zero intensity. These sets are referred to as “regions-of-interest” or ROI’s. Each ROI

is searched for its maximum intensity and a first estimate of the spot shape is determined

by keeping only pixels with intensity above some fraction, fpeak, of the peak value. Fig.

6 illustrates the effect of choosing different values for fpeak. This choice is clearly critical

for obtaining correct grain shapes. Because the intensity distribution within a diffraction

spot can be affected by strain and lattice bending effects or by overlap with other diffraction

intensity, there is no universally correct value for fpeak. This situation motivates careful

validation measurements and sample-by-sample consistency checks. Future work will also

include a comparison to other cut-off criteria such as the steepest gradient condition.[9]

Future incorporation of models for scattered intensity distributions (with adjustable fitting

parameters) may remove the necessity for binary data sets altogether.

D. Fitting Procedure

This section describes algorithms that attempt to determine the microstructure corre-

sponding to an observed data set. Using the gridding of sample space (Sec. II A) and the

diffraction simulation (Sec. II B) described above, we seek orientations for each area element

that generate simulated intensity that optimally overlaps experimental intensity (Sec. II C).

The sample space grid is then adaptively refined in order to better resolve regions where

properties change rapidly.

Data, both experimental and simulated, are stored in an array, D(j, k, iL, iω), as defined

in Sec. II B The low order bit holds the reduced experimental data while higher order bits
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FIG. 5: Expanded view of the subregion indicated in Fig. 4 in three stages of image analysis. (a)

Raw image (gray scale 0 to 1600; this scale saturates some pixels since the maximum in the figure

is 2700), (b) background (600 counts) subtracted image (gray scale 0 to 1000), and (c) median

filtered and background subtracted image (gray scale 0 to 1000).
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FIG. 6: Binary images of data from Fig. 5. Each region of interest has been thresholded at a

fraction of the maximum intensity in the region. Thresholds are (a) fpeak = 0.5 and (b) 0.25 of the

peak height.

store simulated intensity. Of order 300 Mbytes is required for a single layer. Typically, less

than one percent of detector pixels are included in the reduced experimental data set and a

comparable number of pixels are struck by the simulation.

As the orientation associated with a particular sample area element is varied, a given

Bragg peak, with scattering angle, 2θ, sweeps through ω and η (Fig. 1). For some orien-

tations, it disappears out of the experimentally accessed subspace of these variables. As it

moves, this simulated peak may accidently overlap experimental intensity coming from an-
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other part of the sample but it is unlikely to do so at all measured detector positions, L, at

the relevant ω. Only for a very restricted range of orientations (for the given area element)

will multiple simulated peaks overlap experimental spots at multiple L’s. This sort of overlap

is the goal of the orientation search. Below, an acceptance criterion, Fmin, is developed that

measures the level of this success.

1. Fmin acceptance criterion.

A hierarchy of procedures is necessary to determine if an orientation qualifies as a valid

fit for an area element. At each orientation, ĝ, we calculate the fraction, F (ĝ), of qual-

ifying simulated Bragg peaks (see below) that overlap experimentally observed intensity.

The basic question is, does a sufficient fraction, Fmin, of qualifying simulated Bragg peaks

overlap experimentally observed intensity? Determination of F (ĝ) involves the following

considerations:

1. A “qualifying simulated Bragg peak” is one that strikes the detector at least at the

two smallest measured L positions (unless only a single L was measured).

2. For a simulated Bragg peak to be said to overlap experimentally observed intensity

in a given detector image, it must satisfy fhit ≡ nexp

Nsim
≥ fhit

min. As illustrated in Fig.

7, Nsim is the number of detector pixels covered by the projection of the sample area

element onto the detector (Fig. 2) while nexp is the number of those pixels that are

also illuminated in the experiment. fhit
min is an acceptance criterion typically set to 0.5.

3. For a qualifying simulated peak to be said to overlap experimental intensity, it must

satisfy the criterion in item 2 at every detector position (at the relevant ω) with

L ≤ Lsim
max, where Lsim

max is the maximum measured distance at which the simulated

peak is on the detector. For example, if the scattering shown in Fig. 1 is generated

by the simulation and it hits the detector at all three positions as shown, then it must

overlap experimental intensity at all three detector positions to qualify as overlapping

the data. If it had hit the detector at only the closest two positions, then it would

have to overlap the experiment at both of those positions. If it was on the detector

only at L1, then it would not be a “qualifying simulated Bragg peak.”
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FIG. 7: An illustration of the counting scheme used in determining overlap between simulated

scattering and the experiment. The square grid shows pixels in a small region of the detector. The

black dots represent the projection of vertices of a triangular sample area element. Experimentally

illuminated pixels not hit by the simulation are black; pixels struck in the simulation but not the

experiment are yellow; overlapping intensities are red. In this example, Nsim = 8 (yellow plus red),

nexp = 6 (red), so fhit = 0.75. The contribution to the Monte Carlo cost function (Eq. 3) from

this region is δχ = 12 + 8 − (2 × 6) = 8 which is the number of “mistakes” (black and yellow

pixels). Ideally, a finer sample space grid will remove simulated intensity from the yellow pixels

and neighboring area elements will cover the remaining black pixels.

4. For orientation ĝ, the number of qualifying Bragg peaks (out of the full list of those

being simulated – see Sec. II B) is calculated and compared to the number that overlap

experimental intensity to compute F (ĝ).

2. Nature of the Search Space and Overview of Search Logic

The space of orientations of an asymmetric body is spanned by 4π steradians specifying

the orientation of an axis times 2π radians rotation about that axis, so the total space is 8π2

radians3. Symmetries reduce the relevant volume. For example, for cubic lattices, with 24

point symmetry operations, the space can be divided into 24 zones, each of which contains all

physically distinguishable orientations. A search over a single “fundamental zone”includes

all possible scattering patterns from a specified crystal structure. We choose the zone with

the smallest rotation angles (in an axis-angle representation) from the reference orientation

specified by Euler angles (0, 0, 0). Thus, a cubic crystal which, at ω = 0, has its axes aligned

with those of Fig. 1 is considered “unrotated.”
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To find an orientation with F (ĝ) > Fmin requires searching in the three dimensional space

of orientations. Over the vast majority of this space, very little overlap of simulation with

experiment occurs. As mentioned in the introduction, an angular resolution on the order of

a degree implies that a fractional subvolume of the space of orientations on the order of 10−6

must be located. Seeking to minimize a simple cost function (such as the one introduced in

Sec. II D 4) without any starting knowledge is quite inefficient. To overcome this problem, we

first perform a search over a discrete grid of points while smearing the simulated scattering

to cover the region between points in the grid. This search, with a much higher probability of

accidental overlaps than described above, finds candidate orientations that are then checked

by a Monte Carlo simulation that uses the scattering rules described above to home in on

an optimal ĝ. The basic flow of logic is shown in Fig. 8; the following sections describe the

two search algorithms.

3. Orientation Grid Search

A uniform grid of orientations covering the fundamental zone for the relevant crystal

structure is defined. Cubic symmetry and a spacing of ∆ψ = 5 degrees yields a set, {ĝ}grid, of

about 8π2

24
×

(
180
5π

)3
= 4950 points. To save computing time, scattering for each orientation can

be pre-calculated and limited to peaks occurring in the experimental range of parameters.[18]

Further, it is practical to limit the Bragg peaks used in this search to those with Q < Qgrid
max.

These low angle peaks are more likely to appear in the data due to their relatively large

intensities and they are more likely to hit detectors at several distances, L. In practice, we

store for each relevant peak i) the index (or indices) of the relevant ω interval(s), ii) the unit

vector, v̂, giving the direction of the scattered beam in the laboratory frame, and iii) the

quantities, δỹd = (∆ψ/2) cos η tan 2θ and δz̃d = (∆ψ/2) sin η tan 2θ.

For each trial orientation for a given triangular area element, the vertices are projected

along the relevant set of v̂’s at corresponding ω’s to the measured detector distances. A

rectangular bounding box is determined around the projected triangle and is extended by

±δyd = ±δỹd(L − xs) in the y-direction and similarly for the z-direction. This generates a

crude “smearing” to fill in the range of possible scattering corresponding to one dimension

(rotation about the incident beam) of the volume associated with a point in the orientation
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Define orientation grid:

{ĝ}grid

Pre-calculate scattering

from {ĝ}grid

Select element α

Select orientation β

Calc smeared scattering

and overlaps with fhit
smeared

F (ĝβ) ≥ F smeared
min ?

yes

Monte Carlo starting

with ĝβ

Calc scattering

and overlaps with fhit

F (ĝ) ≥ Fmin?

yes

α = α + 1

no

β = β + 1

no

FIG. 8: Skeletal overview of fitting procedures. If β exceeds the number of members of {ĝ}grid,

then element α is tagged as generating no scattering and the next element, α + 1, is processed.
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grid. To fill the other relevant direction, this same smeared bounding box is searched in

neighboring ω’s spanning the range ∆ψ (the third orientation dimension corresponds to

rotation about the scattering vector and is irrelevant for a single Bragg peak).

On a detector at a given ω and L, fhit, as already defined, is calculated and compared to

an acceptance parameter, fhit
smeared, where the latter must be small compared to fhit

min due to

the large search area. Correspondingly, a separate value, F smeared
min is used for the required

fraction of simulated Bragg peaks hitting experimental intensity. As shown in Fig. 8, if

an orientation is found for which F (ĝ) ≥ F smeared
min , the grid search is suspended and Monte

Carlo refinement of the orientation is performed as described in the next section. If this

refinement ends without finding a qualifying orientation, then the grid search is resumed

at the next orientation in the list. If the combined grid and Monte Carlo searches fail to

find any qualifying orientation, then the crystallographic phase, φ, associated with this area

element is set to zero signifying that no scattering is generated by this element.

4. Monte Carlo refinement

Once the orientation grid search has identified a candidate orientation, a Monte Carlo

routine attempts to optimize the orientation based on scattering as defined in Sec. II B.

Convergence criteria fhit
min and Fmin are used to determine acceptable Bragg peaks and ori-

entations respectively.

Fmin must be set appropriately for a given data set and fitting conditions. Generally,

even for a good orientation, F (ĝ) < 1 because the simulation generates scattering that is not

observed in the data set. This can be due to blocking of low order or η ≈ ±π/2 scattering

by the beam block or high order scattering for which insufficient counting statistics were

obtained. Further, any errors in the experimental parameters used by the simulation or

mechanical imperfections that are not mimicked by the simulation will generate less than

optimal matching.

Our current Monte Carlo routine uses a simple, zero temperature minimization procedure

based on a cost function, χ. Starting with a nominal orientation, a random increment is given

to each of the orientation parameters. The decision to accept or reject the trial orientation
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is based on the function (see Fig. 7),

χ = E + S − 2O, (3)

where E is the total number of pixels in the entire experimental reduced data set, S is the

total number of pixels hit by the simulated structure, and O is the number of pixels hit by

both. A perfect fit to noiseless data would have χ = 0. While χ is global (i.e., it depends on

the entire simulated microstructure), a local variant associated with an area element, s−2o,

can be defined to facilitate parallel processing of area elements. Here s is the number of

pixels struck by all the scattering from the element and o is the number of those pixels also

in the experimental data set.

For each trial orientation of an element, the change, ∆χ, is computed. ∆χ is always

computed for two different orientations rather than involving the state with no scattering

from the element. Putting in scattering from an incorrect orientation increases χ relative

to the state with no scattering since it increases S without (presumably) increasing O; the

minimization procedure then searches for orientations that bring χ back down by generating

overlap with the experiment. It is not required that the final cost be less than that with no

scattering. Thus, it is possible for an element to satisfy the convergence criterion on F (ĝ)

while also raising χ relative to the φ = 0 state. This can occur, for instance, if the simulation

generates scattering that is not observed in the experiment. Note also, however, that the

cost function includes contributions from all scattering that strikes any detector. Peaks that

strike only a single detector are used to determine optimal orientations even though such

peaks are not used in counting Bragg peak overlaps. This means that high order peaks

(typically those with the best projection geometry) and peaks with large |η| contribute to

the optimization.

III. VERIFICATION TESTS

Our experiments are carried out at APS undulator beamline XOR-1-ID. White radia-

tion enters the B-hutch where the monochromator, sample stage, and detector system are

mounted on a single optical table. We use the monochromator and focusing arrangement

described in [23] with a vertically bent silicon monochromator in transmission geometry.
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Heavy slits are placed between the monochromator and sample to further reduce the back-

ground and to allow limitation of the horizontal extent of the beam. The detector system

uses a liquid nitrogen cooled, lens coupled, 16 bit, 1k × 1k CCD camera focused on a Ce

doped YAG crystal. The nominal pixel size is 4µm, so the field of view is roughly 4× 4mm.

The x-ray sensitive Ce doped layer is thin (1µm) so as to avoid smearing of the images of

diffracted beams as they pass through the sensitive layer at different scattering angles.

The sample, detector, and coordinate system are shown schematically in Fig. 1. The

sample is mounted on a conventional Huber 410 rotation stage. xy translations mounted on

top of a vertical (z) translation provide longitudinal and transverse positioning relative to

the rotation axis and x-ray beam. The single crystal monochromator[23] requires that the

sample and detector stages be mounted at a tilt angle of 2θ50keV
Si(111) = 4.53 degrees. Prior to

measurements, the rotation axis is aligned perpendicular to the beam plane by measuring

absorption images of a steel cylinder as it is rotated in ω and translated along the axis. This

alignment is required in order to keep a constant sample plane in the beam during rotation.

Data collection is run through the control program SPEC using a hierarchy of macros. The

macro starts data acquisition and ω motion, opens a “fast” shutter (located downstream of

the monochromator) when the edge of the δω interval is reached and closes it again at the

end of this interval before the motion is stopped.

The detector is positioned so that the field of view contains the direct beam near the

bottom edge (as in Fig. 1). This means that we can observe the incident beam position

at each L via short exposures with the beam stop removed. Also, relatively high order

diffraction will strike the detector; these peaks provide improved projection geometry.

A. Preliminary characterizations

Incident beam. Characterization of the incident beam yields a measure of the CCD

detector spatial resolution as well as the width of the beam in the y direction. We first use

a knife-edge scan to determine the incident beam width in z. A 0.5 micron gold film with

a sharp edge is scanned across the beam while Au L-shell fluorescence is monitored with

an energy dispersive detector. The film is rotated about the beam to make the film edge

parallel to the line focused beam by minimizing the width of the fluorescence transition. The
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FIG. 9: Horizontal beam profile and horizontal and vertical diffraction spot profiles from a silicon

wafer. (a) Circles show the horizontal incident beam profile after summing across the thin vertical

width. The solid line is a guide to the eye. The full width at half-maximum is 98µm. The

downward, square, and upward pointing symbols are horizontal profiles of a (311) Bragg spot

measured at L1, L2, and L3, respectively. All profiles have been shifted to the same center and

the incident beam has been normalized to the Bragg spots which have been scaled by 103. Since

the single crystal sample is wider than the beam, the horizontal extent of these spots is essentially

that of the beam. (b) The vertical profile across a (311) Bragg spot (symbols as in (a)). The light

line indicates the detector response to the direct incident beam; the heavy line is a Gaussian guide

to the eye showing that the vertical width of the peak is resolved. (c) Vertical profile of a higher

order, (553) or (731) Bragg peak showing the increased width due to larger deflection in the vertical

direction.

resultant beam profile is well characterized by a sharp central Gaussian plus Lorentzian tails

and the height is found to be ≤ 2.5µm FWHM. Fig. 9(a) shows the horizontal intensity

profile of the narrowed incident beam (upstream slits were set to a nominal 100µm opening)

as imaged on the high resolution detector. The intensity is uniform within 3% over the

central 72µm and the full width at half maximum is 98µm.

Sample and measurement parameters. The sample was a small piece of a (111) oriented

silicon wafer, 5 × 3mm2 in cross-section and was thinned to < 0.2mm. The sample was

mounted with the (111) axis roughly parallel to the incident beam at ω = 0. Data were

collected using δω = 1 degree integrations. We measured 40 such intervals over ±20 deg in ω
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relative to normal incidence. For each δω, images were measured at L ≈ 5, 7, 9mm, so there

are 120 2MB images. Each image and the associated δω motion took four seconds. Data

collection speed was further limited by the CCD readout time and was roughly 60 minutes.

For our range of incidence angles, there is a roughly diamond shaped region of sample

space that is always illuminated by the 100µm wide incident beam as well as adjacent re-

gions that move into and out of the beam. This presents an analysis challenge since different

Bragg peaks do not originate from identical sample regions. We show below that we are nev-

ertheless able to isolate the always illuminated region with good resolution. Measurements

on polycrystals using a beam wider than the entire sample avoid this complication.

B. Silicon Data Set and Fits

Diffracted beam images. Fig. 9 shows images of diffracted beams. As expected, the

y direction profile of the diffraction spot is very close to that of the incident beam. The

z direction profiles are foreshortened projections of the wafer thickness in the x direction.

The roughly ten-fold compression of the x direction geometry implies a similar loss in shape

resolution in this direction. Low order Bragg spots have a full width at half-maximum in

the z-direction of ∼ 4 pixels or ∼ 16µm which at the angle of observation corresponds to a

sample thickness of roughly 160µm. Higher order spots with small |η| have broader, fully

resolved profiles that more precisely determine the x direction dimensions of the diffracting

entity.

Results. Fits were begun with no a priori information about sample orientation. The ini-

tially “guessed” orientation corresponds to crystalline cube axes aligned with the laboratory

coordinate system at ω = 0. 1594 Bragg peaks out to |Q| ≈ 14.4Å
−1

or 2θ = 33.2 degrees

were candidates for observation while only the lowest order 300 of these were used in the

orientation grid search. The simulation initially covered sample space with six equilateral

triangles with 150 micron sides forming a hexagon centered on the rotation axis. Note that

this hexagon is substantially larger than the region illuminated by the 100µm wide beam;

however, the simulated beam width was 200 microns so that scattering from anywhere in the

hexagon can be generated by the simulation. One goal of the fitting was for the program to

determine the spatial location of the actual sample, much as it must do in treating polycrys-
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tal data. Before fitting, area elements were re-gridded three times yielding 384 triangular

elements with 18.75µm sides. After completion of three iterations, the smallest elements

were 4.69µm on a side. After each iteration, experimental parameters including the detector

distance, L1, and rotation axis projections onto the detector, j01, j02, j03 were adjusted. The

intervals L2 − L1 and L3 − L2 were fixed to the measured values of 2mm. The z-direction

origins, k01, k02, k03, were fixed to the incident beam positions as imaged on the detector

before and after data collection. Prior fits had determined that the detector pixel pitch was

3.78µm and the beam energy was 49.8 keV. The bandwidth was < 1% and was not included

in these simulations.

A variety of image analysis and fitting criteria were used. Table I shows values of fpeak

and Fmin used and numerical results of fits. For all fits, fhit
smeared = 0.1 and fhit

min = 0.5. The

simulation generates between 75 and 80 Bragg peaks (depending on orientation) that hit at

least one detector and 38 to 42 “qualifying Bragg peaks” that hit detectors at multiple L’s (see

Sec. II D). Thus, Fmin = 0.5 or 0.75 mean that a grid element must generate scattering that

hits ≥ 20 or 30 experimental peaks, respectively. For all criteria the software determined

that a set of area elements near the center of the simulated hexagon contribute to the

observed scattering. Fitted orientations are essentially independent of the criteria of Table

I. The nominal Euler angles are (ω, χ, φ) = (350.4, 34.2, 52.5o) degrees which correspond

to (n̂, Ψ) = (−0.55, 0.33,−0.77, 54.3o) in an axis-angle representation. Had the [111] wafer

normal been mounted perfectly parallel with the incident beam direction, the rotation angle

would have been cos−1 1√
3

= 54.7 degrees. Orientation variation among fitted elements is

small as indicated by the range, ∆Ψ.

Fig. 10 shows sample-space maps corresponding to the fits listed in Table I. Shading

covers triangular grid elements for which qualifying orientations were determined. In the

color version, the weighting of red, green, and blue (rgb) is determined by the fitted axis-

angle pair, (n̂, Ψ) for each area element. The color scale has been adjusted for each image: the

full rgb range is scaled to include only the range of orientation spanned by the corresponding

fit. In all cases, the orientation is uniform over almost all of the fitted region. Comparing

Fig. 10(a) and (b), we see that the fitted region becomes more compact and regular as the

Fmin acceptance criterion increases. This trend indicates improved signal averaging as the

number of matched peaks increases; equally important, it indicates that the image analysis
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TABLE I: Parameters used and results of three fits to silicon single crystal data. Corresponding

maps are shown in Fig. 10.

Fit fpeak Fmin Fitted Fitted Ψ̄ ∆Ψ

elements Area

(mm2) (deg) (deg)

a 0.25 0.5 1484 0.044 54.31 0.5

b 0.25 0.75 907 0.028 54.32 0.3

c 0.5 0.75 270 0.009 54.39 0.2

a Average rotation from reference orientation.

b Total rotation range of fitted elements.

and thresholding at a uniform fraction of ROI peak height generates a consistent set of

projection contours. In Fig. 10(b), the fitted region closely matches the shape of the always

illuminated sub-area of the sample. The left and right truncations are consistent with what

is known of the thickness of the wafter – about 130µm. The maximum deviation of edges

from the always illuminated diamond region is 8µm; the sharpness of the upstream (or left)

face of the wafer is unresolved while the downstream face has deviations of ∼ 7µm. This

asymmetry is consistent with the lineshape asymmetry shown in Fig. 9: optimal position

resolution is associated with sharp Bragg spot edges. Even in Fig. 10(b), deviations of

orientation are seen at the edges of the fitted region – this demonstrates a boundary effect

in which the orientation at the edge of a grain or sample can be adjusted slightly to obtain

overlap with a sufficient number of observed peaks. In polycrystals, this effect may limit

the precision of location of grain boundaries, but near boundary elements can choose which

grain orientation provides the best fit. Fig. 10(c) shows a fit to a data set generated with

fpeak = 0.5. Here, the downstream side of the sample is missing because the corresponding

portion of the intensity has been eliminated (Fig. 9).

Figs. 11 and 12 show the diffraction pattern observed in a single δω interval, along with

simulation results associated with the maps of Figs. 10(a) and (b), respectively. The chosen

ω interval is atypical in that most intervals contain only one or no diffraction peaks from
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FIG. 10: Sample space maps of the illuminated “slot” through the silicon wafer obtained under

data reduction and convergence criteria of Table I. The maps are aligned so that the beam is

incident from the left and the wafer is in the yz-plane at ω = 0. The hexagons, with 150 micron

sides, indicate the simulated region of sample space. The + sign indicates the simulated rotation

axis. The dashed lines show the region of sample space illuminated by the experimental incident

beam as the sample is rotated ±20 degrees. The solid diamond outlines the region that remains

in the beam throughout. White space inside the hexagons has been determined to not satisfy the

fitting criteria for any crystallographic orientation and have been assigned φ = 0.

the single crystal sample. Here, five diffracted beams are present at L1, three at L2, and

two at L3. One high order simulated peak (at L1) that is not in the experimental data set

occurs at the right edge; this peak has 2θ = 29.3 degrees with Miller indices (775) or (11,1,1)

and was probably weak enough to be missed in the data reduction. Simulated diffraction

spots are expected and seen to be smaller than the experimental ones: experimental spots

are projections from the entire illuminated volume of the sample at each ω, whereas the

simulation includes scattering only from those grid elements that remain in the beam and

diffract at many other ω positions. At large |ω| more sample is in the beam and there is

more “missed” intensity than near ω = 0. As fhit increases, the simulated spots become

smaller as can be seen in the figures. The entire data set and these fits can be seen at

http://www.andrew.cmu.edu/user/suter/3dxdm/3dxdm.html.

IV. DISCUSSION

We have described and verified a method that should allow non-destructive internal mi-

crostructure mapping in a wide variety of sample types. Our current analysis software closely

mimics the measurement and can account for a variety of experimental and sample complex-
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FIG. 11: Diffracted beam images at nominal orientation ω = −6.5 degrees with fitted intensity

corresponding to Fig. 10a. In (a), three images, at L1, L2, L3, have been superimposed. Experi-

mental data are shown as black points. Colors (or gray scale) show simulated intensity: red, green

and blue when overlapping experimental data, aqua when not. The line at the bottom indicates

the projected position of the incident beam at L1; the associated dot indicates the detector origin

at (j01, k01) = (536, 1013). Bragg spots are seen to radiate from the incident beam position at

different scattering angles, 2θ, and orientations, η. (b) and (c) show expanded views of individual

Bragg spots; tic marks correspond to 20 pixel intervals; spot positions have been displaced for ease

of comparison. The reduced height in (c) relative to (b) is due to the smaller vertical displacement

causing a more anisotropic projection in (c). The at most subtle broadening of experimental spots

with L is consistent with an energy bandwidth < 1%.

ities. Here, we have demonstrated the ability to resolve, to ∼ 10µm, the shape of a region

of sample with “soft” edges. Three dimensional maps of more interesting samples are a

straightforward extension of this work; in fact, we have recently succeeded in reconstructing

a significant volume of microstructure in an aluminum polycrystal sample.[25] Many appli-

cations suggest themselves, including fundamental studies of grain growth coupled to three

dimensional computer simulations,[12, 13] response of microstructure to stress of a variety

of types, and the structure of polyphase materials and solid-state phase transformations. In

each case, it should be possible to study the response of three dimensional, interconnected

ensembles of grains.

An essential part of obtaining images such as in Fig. 10 and matching diffraction spots
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FIG. 12: Diffracted beam images at nominal orientation ω = −6.5 degrees with fitted intensity

corresponding to Fig. 10b. All conventions are as in Fig. 11. Here, due to use of more stringent

convergence criteria, the simulated intensity lies almost entirely within the experimental Bragg

spots.

as shown in Figs. 11 and 12 is the ability to optimize uncertain experimental parameters

during data fitting. This optimization is done by minimizing the cost function, χ, via zero

temperature Monte Carlo. Several parameters are listed in Table II along with their fitted

values and the change from initial estimates. Note that parameters must be known a priori

sufficiently that at least some sample area elements can be fitted initially; our algorithm

performs Monte Carlo adjustment of these parameters after each iteration of fitting to ori-

entations. Note that the k0 parameters were not adjusted in these fits since measurements

of the position on the detector of the incident beam define this precisely. The final value

of the Monte Carlo cost function, χ, yields ∼ 330 “missed” pixels per detector image (on

average) which is consistent with the background noise and uncovered experimental pixels

seen in Fig. 12. The simulation overlaps on the order of 1400 pixels in each diffraction spot.

The number of parameters that can be adjusted independently may be surprising. Opti-

mization of the detector origins (j0, k0) at each measurement distance makes experimental

Bragg spots co-linear in L. It is assumed that the origins are constant across all ω so these

adjustments are made against many fitted spots. L1 adjustment, keeping the mechanically

defined intervals to other L’s fixed, makes the straight line paths with fixed 2θ values extrap-

olate consistently to the sample and peaks from individual grains extrapolate to a common
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TABLE II: Experimental parameters obtained in the fit shown in Fig. 12.

Parameter Units Fitted Value Change

γa µm/pixel 3.78 −0.22

(j0, k0)1 pixels (531.8, 1013.5) (−3.2, 0)

(j0, k0)2 pixels (534.7, 1013.5) (−0.3, 0)

(j0, k0)3 pixels (537.0, 1012.5) (2.0, 0)

L1 mm 5.04 0.04

E keV 49.8 −0.2

χ 39605b

a Detector pixel pitch calibration.

b Reduced data hit 48685 pixels.

position in the illuminated plane. The detector calibration constant and the x-ray photon

energy are independent: γ and E both adjust scattering angles but E also changes the

distance in ω between simulated peaks, as shown in Fig. 3.

Underlying all this work is the assumption that diffraction spots can be consistently

analyzed to obtain geometrical information. It is encouraging that for the silicon data

presented here a simple thresholding scheme yields quite precise geometry. Silicon has classes

of Bragg peaks with intensities different by a factor of two and intensities vary with Q due

to form factor and lattice vibration effects, so independent analysis of each ROI in the raw

images is essential. Complex lineshapes in interesting materials most likely preclude any

universally correct threshold fraction, fpeak. Some self-consistency tests can be imagined:

in polycrystals, too high a threshold should yield maps with holes, so one may be able to

adjust fpeak downward to just obtain completion. Without doubt, comparisons of x-ray data

with orientation imaging microscopy[9, 10] on sectioned layers of the same sample will be

necessary. Finally, realistic intensity calculations may allow the use of information that we

are now throwing away – the intensity distributions within diffraction spots.

Combining Monte Carlo simulation, physically based lineshape models, and the inclusion

of peak intensity distributions (with modeling of detector point-spread functions) holds the
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possibility of yielding extremely detailed microstructure information. Including in the mea-

surement a strain sensitive detector well downstream of the sample[27] (combined with a

semi-transparent high resolution imaging detector) could yield intra-grain strain maps with

geometric and orientational information about inter-granular environments. Of course, com-

plex models imply additional computation and a multitude of degrees of freedom. Monte

Carlo allows for the making of correlated moves on sets of parameters that cross area ele-

ments such as would be generated by a continuous defect density model for a grain. Again,

the forward model has the robust feature that changing one scattering parameter will gener-

ate changes in all the scattering generated by the grain or area element. Finally, dynamically

optimized finite temperature Monte Carlo[28] provides a means for gaining efficiency, deter-

mining correlations among parameters and estimating errors.

Facilities at the Advanced Photon Source, while adequate for the silicon measurements

presented here and preliminary work on polycrystals, are currently being upgraded. A high

precision air bearing rotation stage with sub-micron errors is being commissioned. Refractive

focusing optics have been developed that allow further reduction in the energy band pass.

Purchase of a CCD camera with more rapid readout is planned as is the design of a semi-

transparent scintillator system that will allow combined mapping and strain measurements.

In the longer term, an undulator source tailored for high energies is planned. These upgrades

will speed data collection and further improve spatial and angular resolution.

Acknowledgements

We thank the personnel at Sector 1, particularly Jon Almer, Kamel Feeza, and Ali

Mashayekhi, for their valuable assistance. We have benefitted from conversations with H.F.

Poulsen, A.D. Rollett, G.S. Rohrer, M. Widom, S. Garoff and J. Sethna. This work was

supported primarily by the MRSEC program of the National Science Foundation under

Award Number DMR-0520425. Use of the Advanced Photon Source was supported by the

U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No.

W-31-109-Eng-38.

30



[1] H.F. Poulsen, Three-Dimensional X-ray Diffraction Microscopy, Springer Tracts in Modern

Physics, Vol 205, G. Hohler, ed., 2004.

[2] H.F. Poulsen, X. Fu, E. Knudsen, E.M. Lauridsen, L. Margulies, S. Schmidt, Mat. Sci. Forum

467-470 1363-72 (2004).

[3] B. Jakobsen, H.F. Poulsen, U. Lienert, J. Almer, S.D. Shastri, H.O. Sørensen, C. Gundlach,

and W. Pantleon, Science, 312, 889-892 (2006).

[4] L. Margulies G. Winther, H.F. Poulsen, Science, 291, 2392– 2394 (2001); see also the associated

“Perspective” by F. Heidelbach, p. 2330.

[5] S. Schmidt, S.F. Nielsen, C. Gundlach, L. Margulies, X. Huang, and D. Juul Jensen, Science,

305, 229-232 (2004).

[6] S.E. Offerman, N.H. van Dijk,J. Sietsma, S. Grigull, E.M. Lauridsen, L. Margulies, H.F.

Poulsen, M. Th. Rekveldt, and S. van der Zwaag, Science, 298, 1003 (2002).

[7] T. Kubo, E. Ohtani, and K. Funakoshi, American Mineralogist, 89, 285-293 (2004).

[8] E.M. Lauridsen and S. Schmidt and R.M. Suter and H.F. Poulsen, J. Appl. Cryst. 34, 744–750

(2001).

[9] H.F. Poulsen, S.F. Nielsen, E.M. Lauridsen, S. Schmidt, R.M. Suter, U. Lienert, L. Margulies,

T. Lorentzen, and D. Juul Jensen, J. Appl. Cryst., 34, 751–756 (2001).

[10] G.S. Rohrer, Ann. Rev. of Mat. Res. 35, 99-126 (2005).

[11] See also http://mimp.materials.cmu.edu/ and publications listed thereon.

[12] J. Gruber, D.C. George, A.P. Kuprat, G.S. Rohrer, A.D. Rollett, Effect of Anisotropic Grain

Boundary Properties on Grain Boundary Plane Distributions During Grain Growth, Scripta

Materialia 53 351-355 (2005).

[13] D. Kinderlehrer, J. Lee, I. Livshits, and S. Taasan, in Continuum Scale Simulation of Engi-

neering Materials: Fundamentals - Microstructures - Process Applications, eds. D. Raabe, F.

Roters, F. Barlat, L.-Q. Chen, Wiley-VCH Verlag Berlin GmbH & Co. pp. 356-367 (2004).

[14] B.C. Larson, W. Yang, J.D. Budai, J.Z. Tischler, J.W.L. Pang, R.I. Barabash, W. Liu, and

G.E. Ice, J. Synchr. Radiation, 12, 155-162 (2005).

[15] L.E. Levine, B.C. Larson, W. Yange, M.E. Kassner, J.Z. Tischler, M.A. Delos-Reyes, R.J.

31

http://mimp.materials.cmu.edu/


Fields, and W. Liu, Nature Materials, 5, 619-622 (2006).

[16] H.O. Sørensen, B. Jakobsen, E. Knudsen, E.M. Lauridsen, S.F. Nielsen, H.F. Poulsen, S.

Schmidt, G. Winther, L. Margulies, Nuclear Instru. and Methods in Phys. Res. B 246 232237

(2006).

[17] H.F. Poulsen, F. Xiaowei, J. Appl. Cryst. 36, 1062-8 (2003).

[18] S. Schmidt, H.F. Poulsen, G.B.M. Vaughan, J. Appl. Crystallogr. (Denmark), 36, 326 - 32,

(2003).

[19] T. Markussen, X. Fu, L. Margulies, E.M. Lauridsen, S.F. Nielsen, S. Schmidt, H.F. Poulsen,

J. Appl. Cryst. 37, 96-102 (2004).

[20] X. Fu, E. Knudsen, H.F. Poulsen, G.T. Herman, T. Gabor, B.M. Carvalho, H.Y. Liao, in

Developments in X-Ray Tomography IV, SPIE 5535, 261-273 (2004).

[21] A. Alpers, E. Knudsen, G.T. Herman, H.F. Poulsen, J. of App. Cryst. 39, 582-588 (2006).

[22] N.K. Roy and R.M. Suter, unpublished.

[23] U. Lienert, C. Schulze, V. Honkimaki, T. Tschentscher, S. Garbe, O. Hignette, A. Horsewell,

M. Lingham, H.F. Poulsen, N.B. Thomsen, and E. Ziegler, J. Synch. Rad. 5, 226-231 (1998).

[24] We take the variation in angle of incidence, δχ to be the difference in scattering angles for

radiation from the (111) planes of a silicon monochromator crystal: δχ = 2θ−2θ0 = 2GSi
111(

1
2k−

1
2k0

). Energies greater than the nominal have δχ < 0, corresponding to having kz
i < 0. This

formula approximates in incoming white beam as being parallel.

[25] R.M. Suter, C. Hefferan, D. Hennessy, C. Xiao, U. Lienert, in preparation.

[26] As pointed out in [1] and [8], this is clearly true if the sample is larger than the incident x-ray

beam in which case regions far from the rotation axis will move into and out of the beam as

ω is rotated.

[27] R.V. Martins, L. Margulies, S. Schmidt, H.F. Poulsen, T. Leffers, Mat. Sci. & Engr. A 387-

389, 84-88 (2004).

[28] D. Bouzida, S. Kumar, and R.H. Swendsen, Phys. Rev. A, 45, 8894-8901 (1992).

32


	Introduction
	Analysis Method
	Sample Simulation
	Scattering Calculations
	Raw Data and Image Analysis
	Fitting Procedure
	Fmin acceptance criterion.
	Nature of the Search Space and Overview of Search Logic
	Orientation Grid Search
	Monte Carlo refinement


	Verification Tests
	Preliminary characterizations
	Silicon Data Set and Fits

	Discussion 
	References

