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ABSTRACT
Motivated by sponsored search auctions with hard budget con-
straints given by the advertisers, we study multi-unit auctions of
a single item. An important example is a sponsored result slot for
a keyword, with many units representing its inventory in a month,
say. In this single-item multi-unit auction, each bidder has a pri-
vate value for each unit, and a private budget which is the total
amount of money she can spend in the auction. A recent impos-
sibility result [Dobzinski et al., FOCS’08] precludes the existence
of a truthful mechanism with Pareto-optimal allocations in this im-
portant setting.

We propose Sort-Cut, a mechanism which does the next best
thing from the auctioneer’s point of view, that we term semi-
truthful. In our mechanism, it is a weakly dominant strategy for
all agents to state their true budgets and to not understate their val-
ues. Thus the only way a bidder can possibly benefit from lying
in a semi-truthful mechanism is by overstating their value, which
leads to good revenue properties for the auctioneer at equilibria.

While we are unable to give a complete characterization of equi-
libria for our mechanism, we prove that some equilibrium of the
proposed mechanism optimizes the revenue over all Pareto-optimal
mechanisms, and that this equilibrium is the unique one resulting
from a natural rational bidding strategy (where every losing bidder
bids at least her true value). The latter is similar in spirit to the
approach of [Edelman et al. American Economic Review 2007]
in their analysis of the equilibria of the Generalized Second Price
(GSP) auction implemented for sponsored search ads at Google.
Perhaps even more significantly, we show that the revenue of every
equilibrium of our mechanism differs by at most the budget of one
bidder from the optimum revenue (under some mild assumptions).

We extend our results from the setting of hard budget constraints
to one where the marginal disutility of spending the next dollar
increases with the payment. We model this as a piecewise linear
function with the same rate of disutility in each piece and the disu-
tility rates increasing as increasing budget limits are breached. By
replicating a bidder into as many copies as the number of pieces in
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his value/budget function, and allowing them all to participate in
our mechanism we are able to preserve all the desirable properties
of Sort-Cut.

While earlier work on the problem led to mechanisms that leave
some items unallocated [Borgs et al., EC’05], and were variants
on earlier ideas of Goldberg et al. [Goldberg et al., SODA’01],
Sort-Cut provides a new pricing idea and generalizes second-price
auctions in a natural way.

1. INTRODUCTION
Multi-unit auctions have been studied comprehensively in mi-

croeconomics, especially in auction theory [4, 15, 14]. However,
the problem of budget-constrained bidders has been paid surpris-
ingly little attention, despite the fact that in practice, bidders face
natural budget constraints. In this paper we study multi-unit auc-
tions with budget limits which we motivate in some detail in Ap-
pendix A. We suppose there are m identical divisible 1 units of a
single item for sale. Each bidder i has a private value vi for each
unit, and a private budget limit bi on the total amount she may pay.
We assume that bidder i’s utility from acquiring xi units and pay-
ing price pi is ui = xivi − pi as long as the price is within budget:
pi ≤ bi, and is negative infinity if pi > bi. (i.e. the budget con-
straint is hard. Note that this is the assumption that may be consid-
ered unnatural in the more usual quasi-linear utility maximization
models. However, we address this in a generalization - see point
(5) below.)

Our Contributions:

1. We propose a new mechanism, called Sort-Cut, (Section 2)
for selling all the units. We prove that Sort-Cut mechanism is
semi-truthful (Section 3), i.e. no agent can benefit from lying
about her budget or understating her value, but may overstate
her value at equilibrium (thus address all but one of the four
ways in which a bidder may lie about her bidder and value)
. We show that the allocation of the Sort-Cut mechanism is
Pareto-optimal (defined formally later - Section 4); hence, it
is nearly the best possible result that can be obtained for this
problem since the recent result of Dobzinski, Lavi and Nisan
[9] shows that there is no truthful Pareto-optimal determinis-
tic 2 mechanism for this problem.

2. We obtain an upper-bound R∗ (which coincides with the rev-
enue of ascending price auction with truthful bids) for the
revenue at equilibrium for any Pareto-optimal mechanism

1While we describe the mechanism only for the divisible case,
many of our results also translate to the indivisible case with mi-
nor modifications.
2We emphasize that our mechanism is not deterministic.



(Section 5) and then show that if the sum of budgets of all
bidders is at least twice of R∗, this upper-bound is achiev-
able at an equilibrium of the Sort-Cut mechanism.

3. Assuming reasonable behavior of the bidders where every
losing bidder bids at last her true value (defined as rational
bidding - see definition 5.2), we show (also in Section 5)
that any equilibrium of Sort-Cut has a revenue of at least
R∗ − bmax where bmax is the maximum budget among the
winners, and prove this bound is tight for equilibria of all
Pareto-optimal mechanisms which are budget-truthful (bid-
ders can not benefit from lying about their budgets).

4. We also study the properties of this auction under greedy bid-
ding behavior (Section 6) and show that under some natu-
ral assumptions, if the behavior leads to an equilibrium, the
unique one it leads to is the revenue-maximizing one (attains
revenue R∗).

5. We generalize the model to one where the disutility due to the
payment of the bidder increases in a piecewise linear fashion.
In this piecewise representation, the disutility is constant in
each piece and is increasing as we move to higher payments.
We show how an adaptation of Sort-Cut works in this setting
(Section 7, with proofs deferred to the Appendix C).

Previous Work:
The problem of multi-unit auctions with budget-constrained bid-

ders was initiated by Borgs et al. in [6]. Our model is identical to
theirs. They introduce a truthful mechanism that is asymptotically
revenue-maximizing; however, it may leave some units unsold. The
idea is to group the bidders randomly into two groups, and use the
market clearing price of each group as an offering price to the other
group, following [?]. Another paper that uses the same model is by
Abrams [1] - it uses techniques similar to [6] but improves upon it;
however, it may still leave some units unsold.

A recent paper that analyzes this problem by Dobzinski et al. [9],
mainly proves an impossibility result. They assume that budgets
of all players are publicly known, and give a truthful mechanism
which solves the problem under this assumption. Their mechanism
is a direct application of Ausubel’s auction [3]. Then they show that
this mechanism is the unique mechanism which is both truthful and
Pareto-optimal under the assumption of publicly known budgets.
Finally by showing that their mechanism is not truthful if the bud-
gets are private knowledge, they conclude that no mechanism for
this problem can be both truthful and Pareto-optimal.

Both [6] and [9] argue that lack of quasi-linearity (because of
hard budget constraints) is the most important difficulty of the prob-
lem. Some papers, nonetheless, have tried to solve the problem by
relaxing hard budget constraints [12], or modeling the budget con-
straint as an upper bound on the value obtained by the bidder rather
than her payment [13]. It has also been shown [6] that modeling
budget constraints with quasi-linear functions can lead to arbitrar-
ily bad revenue.

Another paper that has studied budget constraints, mainly for ad-
vertisement auctions, is the work of Feldman et al.[11]. They give a
truthful mechanism for ad auctions with budget-constrained adver-
tisers where there are multiple slots available for each query, and
an advertiser cannot appear in more than one slot per query. Their
work is related to our work because they also consider the game-
theoretic aspects of the problem. However, the utility function that
they use is very different from ours. In [11] they define advertisers
to be click-maximizers, while in our model, advertisers are profit-
maximizers, which we believe to be more realistic in the case of ad
auctions.

Other papers that have considered budgets in auctions include
[2],[5],[8]. However, [2] only considers the offline optimization
problem and does not study the game theoretic aspects of the prob-
lem. They also model budget constraints by value functions of the
bidders, which means bidders are not willing to get value more than
their budget. In [5], they study an auction for selling two single
items to budget-constrained bidders. They mainly focus on the ef-
fect of bidding aggressively on an unwanted item with the purpose
of depleting other bidders budget. A similar effect arises in our
model as well, but the focus of our work is generally very differ-
ent from theirs. Another paper [8] compares first-price and all-pay
auctions in a budget-constrained setting and show that the expected
payoff of all-pay auctions is better under some assumptions. How-
ever, they do not consider multi-unit items.

2. Sort-Cut mechanism DESCRIPTION
In this section we describe how our Sort-Cut mechanism allo-

cates the units, and the price each bidder is charged. Throughout
the paper, for simplicity of description we always assume there ex-
ist a bidder with value ε and budget mε (she has enough money to
buy all the items with her value). As ε tends to zero, the revenue
of this modified instance approaches that of the original, and hence
this assumption is without loss of generality.

There are n bidders and m units available of the same item. The
bidders have flat demands, i.e. bidder i’s value per item is vi. We
consider the game as a game of complete information between the
bidders. However, bidders’ information (values and budgets) is
not available to the designer. A typical bidder i’s value per item
is denoted by vi and total budget by bi. The algorithm will take
announced values and budgets and operate on the announced in-
formation. As we will show formally, for our mechanism it is in
bidder’s interest to announce their budgets truthfully, and not un-
derstate their values. We describe the mechanism for announced
values and budgets.

The Sort-Cut mechanism has two main features: sorting and cut-
ting. First, we sort the bidders in non-increasing order of their val-
ues, and assume by relabeling that v1 ≥ v2 ≥ . . . vn. The second
part is the cutting by which the algorithm assigns the available m
units to the bidders 1 through k, and assigns nothing to the bidders
k +1 through n. The bidders 1, . . . , k− 1 must have exhausted all
their budget, and bidder k may be left with some money from her
budget bk

3. Bidders k+1, . . . , n do not pay anything. We describe
later how we determine the exact cut-point which is the portion of
the budget of k that is used up in payments.

Suppose that the money left for bidder k is b′k, and define ck =
b′k
vk

. For i > k define ci = bi
vi

. Here, ci denotes the number of
(fractional) units that bidder i can buy according to her value for
one unit. We now describe the pricing rule for Sort-Cut: For all
bidders whose values are greater than the cut point bidder (bidder i
with i < k), we charge bidder i for the first ck items that she wins
a price of vk, for the next ck+1 items that she wins a price of vk+1,
for the next ck+2 items that she wins a price vk+2 and so on until
her budget is exhausted, i.e., her remaining budget cannot buy any
more fractional items4. For the cut-point bidder k, the pricing is
slightly different: we start charging her a price of vk+1 for the first
ck+1 items that she gets, vk+2 for the next ck+2 items that she gets
and so on until she has exhausted all her allocated spending budget

3In the indivisible item case, they may be left with some budget,
when this remaining budget is not enough to purchase the next sin-
gle unit of the item at the current charged price.
4In the indivisible case, we do this until her remaining budget can-
not buy another whole item.



Algorithm 1 The Sort-Cut Mechanism for divisible units to deter-
mine the cut-point x∗

1: {Initialization} Let B =
∑

i bi; Initialize x = B/2 and allo-
cations yj = 0 for all j.

2: repeat
3: B ← B/2
4: {Cut-point determination} Let k be the largest index such

that
∑k−1

i=1 bi ≤ x.
5: {Pricing} Let b′k =

∑k
i=1 bi − x, and define ck = b′k/vk.

For i = k + 1 to n define ci = bi/vi.
6: {Payments and Allocations until cut-point}
7: for i = 1 to k − 1 do
8: Set the payment pi = bi; Initialize allocation yi = 0 and

j = k
9: while bi > 0 do

10: yi = yi +
min(bi,cj .vj)

vj

11: bi = bi −min(bi, cj .vj)
12: j = j + 1
13: end while
14: end for
15: {Payments and Allocations for cut-point}
16: for bidder k do
17: Let b = bk − b′k and set the payment pk = b; Initialize

allocation yk = 0 and j = k + 1
18: while b > 0 do
19: yk = yk +

min(b,cj .vj)

vj

20: b = b−min(b, cj .vj)
21: j = j + 1
22: end while
23: end for
24: {Binary Search Update}
25: if

∑k
i=1 yi > m then

26: x ← x−B/2
27: end if
28: if

∑k
i=1 yi < m then

29: x ← x + B/2
30: end if
31: until the sum of allocations yj is the supply m

of bk − b′k. We give each bidder i (i < k) as many units as she can
afford according to our pricing and her budget.

To finish our description, we need to specify how we determine
k, and b′k (the money which is left for the last winner), because they
play an important role in our pricing mechanism. If the index k is
very large (close to n), then the prices for the units will be very low
and the number of units that each winner can afford increases, also
the number of winners is large resulting in a shortage of supply. On
the other hand, if k is chosen very small (close to 1), we have few
winners, and relatively high prices, so a number of units will be left
unsold. We seek to find the right point which determines bidder k
and the amount of money b′k left for her, such that the market clears
at this point.

To be more precise, define B =
∑n

i=1 bi. We are looking for
a breakpoint (boundary) x =

∑k
i=1 bi − b′k in the interval [0, B]

that determines for us both k and b′k which will make the number
of allocated objects exactly equal to m. We want to sell all items.
We must also guarantee that the bidders 1, ..., k − 1 (which are
determined by x) do not have enough budget to buy any additional
item. As we increase x, the prices decrease, the number of winners
and items demanded to be allocated increases, and consequently the
demand increases. We can find the solution by slowly increasing x

from 0 until the demand becomes equal to supply. In other words,
we increase x until the total number of units that bidders 1 through
k want (assuming that bidder k can use only bk− b′k of her budget)
becomes equal to the units that we have to sell. (A formal proof of
the fact as well as examples of such cut-points for the divisible and
indivisible cases appear in Appendix B.

Finally, to keep the bidders from overstating their budget, we
add the following to Sort-Cut. Suppose that the Sort-Cut mech-
anism wants to charge a bidder i an amount equal to pi, and her
announced budget is bi. Instead of charging her pi, we charge her
bi with probability pi/bi and 0 otherwise. In this way, if somebody
overstates her budget, she is accepting the risk of paying more than
her budget which makes her expected utility equal to minus infin-
ity (this is because we have hard budget constraints). To make this
more practical, even if we perform this alternate pricing process
with probability ε, and simply charge the bidder i a price of pi in
the rest of the cases, still bidders can not take the risk of overstating
their budget5.

A simple example of Sort-Cut mechanism behavior is when there
is only one indivisible unit for sale (i.e. m = 1). In this case,
suppose that j is the smallest index such that there exists some
i < j with bi ≥ vj . (Note that j always exists, because we have
added a dummy bidder with value ε to the set of bidders). Now,
take i the smallest index with bi ≥ vj . The mechanism assigns the
single unit to bidder i with price vj . A special case of this example
is when bidders do not have budget constraints. In that case, Sort-
Cut mechanism is equivalent to the classical second-price auction.

3. SEMI-TRUTHFULNESS
Although Dobzinski et al. [9] shows that no truthful Pareto-

optimal mechanism exists for this problem, it is still interesting to
know how truthful a Pareto-optimal mechanism can be. In other
words, we want to know how much the bidders can benefit from
lying, and how the different ways of lying can benefit them in a
mechanism.

There are four ways that a bidder can lie: overstating budget,
understating budget, overstating value and understating value. In
different mechanisms, bidders may take different strategies and use
either of these ways to increase their utility. We show that in Sort-
Cut mechanism, the only way out of these four that the bidder can
use to benefit from lying is by overstating value. This result is
interesting because first, we know that some kind of lying must
be beneficiary for the bidders if the mechanism is Pareto-optimal,
and second, among four different ways of lying, this is the most
desirable one for the auctioneer – giving good revenue properties
(This is formalized in Section 5). It is easy to see that the revenue
of Sort-Cut mechanism is monotone with respect to the vector of
bids. (i.e. if bidders increase their stated values, the revenue of the
mechanism does not decrease.)

DEFINITION 3.1. We say a mechanism A is semi-truthful if it is
a weakly dominant strategy for the bidders to bid their real budgets
and not to understate their value.6

THEOREM 3.1. Sort-Cut mechanism is semi-truthful.

5It is not hard to argue that it suffices to use this kind of random-
ization for the cut-bidder, bidder k only. We can also construct
examples where the cut-bidder can benefit from over stating the
budget without this modification.
6In other words, every strategy that involves mis-stating the budget
or understating the value is dominated by a strategy that does not
mis-state the budget and does not understate the value.



PROOF. First it is easy to see that no bidder can benefit by over-
stating her budget, since by design, if she wins any allocation at all,
there is positive probability that she will be charged more than her
budget which makes her utility minus infinity.

Next, we argue that no bidder can benefit by understating their
budget. A bidder who is a current loser cannot pull the prices down
by understating. She will be always a loser, so she cannot benefit.
Consider the winners - they (including cut-point bidder) can pull
the prices down by understating the budget. Consider j < k (for
current prices), if she can pull cut point to k′ > k by overstating,
she is going to be still a winner and spend all her budget. So, all
she cares is the number of goods she will be assigned. But by
underbidding she cannot be assigned more number of units as all
the other winners are assigned more number of units (same budgets,
smaller prices). This also holds for the current cut-point bidder.
She cannot benefit by understating the budget when she is still the
cut-point bidder: all other winners would be assigned more number
of units, she will be assigned less number (with the same pricing
schedule). If she understates and the cut-point bidder becomes a
smaller value bidder than hers, we can use the above argument for
bidders not in the cut-point and argue that she cannot benefit.

For the third kind of deviation (under-stating value), we argue in
three cases:

1. Consider a bidder j where j ≤ k− 1. If bidder j understates
her value, she may still remain among the first k− 1 bidders
which does not change anything for her, or, she may go to the
boundary which makes the situation trickier, or she may go
below the boundary which decreases her utility. So the only
case that we must handle is when she goes to the boundary.

Suppose bidder j moves to the boundary by announcing a
value v′j ≤ vk and she spends b of her money while b′ of her
money will be remaining. (so we have b+b′ = bj) We know
that before going to the boundary, with b′k of her budget she
bought the units for price vk per unit, and after that she had
unit prices vk+1, .... Now when she goes to the boundary,
she buys for prices vk+1, vk+2, ... which are lower and seem
to be better for her, but as we will see, that is not the case
because she is not using all her money when she is on the
boundary. First note that if b′ ≥ b′k, she can not benefit from
going to the boundary (because previously she was using b′k
of her budget for getting the units for price vk per unit, but
now she has b′ of her budget left unused). So we may assume
b′ < b′k. Now, consider bidder k to see how many units she
wins after leaving the boundary. Now the bidder with value
vk gets at least b′k

v′j
≥ b′k

vk
≥ ck units (for a price of v′j) in

addition to all the units that she had before (when she was
on the boundary). The prices for all other winners is less
than or equal to what it was before. Therefore, the number
of units that bidder j wins after going to the boundary must
be reduced by at least these ck units. Bidder j’s costliest ck

units were priced vk units each for a total price of b′k = ckvk.
After understating her value, she is paying bj − b′ > bj − b′k
and getting at least ck units less. Thus her average price per
unit has increased so this is not an improvement.

2. Now consider a bidder j where j > k. It is obvious that
bidder j can not benefit from understating her value, because
it keeps her among the losers. However, overstating the value
may be beneficial for her in some cases.

3. For the person on the boundary (j = k), it is clear that she
can not benefit from understating her value, because it can

not influence her price and she may even lose the units that
she already wins (by reducing the price for earlier winners).
Again, overstating the value may increase her utility in some
cases.

4. PARETO OPTIMALITY

DEFINITION 4.1. An allocation {(xi, pi)} is Pareto Optimal
if for no other allocation {(x′i, p′i)} are all players better off:
ui(xi, pi) > ui(x

′
i, p

′
i) (Recall that ui(xi, pi) = xi ∗ vi − pi

if pi < bi and−∞ otherwise), as well as the auctioneer:
∑

i p′i ≥∑
i pi, with at least one inequality strict.

Pareto optimality is simply implied by a proposition from [9].

PROPOSITION 4.1. An allocation {xi, pi} is Pareto-optimal in
the infinitely divisible case if and only if (a) all units are completely
sold, and (b) for all i such that xi > 0 we have that for all j with
vj > vi, pj = bj . I.e. a player may get a non-zero allocation only
if all higher value players have exhausted their budget.

Since Sort-Cut mechanism always allocates the units in decreas-
ing order of the values, a bidder with value vi may be allocated
some units only if the bidders with higher values vj > vi have
exhausted their budget. Therefore, the allocation of the Sort-Cut
mechanism is Pareto-optimal by construction.

5. REVENUE ANALYSIS

DEFINITION 5.1. The ascending price auction mechanism is
defined as follows. The price starts at p = 0 and increases in-
finitesimally and continuously; At any time, the demand of each
bidder i is di = bi/p if p ≤ vi and is di = 0 if p > vi. The price
continues increasing as long as there is over-demand

∑
di > m.

The price v∗ = p, the first point when the demand equals the sup-
ply m, is defined to be the market clearing price. All bidders i with
value vi ≥ v∗ are allocated bi/v∗ units for price v∗. (The low-
est valued one may be partially allocated, but still for price v∗ per
unit.) We define R∗ to be the revenue of ascending price auction in
which bidders are bidding truthfully.

Note that ascending price auction is Pareto-optimal, but is not
truthful; Specifically, bidders can benefit by understating their bud-
gets.

In the next lemma, we show an upper bound on the revenue of
any mechanism which guarantees Pareto-optimality.

LEMMA 5.1. No Pareto-optimal mechanism, in equilibrium,
can guarantee revenue more than R∗.

PROOF. A mechanism will take announced values and bids and
allocate the goods to some bidders at some prices. A mechanism,
per-item, should not charge any bidder more than her value.

Suppose that v∗ is the market clearing price and let l be the great-
est index such that vl ≥ v∗. If a mechanism A generates a revenue
more that R∗, it must charge some bidder i (1 ≤ i ≤ l) more than
v∗ per unit. But if bidder i decreases her bid down to v∗ + ε, the
mechanism still has to exhaust all her budget (otherwise, because
of Pareto-optimality, it can not charge the bidders who have value
v∗ or less, and consequently can not even make revenue R∗) but
now with price of at most v∗ + ε. That means that at an equilib-
rium of the mechanism, no bidder can be charged more than v∗ per
unit.



Figure 1: Revenue Comparison

The rest of this section obtains a lower bound for the revenue
of Sort-Cut mechanism7. Before that, we need to introduce the
concept of Rational Bidding. Since someone who is not winning
anything in the Sort-Cut mechanismcan never benefit from under-
stating her value, we have the following definition.

DEFINITION 5.2. We say that bidders are bidding rationally, if
those who do not win anything bid at least their true value.

THEOREM 5.1. Assuming rational bidding, the revenue of the
Sort-Cut mechanism at any equilibrium is at least R∗−bmax where
bmax is the maximum budget among the winners.

PROOF. Suppose that Sort-Cut mechanism has used all the bud-
get of bidders 1, ..., k − 1 and a part of the budget of k-th bidder.
Also suppose that market clearing price for truthful bids is v∗ where
vl ≥ v∗ > vl+1. As we defined, bmax = max1≤i≤kbi, where bi is
the budget of i-th bidder. Note that the revenue of Sort-Cut mech-
anism is R =

∑k
i=1 bi − b′k where b′k is the amount of money left

unused by the k-th bidder. Also note that R∗ ≤ ∑l
i=1 bi (by the

definition of ascending price auction).
Now, we are ready to prove the claim. Consider an output of the

Sort-Cut mechanism. Since the revenue of Sort-Cut mechanism is
less than R∗ and both mechanisms sell all m units, there must be
some winner i who is getting the item cheaper than v∗ per unit.
Also we can assume that k > 1 since otherwise the claim holds
trivially. We can either have i < k or i = k. First suppose that
i < k. According to our pricing scheme, bidder i has to pay at
least v∗ per unit up to R∗ − R of her budget (See Figure 1). That
means if i is paying less than v∗ on average per unit, her budget
must be more than R∗−R. Therefore, bi > R∗−R which implies
R > R∗ − bmax. Now consider the case where i = k. Here,
bidder i is using bi − b′i of her budget, and she has to pay at least
v∗ per unit up to R∗ − R − b′i of her budget. Therefore, if she
pays less than v∗ on average per unit, the amount of her budget that
she is using, bi − b′i, must be more than R∗ − R − b′i. That is
bi − b′i > R∗ −R− b′i, equivalently, R > R∗ − bi.

Our analysis in the above theorem is tight: a simple example with
one bidder demonstrates that any Pareto-optimal mechanism which
is truthful for the budgets (like Sort-Cut mechanism) can not guar-
antee a revenue higher than R∗−bmax. No budget-truthful Pareto-
optimal mechanism can charge this bidder more than 0. Therefore,
our bound of R∗−bmax is tight, and the best achievable in budget-
truthful Pareto-optimal mechanisms.

7We do the revenue analysis for the announced values and budgets.

6. REVENUE OPTIMAL EQUILIBRIUM
BY REPEATED BIDDING

In this section, we are using the same approach that Edelman
et al [10] used to model the generalized second price (GSP) auc-
tions. Like in their paper, we assume that the bidders are playing
an infinitely repeated game, and use this to obtain some equilibria
properties for Sort-Cut mechanism. We then take the approach of
a consequent paper [7] which shows that a natural bidding strat-
egy played by all bidders leads to a unique Nash equilibrium of
GSP, and that the Nash equilibrium coincides with the outcome of
a VCG auction. Here, we show that a natural bidding strategy,
called Greedy Bidding, when it converges to an equilibrium, leads
to one that coincides with the outcome of ascending price auction
with optimal revenue.

We focus on simple strategies and impose some assumptions
and restrictions. First, we assume that all budgets and values are
common knowledge: over time, advertisers are likely to learn all
relevant information about each other. Second, since bids can be
changed at any time, stable bids must be best responses to one an-
other. We define Greedy Bidding, a simple and natural response
algorithm for the bidders who are playing the infinitely repeated
game without knowing anything about bids and budgets of other
bidders. Then we show that if running this algorithm converges, it
does so at an unique equilibrium with prices and allocations identi-
cal to those of the ascending price auction with truthful bids.

DEFINITION 6.1. (Greedy Bidding) Assume that each bidder
always bids her true budget. Moreover, she revises her bid at each
round of the infinitely repeated game by executing the following
rules in order.

1. If what the bidder is paying per unit on average is higher
than her value per unit (her bid is too much above her value),
she decreases her bid continuously over time.

2. If all or part of her budget is left unspent (trying to deplete
the budget of those who are above her, and winning more
units), she increases her bid continuously over time.

3. If she is using all her budget (she can not influence her own
price according to the pricing scheme), she does not change
her bid.

Note that we are not specifying any order for the bidders to
change their bids. As it will be clear from the proof below, it does
not matter how the bidders take turns to modify their bids as long
as they converge to some equilibrium.

LEMMA 6.1. If all bidders use Greedy Bidding and converge to
an equilibrium, this equilibrium has prices and allocations identi-
cal to those of the ascending price auction with truthful bids, which
provides revenue R∗.

PROOF. First we claim that all losers have the same bid in an
equilibrium. This is because if any of them bids slightly higher,
she must be assigned something with a price higher than her value
to send her back to her previous bid using rule 1. Because of Pareto-
optimality, this can happen only if they all have the same bid. More-
over, this common bid must be the highest possible, otherwise they
all can increase their bid. Those who have higher value than the
common bid of the losers must bid higher than the losers. There-
fore, the unique solution to this greedy bidding system is when all
losers are bidding exactly (or slightly lower than) the market clear-
ing price and this completes the proof.



PROPOSITION 6.1. If we assume that revenue R∗ of ascending
price auction for truthful bids is less than half of the total budget of
all participants, i.e.

∑n
i=1 bi ≥ 2R∗, then there exists an equilib-

rium of the Sort-Cut mechanism in which the payments and utilities
are like those of the ascending price auction with truthful bids.

PROOF. The following vector of bids will be a Nash equilibrium
in the game of complete information. All those who have value
greater than v∗ bid truthfully, those who have value less than or
equal to v∗ bid v∗. Therefore, all those who are bidding v∗ are
the losers and will not be assigned anything, and the winners have
to pay v∗ per unit. (Note that if the last winner is partially using
her budget, then v∗ is equal to her value, and she has utility 0.
Therefore she has no incentive to increase her bid for depleting the
budget of other winners.)

The condition on the revenue is required so that there is enough
budget of unallocated bidders to set the corresponding market clear-
ing price for the ones that are allocated in the ascending price auc-
tion equilibrium.

7. RELAXING THE HARD BUDGET CON-
STRAINT VIA A NEW BIDDING LAN-
GUAGE

We study an extension to the hard budget constraint model by
quantifying the “pain" felt in spending the next dollar of the budget.
If the pain felt is 1 unit per dollar until a budget and infinite after
that, we get back the original model. Alternately, we can allow for
different pain values that are felt as the budget allocated increases,
which we formalize below as a vector of budgets and values.

Every bidder i submits a vector of values vi and a vector of bud-
gets bi (of the same size). The vector vi must be in descending
order. The vector denotes that the value of bidder is vi

1 per unit up
to first bi

1 dollars that she spends, vi
2 for the next bi

2 dollars that she
spends and so on. A mechanism allocates x units to the bidder for
a total price of p. The utility of the bidder is then computed as fol-
lows. Suppose that k is the largest integer such that

∑k
1 bi

j ≤ p. Let
ρi

j = bj for j ≤ k, ρi
k+1 = p−∑k

1 bj and ρi
j = 0 for j > k + 1.

The utility is defined as ui = x.vi
1−

∑k+1
j=1

vi
1

vi
j
ρj . From the earlier

discussion, this is as if the pain felt by the bidder until the budget

value of bi
1 is 1 per dollar, increases to vi

1
vi
2

per dollar for the next b2

dollars, and then to vi
1

vi
3

per dollar for the next bi
3 dollars and so on.

It is also not hard to see that the formalization above is an-
other interpretation of the model of diminishing marginal utility
of wealth. In particular, the disutility due to the payment in the
above utility function is increasing as the payment increases in lin-
ear pieces. E.g., the second portion of the payment ρi

2 has disutility

factor vi
1

vi
2

, and the third one ρi
3 has disutility factor vi

1
vi
3

; We require

that vi
2 ≥ vi

3 . . . so that these disutility factors are increasing with
increasing payment.

We can argue that the above model strictly generalizes the hard
budget constraint of bi with valuation vi as follows: we set vi

1 = v,
bi
1 = b and vi

2 = 0 for all the remaining budget (bi
2 = ∞). If the to-

tal payment is more than b, then ρi
2 > 0 implying that the utility is

(x · v− v
0
ρ2) which is negative infinity as required. However, such

a steep drop-off in valuation to zero is implausible in real-world
situations where further units will continue to add at least some
nonzero value despite the payment reaching astronomical amounts.
Therefore, while getting a utility of negative infinity seems con-
trived in our setting, it is a natural outgrowth of this more general
formulation.

We present a revised version of Sort-Cut for this general setting,
whose allocation is Pareto optimal; Also, understating values or
budgets in the vectors of bids is weakly dominated by not doing so.
However, we show an interesting equivalence in the strategies of a
bidder increasing her payoff by overstating her value and overstat-
ing her budget; a similar equivalence holds between understating
value and budget. This shows that at equilibrium, bidders can ei-
ther overstate value or budgets in this new model. Nevertheless, we
still have an analogue of R∗ in this case bounding the revenue of
any Pareto optimal mechanism at equilibrium; we show that under
a similar form of rational bidding, the revenue of this revised Sort-
Cut mechanism is at least R∗−pmax where pmax is the maximum
payment among the bidders and is at most bmax. These results are
described in detail in the Appendix C.
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APPENDIX
A. MOTIVATION FOR SINGLE-ITEM

MULTI-UNIT AUCTIONS WITH BUD-
GETS

While billions of dollars are spent on keyword-based advertising
in the web, a majority of it is cleared through advertisement auc-
tions for sponsored search results in search result pages [6]. When
a typical advertiser goes to a typical search engine company to sign
up to bid in such auctions, they specify the set of keywords whose
search result pages they are interested in bidding for, with a bid
value per click; they also specify a total (monthly) budget for the
total amount they are willing to spend across all these keywords
in this search company’s site. We focus our attention on the bud-
get constraint which we model as being a hard constraint (cannot be
exceeded) and attempt to design an auction mechanism for clearing
this market. However, to better understand the difficulty of the hard
budget constraint, we simplify the other aspects by restricting our-
self to the problem for a single keyword, and within the keyword
search results, restrict our attention to a single sponsored search
result slot (in contract with the whole ladder of slots on the right
of the results page). Thus, one may view this, e.g. as the auction
for the single shaded sponsored search slot right under the search
query window and above the organic search results in Google.com.

Our model abstracts the auction for this single item (one slot
for a keyword) as a multi-unit auction where the number of units
is the inventory of such search results in the period for which the
budget is specified. While this is not the way that current sponsored
results are allocated (rather an auction is run every time a query is
made), it is quite a plausible scenario that the industry may move
to, especially as the market for such results mature, and a few major
advertisers wish to plan for their internet advertising campaigns in
much the same way as for other media advertising (such as the
annual Fall market clearing event for prime-time TV advertising in
New York). Our study represents the first step towards the design
of such a market.

While multi-unit auctions have been studied extensively in auc-
tion theory [4, 15, 14], the problem of budget-constrained bidders
has been paid surprisingly little attention. One reason the bud-
get constraints have not received much attention is the traditional
economist’s view that such constraints are unnatural and that if an
advertiser can make positive payoff at her current true valuation,
she should be able to finance a higher budget by borrowing in the
market. However, reality is different and the valuations announced
do not scale forever8; Furthermore, practical considerations (busi-
ness planning) also put a cap on how much can be spent by adver-
8While our main results are for the case with the hard constraints,
we also present an extension to the one where as the spending from

tisers in each period. Current keyword auctions get around this by
treating each search page in the ad inventory as an instance of an
online matching of current advertisers to slots, where the bids are
assumed to be small compared to the budgets [13], and adjusting
participation as the budget gets close to being spent.

Another reason for this lack of attention to the problem may be
the technical difficulty that the utility of obtaining the items is com-
pared to the total price at which the items are procured to give a net
payoff. The total price is now discontinuously influenced by a hard
budget constraint. Perhaps because of this, the theoretical frame-
work of budget-constrained auctions is currently substantially less
well-developed than that of unconstrained auctions. This is unsat-
isfactory both from a theoretical viewpoint, and from the practical
viewpoint, where the absence of appropriate framework might po-
tentially result in losses in revenue and efficiency.

B. SORT-CUT DETAILS
We first sketch here the proof that there exists k, b′k such that the

number of allocated items allocated is exactly m in the description
of Short-Cut. First of all, x can span the whole interval [0, B], that
is there is continuity in (k, b′k). The only discontinuity can be when
we change k to k + 1, but b′k gives us enough continuity to span
the whole interval, therefore the number of allocated objects is also
going to be continuous in (k, b′k). Secondly, when x is low (close
to zero by setting k equal to 1 and b′1 close to b1), the number
of allocated objects can be at most b1

v2
(which we assume to be

smaller than m) and is very low. On the other hand, when x is
high (close to B, by setting k equal to n) the number of allocated
objects is very high (goes to infinity with the assumption that there
exists a fictitious last bidder with very low value and high budget).
Hence, from intermediate value theorem we can conclude that such
k, b′k exists. Algorithmically, we can use a simple binary search for
finding the right value for x. Examples of the mechanism for both
the divisible and indivisible cases are presented next.

EXAMPLE B.1. We give an example to show how our mecha-
nism works for selling 19 units of a divisible item to a set of 4
bidders with the following (private) values per item and budgets.

i vi bi

1 10 55
2 9 60
3 7 40
4 6 30

We start with x = 128, so k = 3 and b′3 = 27. This means
that the price of each unit (for the first two bidders) is 7 for the
first 27 that they spend, and after that for the next 30 that they
spend, the price for each unit is reduced to 6, and finally, after that
the price is ε for each unit. Therefore, the first bidder can afford
x1 = 27/7 + 28/6 units with a total price of 55. But the second
bidder can afford all the remaining units now (which means nothing
will be left for the third bidder, who must be assigned something
according to our breakpoint). x2 = 27/7 + 30/6 + 3/ε. This
means that x is too large for the breakpoint.

Our next guess is x = 122, so k = 3 and b′3 = 33. Here, the
price (for the first two bidders) is 7 per unit for the first 33 that they

the budget increases, the valuation decreases correspondingly as
specified by a piecewise function.



spend, and 6 per unit for the next 30 that they spend, and ε per unit
after that. Therefore, the first bidder can afford x1 = 33/7 + 22/6
and the second bidder can afford x2 = 33/7 + 27/6 units. The
third bidder can use 7 of her money and she has to pay 6 per unit
for the first 30 that she spends. Therefore, she can afford x3 = 7/6
units. We can see that x1 + x2 + x3 < m, therefore, x is too small
for the breakpoint.

By continuing the same procedure, we will see that x ' 123.11
is the right value for x. Therefore, x1 ' 8.4, x2 ' 9.25 and
x3 ' 1.35, and the prices they pay are p1 = 55, p2 = 60 and
p3 ' 8.11.

In the next example, we use the same numbers as above but
demonstrate it for the case of indivisible units.

EXAMPLE B.2. In this example, B = 185 and m = 19. If we
assume that Sort-Cut mechanism uses binary search for finding the
right breakpoint, the first guess would be x = 92. Consequently,
k = 2 and b′2 = 115 − 92 = 23. Therefore, c2 = b23/9c = 2,
c3 = b40/7c = 5 and c4 = b30/6c = 5. Thus, the first bidder
wins 7 items (x1 = 7); the first 2 of them with price 9 for each,
and the next 5 with price 7 for each. The total amount of money
that the first winner has to pay is p1 = 53. Now, we look at the
second bidder. Note that she is the one on the boundary, so she
has different pricing scheme. She can use up to 60 − 23 = 37 of
her budget. The first 5 items that she gets cost 7 for her each, and
other items (if she can afford) cost 6 for her each. Therefore, she
can get 5 items with a total price of 35. We see that demand is
x1 + x2 = 7 + 5 = 12 while supply is m = 19. This means that
x = 92 is too small for the breakpoint.

We continue our binary search with x = 138. Now, k = 3 and
b′3 = 155 − 138 = 17. c3 = 2 and c4 = 5. The price of the first
unit, the second unit, and ... that each winner wins (for bidders
1 and 2) is 7, 7, 6, 6, 6, 6, 6, ε, ε, . . .. Therefore, the demand of the
first bidder according to this pricing scheme is x1 = m, which
means nothing will be left for the second bidder. This case shows
that x is too large for the breakpoint, so we have to continue our
binary search with x = 115.

By continuing the binary search, after trying values x =
115, x = 128, x = 122, x = 119, x = 121 we finally end up
with the following pricing and allocation. x = 121, k = 3,
b′3 = 34, x1 = 8, p1 = 52, x2 = 11 and p2 = 58. The
prices of the first unit, second unit, ... for the first two bidders
are: 7, 7, 7, 7, 6, 6, 6, 6, 6, ε, ε, .... If the reader has not followed
all the details for this example, it is instructive at least to apply the
mechanism for the values of x = 120 and x = 122 to see how the
value of x = 121 gives the clearing point.

C. REVISED SORT-CUT FOR EXPRES-
SIVE BIDDING

We show that a natural extension of Sort-Cut mechanism works
in this new setting. For the sake of simplicity, we drop the su-
perscript on the budgets and values denoting the bidder, and use
subscripts to denote the various parts of her vectors.

We now describe the key differences from the original Sort-Cut
mechanism. If a bidder has submitted a vector of s entries, we
consider her as s different bidders with correspondent budgets and
values and we run sort-cut but with a few differences. When we
are calculating prices for a bidder, we consider different parts of
other bidders as different bidders. However, for pricing, we treat
the different parts of this bidder as one, i.e. for each part, we skip
over the other smaller value parts of the same bidder in computing
the price. Furthermore, for each part, we do not start from the

original cut-point for pricing, instead, we continue from where we
stopped for the previous part. For example, for the first part (the
part with highest value) we do exactly as original sort-cut: we start
from the cut-point and we move towards lower values and compute
the prices per units. But for the second part of this bidder, we will
not start from the cut-point again, instead we will start from where
we stopped for the first part. Also for the third part, we start from
where we stopped for the second part and so on.

We present the details of the revised Sort-Cut mechanism for ex-
pressive bids in Algorithm 2. Without loss of generality, we assume
that the size of the vector for every bidder is s.

Our way to model this setting is to assume that every bidder has
a true cumulative value curve per dollar which has slope 1 in the
first piece [0, tb1], then has slope tv1

tv2
in the second piece [tb1, tb2],

slope tv1
tv3

in the third piece [tb2, tb3], and so on. We have used the
t- prefix in the variables to denote that these are from the “true"
curve of the bidder.

In the mechanism, the bidders are free to choose how many (bud-
get, value) pairs they would like to submit to the auction. Given
this, there is a subtlety in the definition of when the bidder is truth-
ful, which we clarify now. Clearly, stating the original set of bud-
gets (tb1, tb2, . . . , tbs) along with the corresponding true values
(tv1, tv2, . . . , tvs) is truthful. Here are two other notions of truth-
fulness.

DEFINITION C.1. For a given vector of budgets (b1, . . . , bs),
a vector of values (v1, . . . , vs) is called truthful if for every piece
i with budget bi, the value vi obeys the expression that bi · vi is
exactly the original value tv1 multiplied by the cumulative value
per dollar in this segment, namely the cumulative increase in the
value per dollar across the segment [

∑i−1
j=0 bj ,

∑i
j=0 bj ].

DEFINITION C.2. For a given vector of values (v1, . . . , vs), a
vector of budgets (b1, . . . , bs) is called truthful if they obey the fol-
lowing conditions: First, tv1 ≥ v1 ≥ v2 . . .. Then, b1 is such
that the true cumulative value per dollar at b1 times tv1 is equal to
b1 · v1. Also, the cumulative increase in the value per dollar across
the segment [b1, b1 + b2] times tv1 equals b2 · v2 and so on.

We are now ready to show that bidders cannot benefit from un-
derstating any of the values.

THEOREM C.1. For any given vector of budgets b, an adver-
tiser cannot benefit from understating any of the entries of vector
v. In other words, understating value is weakly dominated.

PROOF. Sort-cut defines a pricing scheme for each bidder. The
pricing scheme for a particular bidder can be characterized by two
vectors p.value and p.units. If the bidder is getting x units, the
price assigned by sort-cut is

price(x) =

l∑
i=1

p.valuei × p.unitsi + remain× p.valuel+1

where l is the largest value such that
∑l

1 p.unitsi ≤ x and
remain = x−∑l

1 p.unitsi. More precisely, p.value is the vec-
tor (value(k), value(k + 1), . . .) from the formal description of
sort-cut, but with entries corresponding to this bidder eliminated,
and p.units is the vector (γk, γk+1, . . .) again with entries corre-
sponding to this bidder eliminated. The expression given above is
computed by the algorithm in step 14.

If a part of this bidder, which is among the winners, understates
the value and moves either to the boundary or to the set of losers,
then this part will lose a certain number of units say z. The key



Algorithm 2 The Sort-Cut mechanism for new bidding language
1: {Initialization} Let B =

∑n
i=1

∑s
j=1 bij ; Initialize x = B/2

and allocations yj = 0 for all j.
2: Sort all bijs in descending order and name them β1, . . . , βns.
3: {By value(i) and bidder(i)we mean the value and the bidder

of the bid which corresponds to budget βi respectively.}
4: repeat
5: B ← B/2
6: {Cut-point determination}
7: Let k be the largest index such that

∑k−1
i=1 βi ≤ x.

8: Let startindexi ← k and remi ← 0 for all 1 ≤ i ≤ n.
9: Let β′k =

∑k
i=1 βi − x, and define γk = β′k/value(k),

and change βk ← βk − β′k. Define γi = βi/value(i) for
k + 1 ≤ i ≤ ns.{β and γ correspond to b and c in original
sort-cut}

10: {Payments and Allocations}
11: for i = 1 to k do
12: Set the payment pi = βi; Initialize yi = 0,

j = startindexbidder(i), and temp =
rembidder(i){startindex and rem point to the bidder
and the remaining portion of her budget that the pricing
must continue from.}

13: while βi > 0 do
14: {Computing Pricing}
15: while bidder(i) = bidder(j) do
16: j ← j + 1 {Skipping the parts of the same bidder}
17: end while
18: yi ← yi +

min(βi,γj .value(j)−temp)

value(j)

19: rembidder(i) ← min(βi, γj .value(j)− temp)
20: βi ← βi −min(βi, γj .value(j)− temp)
21: startindexbidder(i) ← j
22: temp ← 0
23: j ← j + 1
24: end while
25: end for
26: {Binary Search Update}
27: if

∑k
i=1 yi > m then

28: x ← x−B/2
29: end if
30: if

∑k
i=1 yi < m then

31: x ← x + B/2
32: end if
33: until the sum of allocations yj is the supply m
34: {Aggregating allocation and price from different parts of a bid-

der}
35: for i = 1 to n do
36: paymenti =

∑
j:bidder(j)=i pj

37: allocationi =
∑

j:bidder(j)=i yj

38: end for

claim is that the new pricing scheme is the same as before with at
most z units shifted to right: z units are removed from the begin-
ning of p.units vector and corresponding p.value vector entries.
In other words, the pricing starts from at most z units after where it
did before. As a result, also because of descending order of p.value
vector, if we name the new price function pricenew we get the fol-
lowing inequality for any y ≤ x:

pricenew(x)− pricenew(y) ≥ price(x + z)− price(y + z).

Suppose the part that is understating value has real value v′,
budget b′ and allocation x′. We already know that according to
definition of sort-cut that v′x′ ≥ price(x′). Also from the cor-
responding proof in the original sort-cut mechanism, we know
v′(x′− z)− pricenew(x′− z) ≤ v′x′− price(x′), that is, under-
stating value for the part itself cannot be beneficiary. Therefore, the
gain in the utility function of the bidder by understating value will
be non-positive if the total payment of other parts increases after
understating, or in other words, if the following inequality holds.

pricenew(x)− pricenew(x′ − z) ≥ price(x + z)− price(x′)

But this inequality holds by directly by applying the previous in-
equality.

DEFINITION C.3. Given the vector of values (v1, . . . , vs) sup-
pose that the truthful vector of budgets for a bidder is (b′1, . . . , b

′
s)

and the stated vector by this bidder is (b1, . . . , bs). If
∑l

1 b′i >∑l
1 bi for some l, we say that the bidder is understating budget. If

someone is not understating budget and is not truthful either, she is
overstating budget.

We show later that each of understating budget and understating
value are each enough to model the other. In other words, every
strategy of overstating budget by a bidder can be modeled by one
of overstating value and vice-versa. This gives the following impli-
cation from the previous theorem.

THEOREM C.2. In the new bidding language and using new
version of sort-cut, understating budget is weakly dominated.

By construction, since units are allocated to bidders with a value
v only if no other bidder of higher value can afford it, the following
theorem is immediate.

THEOREM C.3. The allocation and pricing given by new ver-
sion of sort-cut for the new bidding language is always Pareto op-
timal.

What we showed is that for a fixed vector of values, one cannot
benefit from understating her budget, with some more general def-
inition for understating budget according to the new setting. We
also showed that given a vector of budgets, one cannot benefit from
understating value.

We next show that each of overstating budget and overstating
value is enough to model the other. I.e., every way of overstat-
ing budget by the bidder can be modeled by an instance of over-
stating value and vice-versa. This shows that a mechanism cannot
prevent the bidders from only one of these two, and therefore, un-
like the original sort-cut, here we cannot expect an alteration which
prevents bidders from overstating their budget; (Note otherwise
that we will get a fully truthful mechanism for this generalization,
which according to the result of Dobzinski et al. [9], is impossible.)



DEFINITION C.4. We say that a mechanism is division-blind if
the output of the mechanism does not change if any bidder divides
one of her part with value v′ and budget b′ into two parts both with
value v′, and one with budget b1′, the other with budget b2′ such
that b1′ + b2′ = b′.

THEOREM C.4. If one can benefit from overstating budget in
some input of any division-blind mechanism, there is also some
other input in which one can benefit from overstating value and
vice versa.

PROOF. Consider a generic budget overstating: (. . . , bi +
ε, . . . , bj − ε, . . .) instead of (. . . , bi, . . . , bj , . . .) (all other forms
of overstating budget can be obtained by sequential applica-
tion of this step). To get the corresponding value overstat-
ing with the same effect add one extra part with value vj and
budget ε and reduce bj to bj − ε. Therefore, the vector of
values and budgets look like (. . . , vi, . . . , vj−1, vj , vj , . . .) and
(. . . , bi, . . . , bj−1, ε, bj − ε, . . .) respectively. If the bidder over-
states the value of the part with budget ε to vi instead of vj we get
(. . . , vi, vi, . . . , vj−1, vj , . . .) and (. . . , bi, ε, . . . , bj−1, bj−ε, . . .)
which is equivalent to (. . . , bi + ε, . . . , bj − ε, . . .).

For the reverse direction, consider a generic value overstating:
If some value v is overstated to value v′, we may consider an ex-
tra part with value v′ and budget 0. The overstating of value can
be simply simulated by overstating all the budget corresponding to
value v to the budget of value v′.

THEOREM C.5. If one can benefit from understating budget in
some input of a division-blind mechanism, there is also some input
in which one can benefit from understating value and vice versa.

The proof to this theorem is very similar to the proof of theorem
C.4. Also note that this theorem can be used as a proof to theorem
C.2.

C.1 Revenue Analysis
For a price per unit ν and given truthful vectors of values tvi

and budgets tbi for bidders i, the demand of a bidder is the sum of
true-budgets of her parts that have true-value at least ν divided by
ν. It is easy to see that demand is a decreasing function in price.
Having these, we can define the market clearing price ν∗ and its
correspondent revenue R∗ with respect to this truthful vectors of
bids and budgets. We get exactly the same set of results as we had
for original sort-cut mechanism. We omit the proof here because
they are identical to their corresponding counterparts in the original
sort-cut mechanism.

THEOREM C.6. No Pareto-optimal individual rational mecha-
nism, in equilibrium, can guarantee revenue more than R∗.

THEOREM C.7. Assuming rational bidding, the revenue of new
sort-cut mechanism at any equilibrium, is at least R∗−pmax where
pmax is the maximum payment among the bidders.

The last theorem is stated for pmax instead of bmax; in fact, the
original theorem can also be stated for pmax. We use the latter here,
because in the setting where budgets are stated as vectors, pmax is
more meaningful and is also stronger.


