
Trading off Mistakes and Don’t-Know Predictions:
Combining KWIK and Mistake Bound Models

Amin Sayedi∗
Tepper School of Business

CMU
Pittsburgh, PA 15213
ssayedir@cmu.edu

Avrim Blum
Department of Computer Science

CMU
Pittsburgh, PA 15213
avrim@cs.cmu.edu

Morteza Zadimoghaddam
CSAIL

MIT
Cambridge, MA 02139
morteza@mit.edu

Abstract

We discuss an online learning framework in which the agent is allowed to say “I
don’t know” as well as making wrong predictions on given examples. We analyze
the trade off between saying “I don’t know” and making mistakes. If the number
of don’t know predictions is forced to be zero, the model reduces to the famous
mistake-bound model introduced by Littlestone [Lit88]. On the other hand, if
no mistake is allowed, the model reduces to KWIK framework introduced by Li
et. al. [LLW08]. We propose a general, though exponential-time, algorithm that
minimizes the number of don’t-know predictions if a certain number of mistakes
is allowed. Polynomial-time versions of our algorithm are presented for concept
classes monotone disjunctions and linear separators.

1 Introduction

Motivated by [KS02, KK99] among others, Li, Littman and Walsh [LLW08] introduced the KWIK,
standing for knows what it knows, framework for online learning. Roughly stated, in KWIK model,
the learning algorithm needs to make only accurate predictions, although it can opt out of predictions
by saying “I don’t know”(⊥). The algorithm is not allowed to make any mistake, still, it learns from
those examples on which it answers ⊥. The goal of the algorithm is to minimize the number of
examples on which it answers ⊥. Several aspects of the model are discussed in [LLW08], and
there are many other papers, including [WSDL, DLL09, SL08], using the framework. It is worth
mentioning that the idea of forcing the algorithm to say “I don’t know” instead of making mistake
has also appeared in some earlier work like [RS88], referred to as reliable learning.

Generally, it is highly desirable to have an algorithm that learns a concept in KWIK framework
using a few, or even polynomial, number of ⊥s. But unfortunately, for many concepts, no such
algorithm exists. In fact, it turns out that even for many basic concepts which are very easy to learn
in Mistake-bound model [Lit88], e.g. class of [0, a]−intervals or singletons, the KWIK algorithm
needs to say⊥ exponentially many times. The purpose of our paper is to relax the assumption of not
making any mistake, by allowing a few mistakes, but instead get much better bounds on the number
of ⊥s.

In [LLW08], the authors show, through a non-polynomial time algorithms called enumeration algo-
rithm, that a finite class H of functions can be learned in KWIK framework with at most |H| − 1
number of ⊥s. We show that if only one mistake is allowed, that number can be reduced to

√
2|H|.

Furthermore, we show that the problem is equivalent to the famous egg-dropping puzzle, defined
formally in section 2, hence getting bound (k + 1)H

1
k+1 when k mistakes are allowed. Our algo-

rithm does not run in polynomial time in general since its running time depends on |H|; however,
∗Part of this work was done when the author was an intern in Microsoft Research, Cambridge, MA.

1

we propose polynomial versions of our algorithm for two important concepts monotone disjunctions
and linear separators.

Allowing the algorithm to make mistakes in KWIK model, is equivalent to allowing the algorithm
to say “I don’t know” in Mistake-bound model introduced in [Lit88]. In fact, one way of looking
at the algorithms presented in section 3 is that we want to decrease the number of mistakes in
Mistake-bound model by allowing the algorithm to say ⊥. The rest of the paper is structured as
follows. First we define the model and describe the limits of KWIK model. Then in section 2, we
describe how would the bounds on the number of ⊥s change if we allow a few mistakes in KWIK
model. Finally, we give two polynomial algorithms for important classes, Monotone Disjunctions
and Linear Separators in section 3.

1.1 Model

We want to learn a hypothesis class H consisting of functions f : X → {+,−}. In each stage, the
algorithm is given x ∈ X and is asked to predict h∗(x). The algorithm might answer, +, − or ⊥
representing “I don’t know”. After the prediction, even if it is ⊥, the value of h∗(x) is revealed to
the algorithm. For a given integer k, we want to design an algorithm which, for any sequence of
examples, the number of times that it makes a mistake, denoted by M , is not more than k, and the
number of times that it answers ⊥, denoted by I , is minimized.

For example, the special case of k = 0 is equivalent to the KWIK framework, or for a finite class
H , if k ≥ log(|H|), majority vote algorithm can learn the class with no ⊥, i.e. I = 0.

Since we want to derive worst-case bounds, we assume that the sequence of the examples, as well as
the target function h∗ are selected by an adversary. The adversary sends the examples one by one.
For each example x ∈ X , our algorithm should decide what to answer; then, the adversary reveals
h∗(x).

1.2 About KWIK Model

Although the idea of KWIK framework is quite useful, there are very few problems that can be
solved effectively in this framework. The following example demonstrates how an easy problem in
Mistake-bound model can turn into a hard problem in KWIK model.

Example 1 Suppose that H is the class of singletons. In other words, for hi ∈ H , where hi :
{0, 1}n → {−,+}, we have hi(x) = + if x is the binary representation of i, and hi(x) = −
otherwise. Class H can be learned in Mistake-bound model with mistake bound of only 1. The
algorithm simply predicts − on all examples until it makes a mistake. As soon as the algorithm
makes a mistake, it can easily figure out what the target function is.

However, class H needs exponentially many ⊥’s in the KWIK framework to be learned. Since the
algorithm does not know the answer, it must keep answering ⊥ on all examples that it has not seen
yet. Therefore, in the worst case, it answers ⊥ and finds out that the answer is − on all the first
2n − 1 examples that it sees.

The situation in Example 1 happens in many other classes of functions, e.g. conjunctions or disjunc-
tions as well.

Next, we review an algorithm (called enumeration algorithm in [LLW08]) for solving problems
in KWIK framework. This algorithm is the main ingredient of most of the algorithms proposed
in [LLW08].

Algorithm 1 Enumeration

The algorithm looks at all the functions in class H; if they all agree on the label of the current
example x ∈ X , the algorithm outputs that label, otherwise the algorithm outputs⊥. The algorithm
then removes those functions h ∈ H who answered incorrectly on x from H and continues receiving
the next example. Note that at least one function gets removed from H each time that algorithm
answers ⊥; therefore, the algorithm finds the target function with at most |H| − 1 number of ⊥’s.

2

2 KWIK Model with Mistake

Example 1 shows how hard it can be to learn in KWIK model. For that, we give the following
relaxation of the framework that allows more concepts to be learned and at the same time preserves
the original motivation of the KWIK—it’s better saying I don’t know rather than making a mistake.

We allow the algorithm to make at most k mistakes. This lets us to get better bounds on the number
of times that the algorithm answers ⊥. For example, by letting k = 1, i.e. allowing one mistake, the
number of⊥’s decreases from 2n−1 to 0 for the class of singletons. Next, we will give an algorithm
for learning in KWIK framework where the algorithm is allowed to make k mistakes. Later, we look
at the problem from another angle; this time we allow “I don’t know”s in Mistake-bound model.

We saw, in Algorithm 1, how to learn a concept class H with no mistake and with O(|H|) number
of ⊥’s. In many cases, the bound O(|H|) is tight; in fact, if for every subset S ⊆ H with |S| > 1
there exists some x ∈ X for which |{h ∈ S|h(x) = +}| ∈ {1, |S| − 1}, then the bound is tight.
This condition, for example, is easily satisfied for the class of [0, a]-intervals.

However, if we allow the algorithm to make one mistake, we show that the number of ⊥’s can be
reduced to O(

√
|H|). In general, if k mistakes are allowed, there is an algorithm which can learn

the class with at most (k + 1)|H|1/k+1 number of ⊥’s. The algorithm is similar to the one for the
classic “egg game” puzzle (See [GF]). First suppose that k = 1. We make a pool of all functions
in H , initially consisting of |H| candidates. Whenever an example arrives, we see how many of the
candidates label it +, and how many label it −. If the population of the minority is <

√
|H|, we

predict the label that the majority says on the example; however, if the population of the minority
is ≥

√
|H|, we say ⊥. Those function who have been wrong on an example will be removed from

the pool in each step. If we make a mistake in some step, the size of the population will reduce to
<

√
|H|. Hence, using Algorithm 1, we can complete the learning with at most

√
|H| number of

⊥’s after our first mistake. Furthermore, note that before making any mistake, we remove at least√
|H| of the functions from the pool each time we answer ⊥. Therefore, the total number of ⊥’s

cannot exceed 2
√
|H|. This technique can be generalized for k mistakes, but before we present a

proof for the case of k mistakes, we like to mention a nice connection between this problem and the
classic “egg game” puzzle.

Example 2 Egg Game Puzzle

You are given 2 identical eggs, and you have access to a n-storey building. The eggs can be very
hard or very fragile, i.e. they may break if dropped from the first floor or may not break even if
dropped from the n-th floor. You need to figure out the highest floor an egg can be dropped from
without breaking. The question is how many drops you need to make. Note that you can break only
two eggs in the process.

The answer to this puzzle is
√

2n up-to some additive constant. In fact, a thorough analysis of the
puzzle when there are e eggs available, instead of just two eggs, is given in [GF]. It is not hard to
see that ⊥ minimization problem when k mistakes are allowed is equivalent to the egg game puzzle
when the building has |H| floors and there are k + 1 eggs available. As a result, with a slightly
smarter algorithm which adjusts the threshold

√
|H| recursively each time an example arrives, we

can decrease the number of ⊥s from 2
√
|H| to

√
2|H|.

Algorithm 2 Learning in KWIK Model with at most k Mistakes

Let s = |H| k
k+1 , and let P be a pool for all functions that might be the target; initially P = H ,

but during the learning process, we remove functions from P . For each example that arrives, we
see how the functions in P label it (some of them label it +, and some label it −). If the minority
population is > s, we answer ⊥, otherwise, we answer what the majority says. At the end of each
step, we remove the functions that made a mistake in the last step from P . Whenever we make a
mistake, we update s = |P | k−i

k+1−i , where i is the number of mistakes we have made so far.

Proposition 1 Algorithm 2 learns a concept class H with at most k mistakes and (k + 1)|H|1/k+1

“I don’t know”s.

3

Proof: After our first mistake, the size of the pool reduces to < |H| k
k+1 . Hence, using induction, we

can argue that after the first mistake, the learning can be done with k−1 mistakes and k(|H| k
k+1)1/k

“I don’t know”s. There can exist at most |H|
|H|

k
k+1

= |H|1/k+1 number of⊥’s before the first mistake,

therefore, the total number of ⊥’s will not exceed

|H|1/k+1 + k(|H| k
k+1)1/k = (k + 1)|H|1/k+1.

2

Before moving to the next section, we should mention that Algorithm 2 is not computationally effi-
cient. Particularly, if H contains exponentially many functions, which is the case most of the times,
the running time of Algorithm 2 becomes exponential. In the next section, we give polynomial-time
algorithm for a couple of important concept classes.

3 Mistake Bound Model with “I don’t know”

We can look at the problem from another perspective: instead of adding mistakes to the KWIK
framework, we can add “I don’t know” to the Mistake-bound model. We prefer our algorithm
saying “I don’t know” rather than making a mistake. Therefore, in this section, we try improve the
mistake bounds in Mistake-bound model by allowing the algorithm to say “I don’t know” in some
cases. Of course, if the algorithm always answers ⊥, it makes no mistake; so, we are particularly
interested in the tradeoff between the number of mistakes and the number of ⊥’s. Please note that
an algorithm can always replace its ⊥’s with random +’s and −’s, therefore, we must expect that
decreasing the number of mistakes by one requires increasing the number of ⊥’s by at least one.

3.1 Monotone Disjunctions

We start with the concept class Monotone Disjunctions. A monotone disjunction is a disjunction in
which no literal appears negated, that is, a function of the form

f(x1, . . . , xn) = xi1 ∨ xi2 ∨ . . . ∨ xik
.

We know that this class can be learned with at most n mistakes in Mistake-bound Model [Lit88]
where n is the total number of variables. This class is particularly interesting because the results de-
rived about Monotone disjunctions can be applied to Monotone Conjunctions as well. Furthermore,
by defining n new variables, we can extend the results to the class of non-monotone Disjunctions
and non-monotone Conjunctions as well. We are interested in decreasing the number of mistakes
for the cost of having (hopefully few) number of ⊥’s. Suppose that we know that the target function
is a monotone disjunction of a subset of the n variables {x1, . . . , xn}. Each example is a boolean
vector of length n. An example is labeled +, if and only if at least one of the variables that belong
to the target function are set to 1 in the example.

First, let’s not worry about the running time and see how well Algorithm 2 performs here. We have
|H| = 2n; if we let k = n/i, the bound that we get on the number of ⊥’s will be ' n2i

i ; this is not
bad, especially, for the case of small i, e.g. i = 2, 3. In fact, for the case of i = 2, we are trading off
each mistake for four “I don’t know”s. But unfortunately, Algorithm 2 cannot do this in polynomial
time. Our next goal is to design an algorithm which runs in polynomial time and guarantees the
same good bounds on the number of ⊥’s.

Algorithm 3 Learning Monotone Disjunctions with at most n/2 Mistakes

Let P , P+ and P− be three pools of variables. Initially, P = {x1, . . . , xn} and P+ = P− = φ.
During the process of learning, the variables will be moved from P to P− or P+. The pool P+

is the set of variables that we know must exist in the target function; the pool P− is the set of the
variables that we know cannot exist in the target function. The learning process finishes by the time
that P gets empty.

In each step, an example a ∈ {0, 1}n arrives. Let S ⊆ {x1, . . . , xn} be the set representation of
a, i.e., xi ∈ S if and only if ai = 1. If S ∩ P+ 6= φ, we can say for sure that the example is
+. If S ⊆ P−, we can say for sure that the example is negative. Otherwise, it must be the case

4

that S ∩ P 6= φ, and we cannot be sure about our prediction. Here, if |S ∩ P | ≥ 2 we answer +,
otherwise, i.e. if |S ∩ P | = 1, we answer ⊥.

If we make a mistake, we move S ∩ P to P−. Every time we answer ⊥, we move S ∩ P to P+ or
P− depending on the correct label of the example.

Proposition 2 Algorithm 3 learns the class of Monotone Disjunction with at most M ≤ n/2 mistake
and n− 2M number of ⊥s.

Proof: If we make a mistake, it must be the case that the answer had been − while we answered +;
for this to happen, we must have |S ∩ P | ≥ 2. So, after a mistake, we can move S ∩ P to P−. The
size of P , hence, decreases by at least 2.

Every time we say ⊥, it must be the case that |S ∩ P | = 1. The size of P decreases by at least one,
each time. 2

Algorithm 3, although very simple, has an interesting property. If in an online learning setting,
saying ⊥ is cheaper than making a mistake, Algorithm 3 strictly dominates the best algorithm in
Mistake-bound model. Note that the sum of its ⊥s and its mistakes is never more than n. More
precisely, if the cost of making a mistake is 1 and the cost of saying ⊥ is < 1, the worst-case cost of
this algorithm is strictly smaller than n.

Next we present an algorithm for decreasing the number of mistakes to n/3.

Algorithm 4 Learning Monotone Disjunctions with at most n/3 Mistakes

Let P , P+, P− be defined as in Algorithm 3. We have another pool P ′ which consists of pairs of
variables such that for each pair we know at least one of the variables belongs to the target function.
Like before, the pools form a partition over the set of all variables. Please note that a variable can
belong to at most one pair in P ′, furthermore, if a variable is in some pair in P ′, it cannot belong
to any of the other sets P , P+ or P−.

Whenever an example a ∈ {0, 1}n arrives we do the following. Let S ⊆ {x1, . . . , xn} be the set
representation of a, i.e. xi ∈ S if and only if ai = 1. If S ∩ P+ 6= φ, we answer +. If S ⊆ P−, we
answer −. Also, if S contains both members of a pair in P ′, we can say that the label is +.

If none of the above cases happen, we cannot be sure about our prediction. In this case, if |S∩P | ≥
3, we answer +. If |S ∩ (P ∪P ′)| ≥ 2 and |S ∩P ′| ≥ 1 we again answer +. Otherwise, we answer
⊥.

Proposition 3 Algorithm 4 learns the class of Monotone Disjunction with at most M ≤ n/3 mistake
and 3n/2− 3M number of ⊥’s.

Proof: If |S ∩ P | ≥ 3 and we make a mistake on S, then the size of P will be reduced by at least 3,
and the size of P− will increase by at least 3. If |S ∩ (P ∪ P ′)| ≥ 2 and |S ∩ P ′| ≥ 1 and we make
a mistake on S, then at least two variables will be moved from (P ′ ∪ P) to P−, and at least one
variable will be moved from P ′ to P+ (since whenever a variable moves from P ′ to P−, the other
variable in its pair should move to P+). Therefore, the size of P− ∪ P+ will increase by at least 3.
Since P− ∪ P+ ≤ n, we will not make more than n/3 mistakes.

There are three cases in which we may answer ⊥. If |S ∩ P | = 0 and |S ∩ P ′| = 1, we answer ⊥;
however, after knowing the correct label, S∩P ′ will be moved to P+ or P−. Therefore, the number
of “I don’t know”s of this type is bounded by n − 3M . If |S ∩ P | = 1 and |S ∩ P ′| = 0, again,
after knowing the correct label, S ∩ P will be moved to P+ or P−, so the same bound applies. If
|S ∩P | = 2 and |S ∩P ′| = 0, the correct label might be + or −. If it is negative, then we can move
S ∩P to P− and use the same bound as before. If it is +, the two variables in S ∩P will be moved
to P ′ as a pair. Note that there can be at most n/2 of such ⊥’s; therefore, the total number of ⊥’s
cannot exceed n/2 + n− 3M . 2

3.2 Learning Linear Separator Functions

In this section, we analyze how we can use ⊥ to decrease the number of mistakes for learning linear
separators with margin γ. This is a good example to show that the idea applied to finite H can still

5

be applied even when |H| is infinite by looking at the measure of those functions who predict + and
those who predict −.

Definition 1 A sequence S of n d-dimensional points arrive one by one. There are two types of
points + points and − points. We want to find a separator hyperplane (vector) to distinguish them.
We know that there exists a unit-length separator vector w∗ such that w∗ · x > 0 if and only if x is
a + point. Define γ to be minx∈S

w∗·x
|x| . It is also assumed that all points have unit length.

The parameter γ in the above definition shows how well the vector w∗ separates the points in se-
quence S. Following we show how to formulate the problem with a Linear Program to bound the
number of mistakes using some “I don’t know” answers.

Assume that n points x1, x2, · · · , xn are in the sequence S. Each point is either a + point or a −
point. We note that these points arrive one by one, and we do not have them in advance. We have
to answer when a point arrives. The objective is to make a small number of mistakes and some “I
don’t know” answers to find a separation vector w such that w · xi is positive if and only if xi is a +
point.

We can write this problem as the following linear program.

w · xi > 0 If xi is a + instance, and

w · xi ≤ 0 If xi is a − instance

Note that there are d variables which are the coordinates of vector w, and there are n linear con-
straints one per input point. Clearly we do not know which points are the + points, so we can not
write this linear program explicitly and solve it. But the points arrive one by one and the constraints
of this program are revealed over the time. Note that if a vector w is a feasible solution of the above
linear program, any positive multiple of w is also a feasible solution. In order to make the analysis
easier and bound the core (the set of feasible solutions of the linear program), we can assume that
the coordinates of the vector w are always in range [−1− γ/

√
d, 1 + γ/

√
d]. We can add 2d linear

constraints to make sure that the coordinates do not violate these properties. We will see later why
we are choosing the bounds to be −(1 + γ/

√
d) and 1 + γ/

√
d.

Now assume that we are at the beginning and no point has arrived. So we do not have any of the
n constraints related to points. The core of the linear program is the set of vectors w in [−1 −
γ/
√

d, 1 + γ/
√

d]d at the beginning. So we have a core (feasible set) of volume (2 + 2γ/
√

d)d

at first. For now assume that we can not use the ”I don’t know” answers. We show how to use
them later. Then the first point arrives. There are two possibilities for this point. It is either a +
point or a − point. If we add any of these two constraints to the linear program, we obtain a more
restricted linear program with probably a less volume core. So we obtain one LP for each of these
two possibilities, and interestingly the sum of the volumes of these two linear programs is equal to
the volume of our current linear program. We will show how to compute these volumes, but for now
assume that they are computed. If the volume of the linear program for the + case is larger than
the − case, we answer +. If our answer is true, we are fine, and we have passed the query with no
mistake. Otherwise we have made a mistake, but the volume of the core of our linear program is
halved. We do the same for the − case as well, i.e. we answer − when the larger volume is for −
case.

Now there are two main issues we have to deal with. First of all, we have to find a way to compute
the volume of the core of a linear program. Secondly, we have to find a way to bound the number of
mistakes.

In fact computing the volume of a linear program is #P -hard [DF88]. Interestingly, there is a
randomized polynomial time algorithm that approximates the volume of the core of a linear program
with (1 + ε) approximation [DFK91], i.e. the relative error is ε. The running time of their algorithm
is polynomial in n, d, and 1/ε.

So assume that l points have arrived, and we answered them. Now the l + 1th point has arrived, and
we have to answer. We have the linear program with the first l constraints. We compute the volume

6

of its core, and name it V . We also write the two linear programs for the two possibilities of the
l +1th constraint. We compute their volumes as well, name them V1 and V2. So we have these three
volumes with relative errors at most ε for arbitrary constant ε. If V1 is bigger than V2, we answer +
(V1 is the volume of the + linear program). Otherwise, we answer −. The next lemma shows that
for any mistake we make the volume decreases by a constant factor.

Lemma 4 For any mistake, we make in our algorithm, the volume of the core of the linear program
decreases by a factor of (1 + ε)/2.

Proof: Without loss of generality, assume that we answered +, but the correct answer was −. Let
V ′, V ′

1 , and V ′
2 be the exact volumes of the three linear programs. So V ′ should be equal to V ′

1 +V ′
2 .

So V1 should be in range [(1− ε)V ′
1 , (1 + ε)V ′

1] , and V2 should be in range [(1− ε)V ′
2 , (1 + ε)V ′

2]
because the algorithm for computing volumes has relative error at most ε. We answered + because
V1 is at least V2. We also have that: V ′

1 is at least V1/(1 + ε), and V2 is at least (1− ε)V ′
2 . Therefore

V ′
1 is at least (1−ε)V ′2

(1+ε) . Since V ′ is equal to V ′
1 + V ′

2 , we have that V ′
1 + (1−ε)V ′1

(1+ε) is at least (1−ε)V ′2
(1+ε) +

(1−ε)V ′1
(1+ε) which is equal to (1−ε)V ′

(1+ε) . We conclude that V ′
1 is at least (1−ε)V ′

2 . Since our + answer was
wrong, at least (1− ε)/2 portion of the core is deleted, and we conclude that the volume of the core
is multiplied by (1 + ε)/2 or a smaller number. 2

Now we show that the core of the linear program after adding all n constraints (the constraints of
the variables) has a descent volume in terms of γ.

Lemma 5 If there is a unit-length separator vector w∗ with minx∈S
w∗·x
|x| = γ, the core of the

complete linear program after adding all n constraints of the points has volume at least (γ/
√

d)d.

Proof: Clearly w∗ is in the core of our linear program. Consider a vector w′ whose all coordinates
are in range (−γ/

√
d, γ/

√
d). We claim that (w∗ + w′) is a correct separator. Consider a point xi.

Without loss of generality assume that it is a + point. So w∗ · xi is at least γ. We also know that
|w′ ·xi| is at most |w′| because the point xi has unit length. We know that |w′| is less than γ because
all its d coordinates are in range (−γ/

√
d, γ/

√
d). So (w∗ + w′) · xi = w∗ · xi + w′ · xi is positive.

We also know that the coordinates of w∗ + w′ are in range (−1 − γ/
√

d, 1 + γ/
√

d) because w∗
has unit length (so all its coordinates are between −1 and 1), and the coordinates of w′ are in range
(−γ/

√
d, γ/

√
d). So all vectors of form w∗ + w′ are in the core. Therefore the volume of the core

is at least (2γ/
√

d)d. 2

Now we can bound the number of mistakes.

Theorem 6 The total number of mistakes in the above algorithm is not more than
log2/(1+ε)

(2+2γ/
√

d)d

(2γ/
√

d)d
= log2/(1+ε)

(1+γ/
√

d)d

(γ/
√

d)d
= O(d(log d + log 1/γ)).

Proof: It can be easily proved using the Lemmas 4 and 5. 2

Now we make use of the ”I don’t know” answers to reduce the number of mistakes to any number
we want. Assume that we do not want to make more than k mistakes. Define Y1 to be (2+2γ/

√
d)d

which is the volume of the core at the beginning before adding any of the constraints of the points.
Define Y2 to be (2γ/

√
d)d which is a lower bound for the volume of the core after adding all the

constraints of the points. Let R to be the ratio Y2
Y1

. In the above algorithm, we do not make more
than log2/(1+ε) R mistakes.

We want to answer ”I don’t know” sometimes to reduce this number of mistakes. Define C to be
R1/k. Now we do the following. When the next point arrives. We compute the three volumes V, V1,
and V2 (the estimates). We know that there is a relative error of ε between them and their exact
values V ′, V ′

1 , and V ′
2 . Based on the three estimates V, V1, and V2, if we can imply that V ′

1 ≤ V ′/C,
we answer −. If our answer is wrong, the volume of the core is decreased by a factor of C. So we
do not make more than k mistakes. Because C is defined to be R1/k, and we can not reduce the
volume of the core by a factor of more than R in total (in all mistakes together). If we can imply
that V ′

2 is at most V ′/C, we answer +. We have the same analysis for this case as well. Otherwise

7

we answer ”I don’t know”. We bound the number of ”I don’t know” answers as follows. We note
that V ′

1 is at most V1/(1 − ε), and V ′ is at least V/(1 + ε). So V ′1
V ′ is at most V1

V × 1+ε
1−ε . If V1

V is at

most C × 1−ε
1+ε , we can imply that V ′1

V ′ is at most 1
C , and we answer −. So V1

V is at least 1
C × 1−ε

1+ε .

We also know that V ′
1 is at least V1

1+ε , and V is at most V ′/(1 − ε). So V ′1
V ′ is at least V1

V × 1−ε
1+ε . So

the ratio V ′1
V ′ is at least 1

C × 1−ε
1+ε

2 which is equal to 1
C × (1− δ) for an arbitrary small constant δ (we

can pick an arbitrary small ε to make δ small enough).

We can also imply that V ′
2/V ′ is at least 1

C × (1 − δ). So when the correct answer of the point is
revealed, the volume of the core is multiplied by 1 − 1

C × (1 − δ) or a smaller number. So after
l points with ”I don’t know” answers, the volume of the core is decreased at least by a factor of
(1− 1

C × (1− δ))l. So after C/(1− δ) of these points, the volume is decreased by a factor of 1/e.
We conclude that there can not be more than O(C× log R) ”I don’t know” answers. This completes
the proof of the following theorem.

Theorem 7 For any k > 0, we can learn the linear separator using the above algorithm with k

mistakes and O(R1/k × log R) ”I don’t know” answers, where R is equal to (1+γ/
√

d)d

(γ/
√

d)d
.

4 Conclusion

We discussed a learning framework that combines the elements of KWIK model and mistake-bound
model. From one perspective, we are allowing the algorithm to make mistakes in KWIK model. We
showed, using a version-space algorithm and through a reduction to egg-game puzzle, that allowing
a few mistakes in KWIK model can significantly decrease the number of don’t-know predictions.

From another point of view, we are letting the algorithm in mistake-bound model to say “I don’t
know”. This can be particularly useful if don’t-know predictions are cheaper than mistakes. We gave
polynomial-time algorithms that effectively reduce the number of mistakes in mistake-bound model
using efficient number of don’t-know predictions for two concept classes monotone disjunctions and
linear separators.

Acknowledgement

The authors are very grateful to Adam Kalai, Sham Kakade and Nina Balcan as well as anonymous
reviewers for helpful discussions and comments.

References

[DF88] Martin E. Dyer and Alan M. Frieze. On the complexity of computing the volume of a
polyhedron. SIAM J. Comput., 17(5):967–974, 1988.

[DFK91] Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. A random polynomial time algorithm
for approximating the volume of convex bodies. J. ACM, 38(1):1–17, 1991.

[DLL09] C. Diuk, L. Li, and B.R. Leffler. The adaptive k-meteorologists problem and its appli-
cation to structure learning and feature selection in reinforcement learning. In Proceed-
ings of the 26th Annual International Conference on Machine Learning, pages 249–256.
ACM, 2009.

[GF] Gasarch and Fletcher. The Egg Game. www.cs.umd.edu/~gasarch/BLOGPAPERS/egg.pdf.

[KK99] M. Kearns and D. Koller. Efficient reinforcement learning in factored MDPs. In Inter-
national Joint Conference on Artificial Intelligence, volume 16, pages 740–747. Citeseer,
1999.

[KS02] M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Ma-
chine Learning, 49(2):209–232, 2002.

[Lit88] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine learning, 2(4):285–318, 1988.

8

[LLW08] L. Li, M.L. Littman, and T.J. Walsh. Knows what it knows: a framework for self-aware
learning. In Proceedings of the 25th international conference on Machine learning, pages
568–575. ACM, 2008.

[RS88] R.L. Rivest and R. Sloan. Learning complicated concepts reliably and usefully. In Pro-
ceedings AAAI-88, pages 635–639, 1988.

[SL08] A.L. Strehl and M.L. Littman. Online linear regression and its application to model-based
reinforcement learning. Advances in Neural Information Processing Systems, 20, 2008.

[WSDL] T.J. Walsh, I. Szita, C. Diuk, and M.L. Littman. Exploring compact reinforcement-
learning representations with linear regression. In Proceedings of the Twenty-Fifth Con-
ference on Uncertainty in Artificial Intelligence (UAI-09), 2009b.

9

