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Abstract

Motivated by sponsored search auctions, we study multi-unit auctions with budget con-

straints. In the mechanism we proposed, Sort-Cut, understating the budgets or values is weakly

dominated. Since Sort-Cut�s revenue is increasing in budgets and values, all kinds of equilibrium

deviations from true valuations turn out to be bene�cial to the auctioneer. We obtain a lower

bound on the revenue of Sort-Cut and discuss e¢ ency properties of its expost Nash equilibrium.
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1 Introduction

Consider the problem of the advertisement departments of Dell, HP or Sony, which is to appear

in a particular search engine�s query of "laptops." Search engines like Google and Yahoo! use

complicated rules to determine the allocation1 of these advertisements, or "sponsored links" and

also their pricing rules. Roughly, the advertisers specify "a value per-click" and a daily maximum

budget. Allocation and pricing is then determined by a complex algorithm which makes sure that

the advertisers are not, per-click, charged more than their stated values and also are not charged

more than their total budget in a day.

Advertisers true (estimated) values per-click and daily budgets are, of course, their private

information and given any allocation and pricing rule they will act strategically in bidding their
�We thank NSF and Google Research for support.
yTepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA. E-mails: isaemin@cmu.edu,

ssayedir@cmu.edu, ravi@cmu.edu
1Allocations meaning which advertisements will be displayed, also in which order they will be displayed if there

are more than one advertisement.
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values and budgets. It is then natural to ask whether there is any mechanism in which the par-

ticipants would prefer to truthfully reveal their types�per-click values and daily budgets in this

model. Then there will not be any "gaming" of the mechanism and socially e¢ cient allocations can

be implemented. Second-price auctions in single unit auction problems and di¤erent versions of

Vickrey-Clark-Groves mechanisms in more general setups have been very successful in implement-

ing socially e¢ cient allocations in "dominant strategies." Unfortunately, a recent impossibility

result (Dobzinski et al. 2008) precludes the existence of a truthful mechanism with Pareto optimal

allocations in this important setting.

In this paper, we propose Sort-Cut, a mechanism which does the next best thing from the auc-

tioneer�s point of view. In our mechanism,understating the budgets or values is weakly dominated.

Thus the only way a bidder can possibly bene�t from lying in our mechanism is by overstating

their values or budgets, which leads to good revenue properties for the auctioneer at equilibria.

The idea of Sort-Cut is very similar to the idea of a second-price auction. In second-price

auctions without budget constraints, the highest bidder is allocated the object and he pays the

highest loser�s bid to the auctioneer. Uniform-price auction generalizes this idea to multi-unit

auctions. The idea is to charge the winners by the opportunity cost: the losers bids. When the

bidders have budget constraints, however, losers might not be able to buy all the items if they

were o¤ered, they might simply not a¤ord it. Taken this into account, we modify the algorithm to

charge the winners, per item, for the value of the highest value loser, but only up to highest loser�s

budget. After the highest value loser�s budget is exhausted, she would not be able to a¤ord any

more items, so we start charging the winners the second highest value, up to her budget and so on.

Given this pricing idea2, the winners and losers are determined via a cut-point to clear the market,

i.e. to be able to sell all the available items.

Sort-Cut has a number of desirable properties. First of all, it sells all the items so there is no

ine¢ ciency in that sense (whereas Borgs et al (2005) and Goldberg et al (2001) might leave some of

the items unallocated). Second, although it is not truthful, bidders can only bene�t by overstating

their values or budgets, a deviation which is the most desirable one for the auctioneer3. Third,

2There is a caveat here, which is that the lowest value winner might not be able to exhaust all her budget. Then
all higher value bidders are charged �rst at the lowest value winner�s value up to her unused budget. This makes
sense as the lowest value winner is still a competitor to other winners to buy further items. The pricing for the lowest
value winner, for the same reason, starts from the highest value loser. She cannot be a competitor to herself!

3We show that the revenue of Sort-Cut mechanism is monotone with respect to the vector of bids.
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allocation in the equilibrium of Sort-cut is almost Pareto optimal in the sense that, all winner�s

values are greater than cut point bidder�s announced value and all losers values are smaller than

cut point bidder�s announced value. And lastly, Sort-Cut reduces to second-price auction when

there are no budget constraints4.

After introducing Sort-cut, we prove that revenue of every equilibrium of Sort-cut di¤ers at

most the budget of one bidder from the revenue of the market clearing price mechanism according

to the true valuations. Market clearing mechanism determines a market clearing price and sells all

the units for that price. This mechanism however is not truthful and the bidders can bene�t from

understating their budgets (and thereby decreasing auctioneer�s revenue).

After discussing related literature below, we introduce the model and our mechanism in Section

2. Section 3 discusses truthfulness, revenue and Pareto optimality properties of Sort-Cut. Section

4 compares market clearing price mechanism and sort cut. In Section 5 we conclude and discuss

possible extensions of our model.

Related Literature The problem of multi-unit auctions with budget-constrained bidders

was initiated by Borgs et al. (2005). Our model is similar to theirs except that we do not need

to assume that the utility is �1 when budget constraints are violated. They introduce a truthful

mechanism that extracts a constant fraction of the optimal revenue asymptotically; however, their

mechanism may leave some units unsold. The idea is to group the people randomly into two groups,

and use the market clearing price of each group as a posted price to the other group. Another paper

that uses the same model is by Abrams (2006)- it uses techniques similar to Borgs et al. (2005)

but improves upon it; however, it may still leave some units unsold.

In an important paper, Dobzinski et al. (2008), proves an impossibility result. They �rst

assume that the budgets of all players are publicly known, and under this assumption, they give

a truthful mechanism which is individual rational and Pareto-optimal. Their mechanism basically

applies Ausubel�s multi-unit auction (Ausubel, 2004) to this budgeted setting. Then they show

that their mechanism is the unique mechanism which is both truthful and Pareto-optimal under

the assumption of publicly known budgets. Finally by showing that their mechanism is not truthful
4Generalized second-price auctions studied by Edelman et al. (2007) also has a similar idea in multi-item auctions.

In that mechanism the winner of the best item (�rst sponsored link) is charged the bid of the second-best item, the
winner of the second best item is charged the bid of the third-best item and so on. In this environment there are no
budget constraints and second-highest bid is always the competitor of the highest value.
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if the budgets are private knowledge, they conclude that no mechanism for this problem can be

individual rational, truthful and Pareto-optimal.

Bhattacharya et al. (2010a) show that although the mechanism proposed for public budgets

in Dobzinski et al. (2008) is not truthful, the only way that bidders can bene�t from lying is to

over-state their budget; this, together with the fact that the utility of a bidder who is charged

more than her budget is �1, helps them to modify the non-truthful deterministic mechanism into

a truthful randomized mechanism. For each bidder, instead of charging her the price speci�ed by

Dobzinski et al. (2008), they run a lottery (with appropriate probability) and either charge her 0, or

all of her announced budget. Therefore, since a bidder has to pay all of her announced budget with

positive probability, the expected utility of over-stating the budget becomes �1. The assumption

of the utility being �1 when the budget constraints are violated is not very realistic. In our work,

we drop that by assuming that the utility of bidder who has to pay more than her budget is an

arbitrary negative value. Furthermore, we avoid randomized pricing and allocation to guarantee

ex-post individual rationality.

Ashlagi et al. (2010) look at budget constraints in position auctions; in their setting, bidders

must be matched to the slots where each slot corresponds to a certain fraction of the total supply.

Bidders are pro�t maximizer and face budget constraints. They assume that violation of budget

constraints leads to zero utility for the bidder. They propose a modi�cation of Generalized Second

Price mechanism which is Pareto-optimal and envy-free. In their setting, the fraction of supply

on each of the slots is �xed; this makes their problem more like a matching problem with discrete

structure. However, in our setting, the auctioneer has complete freedom on how much of the supply

to give to each of the bidders.

There are other papers that have studied budget constraints in mechanism design but in settings

more di¤erent from ours. Feldman et al. (2008) give a truthful mechanism for ad auctions with

budget-constrained advertisers where there are multiple slots available for each query, and an

advertiser cannot appear in more than one slot per query. The utility function that they use is

very di¤erent from ours. In Feldman et al. (2008), they de�ne advertisers to be click-maximizers,

i.e. advertisers do not value their unused budget, they just want to maximize the amount of supply

they get; however, in our model, advertisers are pro�t-maximizers.

Pai and Vohra (2010) look at optimal auctions with budget constraints. In their setting, one
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indivisible good is to be allocated which makes the setting naturally di¤erent from ours; moreover,

they assume �1 utility if budget constraints are violated. In another paper, Malakhov and Vohra

(2008) look at the divisible case; however, they assume that there are only two bidder one of

which is has no budget constraint while the budget constraint of the other one is publicly known.

Kempe et al. (2009) look at budget constraints when the bidders are unit-demand and there are

heterogenous items. Bhattacharya et al. (2010b) show that sequential posted price can achieve

a constant fraction of the optimal revenue in budgeted setting with heterogenous items; however,

in their setting, budgets are publicly known; some of their results carry over to the case where

budgets are private knowledge as well, however, for that they need to assume that the utility of

being over-budgeted is �1 and apply the technique used in Bhattacharya et al. (2010a).

Both Borgs et al. (2005) and Dobzinski et al. (2008) argue that lack of quasi-linearity (because

of hard budget constraints) is the most important di¢ culty of the problem. Still some papers have

tried to solve the problem by relaxing hard budget constraints (Maskin, 2000), or modeling the

budget constraint as an upper bound on the value obtained by the bidder rather than her payment

(Mehta, 2007). It has also been shown (Borgs et al., 2005) that modeling budget constraints with

quasi-linear functions can lead to arbitrarily bad revenue.

Benoit and Krishna (2001) studies an auction for selling two single items to budget-constrained

bidders. They mainly focus on the e¤ect of bidding aggressively on an unwanted item with the

purpose of depleting other bidders budget. A similar e¤ect arises in our model as well, but the

focus of our work is generally very di¤erent from theirs. Another paper is Che and Gale (1996)

which compares �rst-price and all-pay auctions in a budget-constrained setting and show that the

expected payo¤of all-pay auctions is better under some assumptions. However, they do not consider

multi-unit items.

2 Model and Sort-Cut

There are m units of a good for sale. There are n bidders and they have linear demand up to their

budget limits. Speci�cally, each bidder i 2 N = f1; :::; ng has two dimensional type (vi; bi) where

vi denotes private value and bi denotes budget limit. Bidder i�s utility by getting q units of the
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good and paying p is given by

ui (q; p) =

8><>: qvi � p if p � bi

�C if p > bi

where 1 � C > 0:

We are interested in mechanisms to sell m items to n bidders which have good truthfulness,

e¢ ciency and revenue properties. Equilibrium concept we use is that of �ex-post Nash equilibrium.�

In an ex-post Nash equilibrium, no bidder would like to deviate after he/she observes all other

players�strategies. We believe that this is an appropriate equilibrium concept as we are motivated

by sponsored search auctions. Typically, sponsored search auctions are dynamic auctions and bids

can be changed anytime. Therefore, it is reasonable that in a stable situation (steady state), no

bidder would like to deviate even after bids are revealed. Since the equilibrium concept is ex-post

Nash, we do not need to assume strong conditions on private information. Speci�cally, we can allow

for interdependency in two dimensional type within or across bidders.

We focus on direct mechanisms in which bidders announce their types (values and budgets.)

A mechanism consists of an allocation rule (how many units to allocate to each bidder) and a

pricing rule (how much to charge each bidder). It takes the announcements as inputs and produces

allocation and pricing scheme as an output. We consider mechanisms that satisfy the two properties

(i) sell all m items (ii) satisfy individual rationality constraints (i.e. all bidders prefer to participate

in the mechanism). Note that the latter condition implies that bidders who are not allocated any

items (losers) cannot be charged a positive price. Bidders who are allocated with items (winners),

however, will be charged a positive price. Let us �rst introduce a general and an abstract pricing

rule.

De�nition 1 When we say that the price is set according to a pricing function � : R+ ! R+, if

the marginal price of the next unit is � (y) dollars for a buyer who has already spent y dollars in

the market. In other words, if pricing of an item is set according to �; a buyer with b dollars can

a¤ord

x (�; b) =

Z b

0

1

� (y)
dy

units of the item. We are interested in pricing rules � (�) which are nonincreasing and positive.
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Hence, we assume � (y) � � (y0) for all y � y0 and also � (y) > 0 for all y:

The following de�nition is also convenient for later discussions.

De�nition 2 (Shifted pricing) For a given pricing function � and a positive real number z, we

de�ne the pricing function �z (y) as:

�z (y) = � (z + y)

In words, �z (y) is the pricing function obtained by shifting � (y) ; z units to right. Note that

we have, for any z 2 [0; b]

x (�; b) = x (�; z) + x (�z; b� z)

Now, we are ready to introduce a special class of pricing and allocation rules, that we name

Procedure Cut

De�nition 3 Procedure cut takes values and budgets of the bidders (b;v) 2 Rn++�Rn++; a pricing

rule � (�) and a real number c 2 (0;
Pn
i=1 bi] as input. First, it sorts value and bid vectors (b;v)

in nonascending5 order of values and reindexes them so that v1 � v2 � ::: � vn:
6 Then, it picks

j such that c �
Pj
i=1 bi and c >

Pj�1
i=1 bi. Let s =

Pj
i=1 bi � c. Procedure cut sets the pricing

function of bidders 1; :::; j � 1 to �c and the pricing function of bidder j to �c+s: The allocation of

each bidder 1; ::; j � 1 is such that she spends all her budget, i.e. xi = x (�c; bi) for i = 1; ::; j � 1:

The allocation of bidder j is such that she spends bj � s of her budget, i.e. xj = x (�c+s; bj � s) :

All bidders j + 1; :::; n get no allocation and pay nothing.

De�ne X (c; (b;v)) to be the total number of units allocated to all bidders, i.e. X (c; (b;v)) =Pj
i=1 xi: Bidders 1; :::; j are called full winners, bidder j is called a partial winner

7 and bidders

j + 1; :::; n are called losers.

We consider pricing rules which are not too high, in the sense that it will be able to sell all the

5 It breaks ties among equal valued bidders arbitrarily.
6Note that after reindexing, budgets are not necessarily sorted in a desending way. A bidder with a high valuation

could have a small budget.
7Note that s denotes the unused budget of the partial winner, where s 2 [0; bj ] :
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items if all budgets are exhausted. Hence we assume that, for B �
Pn
i=1 bi

� (y) � B

m

With this assumption, we can easily conclude that X (B; (b;v)) � m: This is because when c = B;

all bidders are full winners and their allocations satisfy

x
�
�B; bi

�
� biPn

i=1 bi
m

and hence

X (B; (b;v)) =
Xn

i=1
x
�
�B; bi

�
� m

We are interested in rules that sell m units. In the following proposition, we show that for

any procedure cut rule, X (c; (b;v)) is strictly increasing and continuous in c: Together with the

assumption that X (
Pn
i=1 bi; (b;v)) � m; this will imply that there will be a unique c such that

X (c; (b;v)) = m:

Proposition 1 X (c; (b;v)) is strictly increasing and continuous in c:

Proof. In the appendix

We also want to consider pricing rules which are not too high, in the sense that it will be able

to sell all the items if all budgets are exhausted. Hence we assume that, for B �
Pn
i=1 bi

� (y) � B

m

With this assumption, we can easily conclude that X (B; (b;v)) � m: This is because when c = B;

all bidders are full winners and their allocations satisfy

x
�
�B; bi

�
� biPn

i=1 bi
m

and hence

X (B; (b;v)) =
Xn

i=1
x
�
�B; bi

�
� m
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An important corollary of Proposition 1 is that there will be a unique c� that will satisfy

X (c�; (b;v)) = m:

De�nition 4 We call the unique c� with X (c�; (b;v)) = m to be the cut-point. Given pricing

function � (�) and vectors (b;v) ; we name Procedure cut that sells m items (with c = c�) to be the

m-Procedure cut.

We now can introduce a novel mechanism that we name Sort-Cut Mechanism.

De�nition 5 Sort-Cut is a m-Procedure Cut mechanism in which � (�) is a step function de�ned

by (reindexed) (b;v): � (y) = vi for y 2 (
Pi�1
k=1 bk;

Pi
k=1 bk]:

8

In other words, Sort-Cut takes the vectors (b;v) sorts them in nonascending order of values,

calculates the unique cut-point c� according the pricing function that each full winner (bidders

1; ::; j � 1) pays vj per unit up to a budget of s; then pay vj+1 per unit up to a budget of bj+1;

then pay vj+2 per unit up to a budget of bj+2; and so on, until their budgets are exhausted; and

the partial winner (bidder j) pays vj+1 per unit up to a budget of bj+1; then pay vj+2 per unit up

to a budget of bj+2; and so on, until she spends bj � s:

Let us the denote the sort-cut revenue byRS (b;v) (note thatRS (b;v) = c� whereX (c�; (b;v)) =

m). Now we show that RS (b;v) is nondecreasing in b and v:

Proposition 2 RS (b;v) is continuous and nondecreasing in b and v

Proof. In the appendix

3 Truthfulness, Revenue and Pareto Optimality

3.1 Truthfulness

In this section, we show that Sort-Cut has good truthfulness properties. More speci�cally, no bidder

bene�ts from understating his value or budget.

Proposition 3 For any bidder i with types (bi; vi) ; bidding (bi; vi) weakly dominates bidding
�
bi; v

�
i

�
for v�i < vi:

8And also � (y) = " > 0 for y 2 (B;1)
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Proof. Consider any (b�i;v�i) : First of all, if i becomes a loser by bidding
�
bi; v

�
i

�
; his utility

cannot increase with this deviation. This is because losers�utilities are zero and by construction,

a bidder with type (bi; vi) achieves a nonnegative utility by bidding (bi; vi) : We will look at the

possible cases one by one:

� if i is a loser by bidding (bi; vi) ; then he will be a loser by bidding
�
bi; v

�
i

�
(since pricing

function gets better for the winners). Hence his utility cannot increase by this deviation.

� if i is a partial winner by bidding (bi; vi) and bidding
�
bi; v

�
i

�
makes him a partial winner,

then he will have the same pricing function but he will be able to use less of his budget

(since pricing function for winners become better), hence his utility cannot increase. Bidder

i cannot become a winner by bidding
�
bi; v

�
i

�
; when he is a partial winner by bidding (bi; vi).

� if i is winner by bidding (bi; vi) and bidding
�
bi; v

�
i

�
makes him a winner, his utility does not

change. This is because Sort-cut pricing ignores the value of winners in pricing calculation.

If i is winner by bidding (bi; vi) and bidding
�
bi; v

�
i

�
makes him a partial winner, then the

original partial winner j (with an unused budget s) has to be a winner after the deviation.

We argue that i�s utility decreases. It is true that i would get the items at a lower per unit

price after the deviation, but at the same time he using less of his budget. The argument

is that, by this deviation i cannot get to lower priced items and this follows from the fact

that revenue of Sort-cut cannot decrease after the deviation. More formally, let us denote the

unused budget of i after the deviation by s0: We know that s0 � s (because revenue cannot

increase). Bidder i�s utility di¤erence with the deviation can be shown to be nonpositive
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(where � and c are de�ned with respect to (b;v))

�
x
�
�c+s; bi � s0

�
vi �

�
bi � s0

��
� (x (�c; bi) vi � bi)

=
�
x
�
�c+s; bi � s0

�
� x (�c; bi)

�
vi + s

0

�
�
x
�
�c+s

0
; bi � s0

�
� x (�c; bi)

�
vi + s

0

=
�
x
�
�c+s

0
; bi � s0

�
�
�
x
�
�c; s0

�
+ x

�
�c+s

0
; bi � s0

���
vi + s

0

= s0 � x
�
�c; s0

�
vi

� s0 � s0

vi
vi

= 0

where the �rst inequality follows from s0 � s and second inequality follows from �c (y) � vi:

Proposition 4 For any bidder i with types (bi; vi) bidding (bi; vi) weakly dominates bidding
�
b�i ; vi

�
for b�i < bi:

Proof. Consider any (b�i;v�i) ; �rst of all, same as above proof if i becomes a loser by bidding�
b�i ; vi

�
; his utility cannot increase with this deviation. We look at the possible cases one by one:

� if i is a loser by bidding (bi; vi) ; then he will be a loser by bidding
�
b�i ; vi

�
(since pricing

function gets better for the winners).

� if i is a partial winner by bidding (bi; vi) and bidding
�
b�i ; vi

�
makes him a partial winner,

then he will have the same pricing function but he will be able to use less of his budget

(since pricing function for winners becomes better), hence his utility cannot increase. Bidder

i cannot become a winner by bidding (bi; v0i) ; when he is a partial winner by bidding (bi; vi).

� if i is winner by bidding (bi; vi) and bidding
�
b�i ; vi

�
makes him a partial winner, then i would

be worse o¤ with this deviation. This is because, (i) he is using less of his budget (ii) his

pricing got worse. If i is winner by bidding (bi; vi) and bidding (b0i; vi) makes him a winner,

we can argue that his utility decreases. It is true that i may get the items at a lower per unit

price after the deviation, but at the same time he is using less of his budget. The argument
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is that, by this deviation i cannot get to lower priced items and this follows from the fact

that revenue of Sort-cut cannot decrease after the deviation. More formally, bidder i�s utility

di¤erence with the deviation can be shown to be nonpositive (where � and c are de�ned with

respect to (b;v) and c0(� c) is the Sort-cut revenue after deviation)

�
x
�
�c

0+bi�b�i ; b�i

�
vi � b�i

�
� (x (�c; bi) vi � bi)

=
�
x
�
�c

0+bi�b�i ; b�i

�
� x (�c; bi)

�
vi + bi � b�i

�
�
x
�
�c+bi�b

�
i ; b�i

�
� x (�c; bi)

�
vi + bi � b�i

=
�
x
�
�c+bi�b

�
i ; b�i

�
�
�
x
�
�c; bi � b�i

�
+ x

�
�c+bi�b

�
i ; b�i

���
vi + bi � b�i

= bi � b�i � x
�
�c; bi � b�i

�
vi

� bi � b�i �
bi � b�i
vi

vi

= 0

where the �rst inequality follows from c � c0 and second inequality follows from �c (y) � vi:

Similarly, we can argue that bidding
�
b�i ; v

�
i

�
for b�i < bi and v

0
i < v

�
i is weakly dominated by

bidding (bi; vi) : This follows from the proofs above. The same proof methods would work in the

sense that we can show both
�
b�i ; vi

�
and

�
bi; v

�
i

�
dominate

�
b�i ; v

�
i

�
when b�i < bi and v�i < vi:

Hence, we have the following result.

Proposition 5 For any bidder i with types (bi; vi) bidding (bi; vi) weakly dominates bidding
�
b�i ; v

�
i

�
for b�i < bi and v

�
i < vi:

Propositions 3, 4 and 5 establish that the revenue decreasing deviations should not occur in

equilibrium (they are weakly dominated). There are two deviations, however, which may increase

or decrease the revenue. These deviations are �understating budget and overstating value� and

�overstating budget and understating value.�Now, we show that the former deviation is not rea-

sonable in the sense that it could be a best response only when the utility with that strategy is

zero. Then we show that the latter deviation could happen in equilibrium, yet whenever it is a

(strict) pro�table deviation from truthful revelation, the revenue increases with the deviation.
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Proposition 6 For any bidder i with types (bi; vi) ; for b�i < bi and v
+
i > vi; bidding

�
b�i ; v

+
i

�
can

never be in the set of best responses unless bidder i�s utility in her best response is 0:

Proof. Given (b�i;v�i) ; suppose that
�
b�i ; v

+
i

�
is a best response for i where b�i < bi and v

+
i > vi:

Since bidding (bi; vi) would give nonnegative utility to bidder i; utility by bidding
�
b�i ; v

+
i

�
has to

be nonnegative. Now, we claim that bidding
�
bi; v

+
i

�
is a better response than

�
b�i ; v

+
i

�
; and it is

strictly better when the utility with
�
bi; v

+
i

�
is strictly positive. This implies

�
b�i ; v

+
i

�
could be a

best response only when bidder i�s utility in her best response is 0:

Suppose that utility by bidding
�
b�i ; v

+
i

�
is nonnegative and consider the utility di¤erence be-

tween bidding
�
b�i ; v

+
i

�
versus bidding

�
bi; v

+
i

�
. The utility di¤erence is clearly zero if i is a loser

in both cases. For all other cases, i would be either a partial winner or winner by bidding
�
bi; v

+
i

�
:

Then, we could see that bidding
�
bi; v

+
i

�
gives a higher utility then bidding

�
b�i ; v

+
i

�
: The argument

is the same as in the proof for Proposition 4: by bidding an extra budget of bi � b�i bidder i can

get extra items at a per unit price lower than his value.

In other words, we should not expect to see
�
b�i ; v

+
i

�
to be played, since it is either worse than

(bi; vi) or
�
bi; v

+
i

�
:

Proposition 7 For any bidder i with types (bi; vi) ; for b+i > bi and v�i < vi; whenever bidding�
b+i ; v

�
i

�
brings a higher utility to i than bidding (bi; vi) ; the auctioneer�s revenue with

�
b+i ; v

�
i

�
is

not lower than the revenue with (bi; vi) :

Proof. Given (b�i;v�i) ; for some b+i > bi and v
�
i < vi; suppose that ui

��
b�i; b

+
i

�
;
�
v�i; v

�
i

��
>

ui ((b�i; bi) ; (v�i; vi)) : Since bidder i is budget-constrained, he will have to be a partial winner by

bidding
�
b+i ; v

�
i

�
(if he is a winner his utility would be �C; and if he is a loser his utility would be

0).

� if he is a loser by bidding (bi; vi) ; auctioneers revenue clearly increases with
�
b+i ; v

�
i

�
: This

is because i�s ranking with v�i is not higher than with vi and so by deviating from (bi; vi) to�
b+i ; v

�
i

�
; all winners remain winners and i becomes a partial winner.

� if he is a winner by bidding (bi; vi) ; the partial winner with (bi; vi) has to become a full

winner after i deviates to
�
b+i ; v

�
i

�
(otherwise, i would be worse o¤ by

�
b+i ; v

�
i

�
as he will

13



have a worse pricing function) In this case the revenue has to increase. The argument is that,

for this deviation to be bene�cial, i has to get lower priced items after the deviation. For this

to be the case, partial winner�s unused budget before the deviation, plus i�s used budget after

the deviation has to be greater than i�s budget, bi: But then, the revenue increases.

� if he is partial winner by bidding (bi; vi) ; we need to analyze two cases: (i) if i�s ranking

among the bidders is the same (ii) if i�s ranking is di¤erent. For (i), the pricing for (bi; vi)

and
�
b+i ; v

�
i

�
are the same. Since utility with

�
b+i ; v

�
i

�
is more than utility with (bi; vi) ; this

means i is using more of his budget with
�
b+i ; v

�
i

�
: Therefore the revenue increases. For (ii),

i�s ranking has to be worse with
�
b+i ; v

�
i

�
: Now, as similar to above, we argue that total

budget of �new winners�after deviation plus the used budget of i after deviation has to be

greater than bi: If that is not the case, i cannot get to lower prices.

In above propositions we argued that playing
�
b�i ; vi

�
;
�
bi; v

�
i

�
and

�
b�i ; v

�
i

�
are not reasonable

(they are dominated by (bi; vi)); playing
�
b�i ; v

+
i

�
is not reasonable in a weaker sense (it is dominated

by a combination of (bi; vi) and
�
bi; v

+
i

�
); also playing

�
b+i ; v

�
i

�
is reasonable only when it is done

by a winner, which becomes a partial winner after deviation and increases the revenue. We call the

equilibria in which the strategies satisfy these conditions a re�ned equilibrium. More formally,

De�nition 6 In a re�ned equilibrium, bidder i does not play
�
b�i ; vi

�
,
�
bi; v

�
i

�
;
�
b�i ; v

�
i

�
and�

b�i ; v
+
i

�
:Moreover, bidder i plays

�
b+i ; v

�
i

�
only when ui

��
b�i; b

+
i

�
;
�
v�i; v

�
i

��
> ui ((b�i; bi) ; (v�i; vi)) :

In other words, in a re�ned equilibrium, bidders never understate their budgets, and they understate

their values only when they overstate their budgets making them better o¤ than truthful announce-

ment.

Recall that when ui
��
b�i; b

+
i

�
;
�
v�i; v

�
i

��
> ui ((b�i; bi) ; (v�i; vi)) ;

�
b+i ; v

�
i

�
makes i a partial

winner after the deviation and revenue is higher with
�
b+i ; v

�
i

�
than with (bi; vi).

3.2 Revenue

There could be 8 di¤erent kinds of deviations from truthful revelation, (bi; vi) : 5 of them are

discussed in above de�nition, and the remaining 3 of them, namely
�
bi; v

+
i

�
;
�
b+i ; vi

�
and

�
b+i ; v

+
i

�
14



can only increase the revenue. We hence have the following result almost immediately.

Proposition 8 In a re�ned equilibrium of Sort-Cut, revenue is bounded below by the revenue of

Sort-Cut with truthful revelations.

Proof. Consider any re�ned equilibrium of Sort-Cut. Let b�i and v
�
i denote understating the types,

and b+i and v
+
i denote overstating the types (with respect to true types). We know that

�
b�i ; vi

�
,�

bi; v
�
i

�
;
�
b�i ; v

�
i

�
and

�
b�i ; v

+
i

�
cannot occur. Additionally,

�
b+i ; v

�
i

�
can only happen when it

increases the revenue. Moreover, each of the remaining 3 deviations,
�
bi; v

+
i

�
;
�
b+i ; vi

�
and

�
b+i ; v

+
i

�
increases the revenue. Since the argument about the deviations hold for arbitrary announcement of

other players, any re�ned equilibrium revenue is not smaller than revenue with truthful revelations.

Alternatively, consider truthful type announcements, if this is an expost equilibrium, we are done.

Otherwise, at least one player has a pro�table deviation in re�ned strategies, with this deviation

revenue increases. If after the deviation there is no further deviation, we are done. If not, there

is at least one player has a pro�table deviation in re�ned strategies, with this deviation revenue

increases (as compared to previous revenue and therefore also to revenue with truthful revelations).

And so on.

3.3 Pareto Optimality

Among di¤erent e¢ ciency concepts that could be considered, we consider that of pareto optimality:

we say that an allocation is pareto optimal if there is no other allocation in which all players

(including the auctioneer) are better o¤ and at least one player strictly better o¤9. In this setup,

Dobzinsky et all (2008) has shown pareto optimality is equivalent to a "no trade" condition: an

allocation is pareto e¢ cient if (a) all units are sold and (b) a player get a non-zero allocation only

if all higher value players exhausted their budgets. In other words, an allocation is pareto optimal

when given true value of the partial winner, all winners have higher values and all losers have lower

values.

Above subsection illustrates that Sort-Cut has good revenue properties. The following result

is regarding the e¢ ciency (pareto optimality) of equilibrium of Sort-Cut. It obtains that in any

9Maximizing social welfare dictates all items to be allocated to the bidder with the highest value, even if this bidder
very small budget. We follow Dobzinsky at all (2007) and consider pareto optimality as the appropriate e¢ ciency
concept.
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expost Nash equilibrium of Sort-Cut, the full winners and losers are ordered in the right way given

the announced value of the partial winner.

Proposition 9 Consider any expost Nash equilibrium of Sort-Cut where vj is the announced value

of cut point bidder j: Every bidder i 6= j who has true value vTi > vj is a full winner, and every

bidder i 6= j who has true value vTi < vj is a loser in this equilibrium of Sort-Cut.

Proof. First, consider a bidder i whose value is vTi > vj : We prove that she must be a full winner

in equilibrium. Assume for the sake of contradiction that bidder i is a loser, so her utility is zero.

If she deviates and bids vj + " (for 0 < " < vTi � vj) and her true budget, she will become either a

full winner or the cut-point bidder (otherwise revenue of Sort-cut will decrease with this deviation,

which is not possible because of Proposition 2). Then, obviously her utility becomes strictly positive

with this deviation (her price per unit is at most vj). We thus reached the necessary contradiction.

Now, consider a bidder i whose value is vTi < vj : Assume for the sake of contradiction that

bidder i is a winner. If bi is smaller than the unused budget of the cut point bidder (s), then she

gets all items at a per unit price vj and hence she obtains a negative utility. If this is the case,

she would be better of by announcing her true valuations and guarantee a nonnegative payo¤. If

bi > s; then we argue that i would be better of by deviating to (vj � "; bi) for small enough ": Let

us �rst look at the limiting case in which i deviates to (vj ; bi) and becomes the cut-point bidder.

After this deviation, unused budget of i would be exactly s: The allocation of original full-winners

will not change; bidder j will be getting s
vj
items by paying s more and bidder j will be getting s

vj

less items by paying s less. Therefore, bidder i�s utility increases by s
vj

�
vj � vTi

�
> 0 (in a sense

by this deviation, bidder i is selling s
vj
units of the items to bidder j at the per unit price of vj).

By deviating to (vj � "; bi); original winners allocations would slightly increase, therefore bidder i�s

utility increase will be slightly smaller than s
vj

�
vj � vTi

�
; but for small enough "; it will be always

positive.

Above proposition establishes that given equilibrium cut-point value, all winners and losers will

be rightly placed. But since the cut-point bidder may be misplaced, this does not imply full-Pareto

optimality. Consider the following example.

Example 1 There are 2 units of the item to be sold, and there are four bidders with budget-value

pairs (18; 19) ; (1; 9) ;
�
17
9 ; 8

�
and (10; 1) : For this setup, it can be con�rmed that bidders announcing
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their types (budget,value) as (18; 19) ; (1; 9) ; (36; 18) and (10; 1) constitute an ex-post equilibrium of

Sort-Cut. In this equilibrium, bidder 3 overstates her value and budget and becomes the partial

winner. Although winners and losers are rightly ranked according to announced cut-point value, the

allocation is not pareto optimal. Bidder 3 gets a positive allocation even though bidder 2 has higher

value and zero allocation.

4 Market Clearing Price Mechanism and Sort-Cut

In this section we compare Sort-Cut to a well known mechanism: Market Clearing Price Mechanism

(MCPM). MCPM is a mechanism that sells m items to all interested bidders at a �xed price. That

is, in MCPM all items are sold p dollars per unit and all bidders whose values are strictly greater

than p spend all their budgets to buy these items (the bidders with values equal to p could be

partially spending their budgets.) More formally,

De�nition 7 Market Clearing Price Mechanism is a m-Procedure cut mechanism with �xed pricing

rule, � (y) = p� for all y � 0 where p� satis�es vj � p� > vj�1:

One can easily argue that there will be a unique p�: Consider a �xed pricing rule � (y) = p� that

satis�es above de�nition. Then for any �xed pricing rule � (y) = p with p > p�; we have p > vj

(for vj de�ned for � (y) = p); and for any p < p�; we have p � vj�1 (for vj�1 de�ned for � (y) = p).

Although it appears as a natural mechanism, as we demonstrate below, MCPM lacks good

truthfulness properties.

Proposition 10 Overstating budget or value is weakly dominated by bidding true types, i.e, for

bidder i with type (bi; vi), announcing
�
b+i ; vi

�
;
�
bi; v

+
i

�
and

�
b+i ; v

+
i

�
are all weakly dominated by

(bi; vi)

Proof. Consider bidder i with type (bi; vi) who announces her type truthfully.

� If she is a winner, she is indi¤erent to announcing v+i and would be strictly worse o¤ by

announcing b+i (she would either get negative payo¤ by staying a winner or will get zero

utility by becoming a partial winner or a loser).
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� If she is a partial winner, since overstating value or budget can only increase the market

clearing price p�; she never can obtain a strictly positive payo¤ by deviating to v+i or b
+
i :

� If she is a loser, by overstating value or budget, she may become a winner, but market

clearing price after deviation is going to be greater than previous market clearing price and

hence greater than her value. v+i or b
+
i never helps.

However, understating the value or budget in general can be bene�cial. Consider the following

example.

Example 2 Consider two bidders with budget-value pairs (16; 10) and (8; 9) and the supply is

m = 3: Under truthful report of types, market clearing price is p� = 8: However, if bidder 1

understates her value to 7; new market clearing price will be 7 with the �rst bidder spending 13 of

her budget for an allocation of 137 units. Her new payo¤ is (10� 7)
13
7
�= 5:57 versus (10� 8) 2 = 4;

which shows understatement of value is a pro�table deviation. Similarly, if bidder 1 understates

her value to 10; new market clearing price will be 6 with the �rst bidder spending 10 of her budget

for an allocation of 106 units. Her new payo¤ is (10� 6) 106 �= 6:67 which shows understatement

of budget is a pro�table deviation. In fact, for this example an expost equilibrium is when bidders

announce their types as
�
2700
361 ; 10

�
;
�
2430
361 ; 9

�
which brings only a revenue of 14:21:

Above discussion illustrates that the revenue from an (undominated) expost equilibrium of

MCPM is bounded above by the revenue of MCPM with truthful revelations. Next, we obtain

another lower bound for the revenue of Sort-Cut. For any announcements (b;v) ; we can show

that the revenue di¤erence between MCPM and Sort-Cut is at most equal to the maximum budget

of the players. For the same announcement of the types, since Sort-Cut�s pricing function is

decreasing with higher budgets of the winners, whereas MCPM�s pricing is constant; MCPM�s

revenue would be higher than the revenue of Sort-Cut, the following proposition shows that the

di¤erence in revenues is bounded above by the maximum of the winners�budgets. Let RM (b;v)

denote MCPM�s revenue and bmax denote the maximum budget of the bidders.

Proposition 11 For any announcements (b;v) ; RM (b;v)�RS (b;v) � bmax
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Proof. Given (b;v) ; Sort-Cut�s cut point is denoted by c�; let c�� denotes MCPM�s cut point. We

argue that c���c� � bmax: By the de�nition of MCPM c�� = m�p� where p� satis�es vj � p� > vj�1

and vj is the partial winner in MCPM. Since c� � c��; j cannot be a full winner in Sort-Cut. If

he is a partial winner, then c�� � c� � bmax obviously holds as the di¤erence between c�� and c� is

smaller than bj : If j is a loser in Sort-Cut, then we can argue as follows. At least one of the winners

of Sort-cut has to pay at most p� per unit (otherwise the revenue of Sort-Cut has to be greater

than c��). Now, this bidder�s budget has to be greater than c�� � c�; because otherwise his price

per unit cannot be smaller than p�: Hence, c�� � c� � bmax:

Let us denote the revenue of MCPM with the truthful revelation of types by R�. Proposition

11, together with proposition 8, establishes that the revenue of any re�ned equilibrium of Sort-Cut

is not lower than R� � bmax: Unlike Sort-Cut, we next show an example where MCPM obtains a

revenue that is order of magnitude (as the number of bidders) lower than R�

Example 3 Consider two types of bidders with budget, value pairs (b0; v0) = (16; 18) and (b1; v1) =

(8; 9); our basic example has one bidders of each type with a supply of m = 3 units. Under

truthful reports of budgets and values, the market-clearing price is p = 8. Let us look for an expost

equilibrium, in which the announcements are (a0; 18) and (a1; 9) : The pair of values a0 and a1 solve

the optimization problems of max(vi � p)aip for i = 0; 1 where p is the market clearing price for the

given announcements and supply. In our case p = a0+a1
3 .

Thus the optimization problem becomes max f(ai) = 3viai
ai+a1�i

� ai. Taking derivatives, we get

f 0(ai) =
3via1�i

(a1+a1�i)2
�1, with f"(ai) < 0. Solving the pair of �rst order equations by setting f 0(a0) =

f 0(a1) = 0, we get a1 = 6 and a2 = 12 for a market clearing price of 6. The total revenue of this

equilibrium is therefore 18 compared to R� = 24.

If we now scale the example to have N bidders of each type and a supply of 3N , we may assume

that all the optimal budget announcements of each type of bidder are the same by symmetry. The

clearing price stays unchanged at p = N(a0+a1)
3N = a0+a1

3 as before. The optimization problem for

determining each ai remains identical giving the same solutions as before.

However, the revenue now is 16N compared to R� = 24N and is thus a whole third less than

R�, while the maximum bidder�s budget is 16.
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5 Conclusion and Discussion

In this paper, we have introduced a mechanism to sell m units to a set of bidders with budget

constraints. In this practically important setting where the existence of a truthful and pareto

optimal mechanism is precluded, our mechanism, Sort-Cut, achieves good truthfulness, revenue,

and e¢ ciency properties. Speci�cally, in Sort-Cut, (i) there are pro�table deviations from truthful

revelations of types, but that can only happen in a revenue increasing way, (ii) in a re�ned expost

equilibrium, the revenue of Sort-Cut is bounded below by R� � bmax; and (iii) the equilibrium

allocation is semi pareto e¢ cient in the sense that full winners and losers are ordered in the right

way given the announced value of the partial winner. We then compare Sort-Cut to a well known

mechanism, Market Clearing Price Mechanism (MCPM). We show that in MCPM, (i) revenue

increasing deviations are dominated, (ii) revenue can be smaller than R� � bmax:

There are many ways our work can be generalized. In the context of online advertisement

auctions, our model can be interpreted as "there is a single sponsored link that gets m clicks a

day (on average) and there are n advertisers." However, in reality, there are many sponsored links.

In generalized second-price auctions studied by [Edelman et al. 2007] the winner of the best item

(�rst sponsored link) is charged the bid of the second-best item, the winner of the second best

item is charged the bid of the third-best item and so on. In this environment there are no budget

constraints and second-highest bid is always the competitor of the highest value. The idea of Sort-

cut can be applied in this setup with budget constraints. More speci�cally, it would be interesting

to consider a model in which there are budget-constrained bidders and multiple slots available for

a query (in which an advertiser cannot appear in more than one slot per query).

In our model we consider a setting of hard budget constraints in which the bidders de�nitely

cannot spend more than their budgets. Extending our results to a soft-budget problem in which

bidders are able to �nance further budgets at some cost is a promising direction. One can model

this kind of soft-budget constraints as specifying value per-clicks up to some budget, then specifying

a smaller value per-click up to some other extra budget and so on. By replicating a bidder into

as many copies as the number of pieces in his value/budget function, and allowing them all to

participate in our mechanism, it seems reasonable that we may preserve some of the desirable

properties of Sort-Cut.
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One very important extension is to consider the environment of multi-item auctions with budget

constraints. Again consider the problem of the advertisement departments of Dell, HP or Sony, but

this time appear in search engine�s queries of "laptops" and/or "desktops." These advertisement

departments might have a total budget to allocate between all online ads and their per-click values

for di¤erent items might be di¤erent. For instance Dell might have higher per-click values for

desktops, but lower per-click values of laptops, as compared to Sony. Designing an allocation

and pricing rule which would have good e¢ ciency, truthfulness and revenue properties for his

setup is very challenging. Devanur et al. (2002) provided an algorithm for �nding the "market

clearing prices" (which could be thought of extension of ascending-price auction mechanism of

single item case). This mechanism, however, lacks nice truthfulness properties. Bidders would have

an incentive to understate their budgets, thereby decreasing the prices. Extension of Sort-cut is

not straightforward as how bidders would like to split the budgets between di¤erent items would

depend on the pricing rule of each of these items. Bidders�e¤ective valuations for di¤erent goods are

given by the ratios of "per-click values and the average prices" of di¤erent items. This multi-item

extension seems to be the most important, yet challenging extension of our model.

6 Appendix

6.1 Proof of Proposition 1

First, note that x (�c; b) is weakly increasing in c : since � is nonincreasing, for c0 � c � 0, we have

�c
0
(y) = � (y + c0) � � (y + c) = �c (y) and hence

x
�
�c

0
; b
�
=

Z b

0

1

�c0 (y)
dy �

Z b

0

1

�c (y)
dy = x (�c; b)

Also, obviously x (�c; b) is strictly increasing in b:

Now, we can show that X (c; (b;v)) is strictly increasing in c: Consider c0 > c � 0; we have

X (c; (b;v)) =
�Xj�1

i=1
x (�c; bi)

�
+ x

�
�c+s; bj � s

�
where j satis�es c �

Pj
i=1 bi and c >

Pj�1
i=1 bi (and s =

Pj
i=1 bi � c). For c0 > c; we can have one
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of the two cases, either j is the same or j is bigger.

If j is bigger (this could be the case only when s > 0 and c0 > c+ s), then we have

X
�
c0; (b;v)

�
>

Xj

i=1
x
�
�c

0
; bi

�
�

�Xj�1

i=1
x (�c; bi)

�
+ x

�
�c

0
; bj

�
> X (c; (b;v))

This is because x
�
�c

0
; bi

�
� x (�c; bi) for all i = 1; ::; j � 1 and x

�
�c

0
; bj

�
> x (�c+s; bj � s)

since c0 > c+ s and s > 0:

If j is the same (if c0 < c+ s), then we have

X
�
c0; (b;v)

�
=

�Xj�1

i=1
x
�
�c

0
; bi

��
+ x

�
�c

0+s0 ; bj � s0
�

>
�Xj�1

i=1
x (�c; bi)

�
+ x

�
�c+s; bj � s

�
= X (c; (b;v))

where s0 =
Pj
i=1 bi � c0 < s: This is because x

�
�c

0
; bi

�
� x (�c; bi) for all i = 1; ::; j � 1 and

x
�
�c

0+s0 ; bj � s0
�
> x (�c+s; bj � s) since c0 + s0 = c+ s and bj � s0 > bj � s:

Next, we show that X (c; (b;v)) is continuous in c: By de�nition, x (�c; b) is continuous in c

and b (this is because x (�c; b) =
R b
0

1
�(y+c)dy and is continuous in c and b even when � is not a

continuous function). Moreover,

X (c; (b;v)) =
�Xj�1

i=1
x (�c; bi)

�
+ x

�
�c+s; bj � s

�
if c increases from c to c + "; j changes only when s = 0: If s 6= 0; then X (c; (b;v)) is obviously

continuous in c as all of the terms in the summation are continuous in c: If s = 0; then

X (c+ "; (b;v)) =
�Xj

i=1
x
�
�c+"; bi

��
+ x

�
�c+"+s

0
; bj+1 � s0

�

and this goes to X (c; (b;v)) as " goes to zero. This is because
Pj
i=1 x (�

c+"; bi)!
Pj
i=1 x (�

c; bi) =

X (c; (b;v)) and x
�
�c+"+s

0
; bj+1 � s0

�
! 0 since s0 ! bj+1:

6.2 Proof of Proposition 2

Consider bidder i with announced type (bi; vi) :
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� First, we show that revenue is increasing in budgets. Consider bidder i who decreases her

value to b�i < bi: We show that revenue cannot increase with this deviation.

� If bidder i is originally a loser by announcing (bi; vi) ; then she cannot become a winner or

partial winner by deviating to b�i < bi: This is because by this deviation pricing function

for everybody becomes better and winners pay less per unit. Therefore revenue cannot

increase.

�Next, consider bidder i who is a partial winner by bidding bi: If bidder i deviates to b�i

and becomes a loser, then the revenue has to decrease since the set of losers become larger

with this deviation. If she deviates to b�i and remains a partial winner, since all winners�

pricing get better, the revenue has to decrease. If she deviates to b�i ; she cannot become

a full winner. If it were the case, pricing function for every (full or partial) winner gets

better, then total number of units to be allocated were to be greater than m:

� Lastly, consider bidder i who is originally a winner by announcing (bi; vi). If she deviates

to b�i and if she becomes a loser or a partial winner after the deviation, then the revenue

clearly decreases. This is because the set of non-full winners after the deviation is a

strict superset of the set of non-full winners before the deviation. Now consider the case

bidder i deviates to b�i and remains a winner. Let us denote bi� b
�
i by �: Suppose that

initial cut point is c and new cut point after the deviation is c0: Let � be the n-piece

step function de�ned by (b; v) : Note that initial revenue is c and new revenue is c0: We

will show that c � c0:

Since i has understated her budget, there will be shortage of demand and pricing of

all original winners will be better. Therefore, with this deviation all original winners

except i will be allocated (weakly) more units of the object. By method of contradiction

assume c0 > c: This means that there will be new winners who use an extra budget

strictly greater than �; say �0: We now argue that extra units allocated to these new

winners has to be greater than the number of units i is giving up with the deviation.

Extra units allocated to new winners are priced at the values starting from the new cut

point c + �0 (according to (b; v)) and total budget used is �0. The number of units i

is giving up are priced at the values in the range of c to c + � < c + �0 and the total
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budget used is �: Since extra units are given with higher budget and lesser prices than

the units given up, we conclude that with assumption c0 > c; total units allocated has

to be strictly greater than m; which is a contradiction. We can see this argument more

formally. For instance consider the case in which � is small so that original partial

winner j remains a partial winner. All full winners k 6= i with k < j will be allocated

more items since j will be using more of his budget after the deviation. Let us consider

the di¤erence between the total amounts allocated to bidder i and j before and after the

deviation. Bidder i�s allocation is decreased by

A � x (�c; b)� x
�
�c+�

0
; b��

�

since

x
�
�c+�

0
; b��

�
> x

�
�c+�

0
; b��0

�
we have

A < x (�c; b)� x
�
�c+�

0
; b��0

�
= x

�
�c;�0

�
On the other hand, bidder j�s allocation is increased by

B � x
�
�c+s; bj � s+�0

�
� x

�
�c+s; bj � s

�
= x

�
�c+bj ;�0

�

Since

x
�
�c+bj ;�0

�
� x

�
�c;�0

�
We conclude B > A: Total number of units allocated has to increase after the deviation.

� Now, we show that revenue is increasing in values. Consider bidder i who increases his value

to v+i > vi: We show that revenue cannot decrease with this deviation.

�First, if bidder i is a winner by bidding (bi; vi) and she deviates to v+i > vi; then she
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remains a winner after the deviation, and the revenue does not change. This is because

Sort-Cut�s allocation and pricing rule is invariant to full winners�values (so long as they

remain full winners).

� Second, consider a bidder i who is a loser by bidding (bi; vi) and a deviation to v+i > vi:

If she remains a loser after deviation, since the pricing function for winners get worse,

revenue has to increase. Let us now consider the deviation which makes i a partial

winner. If the partial winner becomes a full winner after the deviation (v+i < vj where

j is the original partial winner); the revenue obviously increases with the deviation.

Let us consider the case in which v+i > vj ; i become a partial winner and j becomes a loser

after the deviation. By method of contradiction, assume that the revenue decreases with

the deviation. If this is the case, it can be seen that the pricing function for all winners

become worse after the deviation (total budget of price setters with vk � vi becomes

greater and some of the values increase). Hence all full winners will be allocated less units

of items after the deviation. This implies that the number of units allocated i after the

deviation has to be greater than number of units allocated to j before the deviation. But

again with the same observation, pricing function for i after the deviation is worse than

the pricing function for j before the deviation. For i to be allocated more, her budget

spent after deviation has to be greater than j�s budget spent before the deviation, which

is a contradiction.

If i is currently a loser and deviates to v+i and becomes a winner. We can split this

into two deviations. First, i deviates to v+0i > vj and becomes a partial winner (which

increases the revenue), then she deviates to v+i and becomes a full winner which will be

shown to increase the revenue in next bullet.

� Lastly, consider bidder i who is a partial winner by bidding (bi; vi) : It is obvious that

she cannot become a loser after deviating to v+i : If she deviates to v
+
i and remains a

partial winner, then pricing function for all winners get worse, hence the revenue has to

increase. If she deviates to v+i and becomes a full winner. Then we argue that revenue

has to increase.

Consider the case that i is currently the partial winner, and she deviates to v+i > vi�1
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(where bidder i � 1 has the next highest value after bidder i) so that i � 1 is the new

partial winner and i is a full winner. Denote original unused budget of bidder i by s0i and

after deviation unused budget of bidder i� 1 by s0i�1: It su¢ ces to show that s0i � s0i�1:

By method of contradiction, assume that s0i�1 > s0i: Then, it is easy to see that the

pricing function for all winners other than i or i � 1 gets worse, therefore they will be

allocated (weakly) less number of items. Similar to above discussion, we can also show

that the total number of units allocated to bidder i and i� 1 has to (strictly) decrease

after the deviation, which gives us desired contradiction. Bidder i � 1�s allocation is

decreased by

x
�
�c+s

0
i ; bi�1 � s0i�1

�
� x (�c; bi�1)

which is strictly greater than

x
�
�c; s0i

�
Bidder i�s allocation is increased by

x
�
�c+s

0
i�s0i�1 ; bi

�
� x

�
�c+s

0
i ; bi � s0i

�

which is strictly smaller than

x
�
�c+s

0
i�s0i�1 ; s0i

�
Since c+ s0i � s0i�1 < c; we conclude that total number of units allocated to players has

to be strictly worse, therefore we get a contradiction.
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