
Proceedings of the 14th ACM-SIGCSE Annual Conference on Innovation and Technology

in Computer Science Education, ITiCSE-2009, Paris, France.

Introducing Abstraction and Decomposition to Novice
Programmers

Raja Sooriamurthi
Information Systems Program

Carnegie Mellon University
Pittsburgh, PA 15213

raja@cmu.edu

ABSTRACT
This paper discusses a learning exercise we use in our be-
ginning programming classes to introduce students to the
concepts of abstraction and decomposition. The assignment
is to write a perpetual calendar generation program: given
a month and a year the program will display the correct
monthly calendar. The learning goals of the exercise in-
clude how to decompose a large problem into smaller pieces
and how to specify what each piece needs to do. This ex-
ercise helps students learn the process of incremental and
iterative development. More than the actual solution, the
value of this exercise is in the several themes of software
development that are discussed during its development. We
have successfully used this assignment for several years in a
variety of CS1/CS2 programming environments (Pascal, C,
Java and .net) and also as a Java servlet based web applica-
tion exercise. Over this period, the case-study has received
very favorable feedback from students as to its interesting-
ness and pedagogical value.

Categories and Subject Descriptors
D.1.0 [Programming Techniques]: General; K.3.2 [Computer
and Information Science Education]: Computer science
education

General Terms
Design

Keywords
CS1/CS2, programming case study

1. INTRODUCTION
Mastering the art of design requires mastering the com-

plexity of the artifacts being designed. Two key tools a
student needs to learn to master complexity, what ever the
design activity maybe, are abstraction and decomposition
[9, 8, 6]. This paper discusses a case-study we use in our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’09, July 6–9, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-381-5/09/07 ...$5.00.

introductory programming class to introduce students to
these foundational concepts in the context of software de-
velopment. The assignment is to write a perpetual calendar
generation program: given a month and a year the program
will display the correct monthly calendar (e.g. Figure 1).

Figure 1: Calendar for February 2008.

The final program takes around 310 lines of code (130 for
the user interface and 180 for the logic). After a simple in-
troductory programming exercise to familiarize themselves
with the development environment, this is the second as-
signment we give to our students. The pedagogical moti-
vations for this case-study are varied; several technical and
non-technical lessons can be conveyed via this exercise. The
goals of the exercise include, identifying how to decompose
a large problem into smaller pieces and how to specify what
each piece needs to do. The solution development strat-
egy for this exercise helps students experience the process of
incremental and iterative development[10]. Along the way
students get a glimpse of a simple model-view[5] dichotomy
and also get to learn of the data-code trade offs prevalent in
many designs.

In additional to its technical lessons, this problem also
forms an intriguing case study on the role of social and geo-
political issues involved in the adoption of technology. The
program, as written for this assignment, will work for any
month in the future and any month in the past up to Septem-
ber 1752 which is when the Gregorian calendar was adopted
by England and other countries. This transition point in
history and how the Gregorian calendar was finally adopted,
amidst many voices of opposition, forms an interesting study
on the importance of effective communication and how tech-
nology alone often does not win the day. Adapting the cal-
endar program to accommodate this transition also serves
as an example of what software maintenance is about – not
necessarily about fixing a broken program but adapting an
existing program to evolving needs.

Sun Mon Tue Wed Thu Fri Sat
class Calendar { // model-1
int[,] days = new int[5,7];

}

class Calendar { // model-2
int startDay;
int daysOfMonth;

}

Figure 2: One view for presenting a calendar and two models for representing it. The model on the top
right (model-1) requires more data but less computation to display whereas the model on the bottom right
requires less data to represent the calendar but requires more computation to render it. (The code above
uses 2D arrays of C#.)

We have successfully used this assignment for the past sev-
eral years in a variety of programming environments (Pas-
cal, C, Java and .net). Extensions to this assignment have
also been used in courses on systems programming in script-
ing languages (e.g., Ruby) and web applications (e.g., Java
servlets). The assignment has received very favorable feed-
back from students as to its interestingness and pedagogical
value.

In the next section we discuss our pedagogical motivations
for case-study based assignments. The value of this exercise
is not in the final solution but in what gets discussed along
the way towards the solution. Several key ideas in soft-
ware development are introduced, which are subsequently
expanded upon later in the course.

The following sections of the paper discuss the problem,
the learning goals and how these goals are realized, varia-
tions and extensions to this case-study. The paper concludes
discussing student feedback to this exercise.

2. MOTIVATION: CASE STUDY VS
INDEPENDENT EXERCISES

A question faced by an instructor of an introductory pro-
gramming course when designing assignments is: Should I
give several small independent programming problems or
should I give a singe large case study[4]. There are ad-
vantages and disadvantages to both approaches. Our ap-
proach has been to use guided case studies. Our experience
has been that an advantage of this approach is that stu-
dents get more satisfaction having tackled a coherent larger
problem. The most common concern expressed against a
large case-study is that students can get overwhelmed by the
complexity of the problem. We have found that extensively
discussing in class how a larger problem could be decom-
posed into smaller problems and giving students a picture
of this decomposition helps. Further, very early on in the
course (2nd week) students are taught how to use the debug-
ger of their development environment (e.g., Java/Eclipse or
.net/VisualStudio). Learning how to effectively use break-
points and trace the execution of a method helps them better
understand the algorithmic aspects of their code and to bet-
ter manage the overall complexity of their program. This
naturally leads to an incremental, iterative and interactive
way of software development[10]. Students are instructed
on the general principles of how to develop each compo-
nent (method) independent of the other and how to test
its correctness. For example, the decomposition of the cal-
endar assignment typically results in eleven methods each
with a well defined purpose. Students work on each of these
methods individually and then incrementally assemble the
methods into the final solution.

Another concern expressed about the case-study approach
where a deliverable is due in larger time intervals (say 2–
3 weeks) instead of more rapid weekly deliverables is that
it can lead to procrastination and thereby disadvantage al-
ready weak students. Our approach to this pedagogical
problem has been to have intermediate milestones. For ex-
ample, as mentioned above the calendar assignment requires
about eleven methods, the development of which is spread
across two weeks. To discourage procrastination and to en-
courage an early start, functional versions of five of these
methods are due after the first week. It is important to
keep in mind that this is an introductory course on software
development and the case-study described in this paper is
targeted at students learning programming for the first time.
Hence, while we want to encourage early work we also don’t
want to penalize those who might take a while to get com-
fortable with the algorithmic way of thinking. Hence the
scoring system is set up so as to give an extra 10% for meet-
ing the one week milestone and still have 100% of the as-
signment weight on the final deliverable. This means that
a person meeting the milestone and the specs of the final
deliverable could get a score of 110%, and many do. We
have found this slight incentive encouraging early work to
be sufficient for students to aim for and successfully meet the
intermediate milestone. We use this approach of rewarding
the meeting of milestones, but at the same time keeping the
bulk of the weight of the assignment for the final deliverable,
in all our assignments. Student feedback has been encour-
aging for this approach.

3. REPRESENTING CALENDARS: MODELS
AND TRADE OFFS

The history and mathematics behind the creation of cal-
endars across various cultures is rich and diverse[12]. But
given the task of just displaying the calendar of a given
month, what information does one need? Consider the grid
on the left of Figure 2 (the view of the calendar). If one
were to fill this grid by hand what information does one
need? Students are able to immediately recognize that we
only need two pieces of information: (i) what day of the
week the month starts on and (ii) the number of days there
are in that month. A monthly calendar is thus uniquely de-
termined by these two pieces of information leading to the
data representation on the lower right of Figure 2 (model-2).
We use the difference between these two models to provide
a brief glimpse of two important issues a software developer
needs to be cognizant of:

The Model-View dichotomy: The way something is rep-

resented and the way something is presented can be quite
different and it helps to think of these two facets of informa-

Figure 3: (a) Decomposing the problem of generating a calendar into sub-problems. (b) Solving a more
general problem (DayOfWeek) and then tailoring it for a specific need (StartDay).

tion separately. In the follow-up course on OOAD we re-visit
this example and at that time elaborate in more detail on
the full fledged MVC pattern[5].

Data vs Code trade off: The model-1 representation re-
quires more data but less computation to present it. Whereas
the model-2 requires more computation to present the data.
At this stage in the course we only briefly discuss these is-
sues and elaborate on them in later assignments or subse-
quent courses. For instance, in a follow up assignment we
sometimes have students take multiple calendars and com-
bine them say three in a row etc. In that instance explicitly
having the calendars represented as a grid (model-1) helps.

Let us now consider the problem decomposition process
we guide our students through for them to get a better grip
on the complexity involved.

4. PROBLEM DECOMPOSITION:
REFINEMENTS, ALTERNATIVES AND
GENERALIZATIONS

After our initial classroom discussion, students would have
identified that any monthly calendar is uniquely determined
by two numbers—the day of the week it starts on and the
number of days in the month. The problem now reduces to
figuring out algorithms to determine these two numbers. Via
further discussion we elicit a problem decomposition struc-
ture as depicted in Figure 3. An interesting point worth
discussing at this juncture is how the task of determining
the day of the week a month starts on (StartDay) can be ex-
tended into something more general i.e., given an arbitrary
date (year, month, day) determine the day of the week the
date falls on. This generalization serves two pedagogical
purposes:

• Sometimes it may be more useful to solve a general prob-
lem (DayOfWeek) and then tailor it to the particular circum-
stance (StartDay). (This is an instance of the inventor’s para-

dox [11].)

• Once we know what we need to do there are several ways
by means of which we can do it. This separation of what
from the how is a pivotal issues in appreciating the power
of abstraction in helping to manage complexity.

This subtle difference between StartDay and DayOfWeek and
that the functionality of DayOfWeek can be realized in sev-
eral ways is an important learning milestone for a novice
programmer. As the course proceeds, several times, we re-
visit this pivotal notion that a single “what” can be realized
with several “hows”.

5. DETERMINING THE DAY OF THE WEEK
Given an arbitrary date there are several ways in which

the day of the week may be calculated. One of the earliest
is a remarkable congruence given by Reverend Zeller[14]:

w = (d + b(m + 1)26/10c + y + by/4c + bc/4c − 2c) mod 7

where w is the day of the week, d is the day of the month, m
is the month, c is the previous century and y is the year of the
century. The details of this congruence are not important
for this paper but for the following observations that have
pedagogical value for the students:

• Though the above congruence may appear intimidating,
there is a straightforward multi-step algorithmic translation.
The essential intuitive idea students need to appreciate is
that the congruence calculates an offset from an anchor date
and that offset modulo 7 gives us the needed day of the week.

• The algorithmic translation of the congruence works as-
suming that March is the 1st month and the January and
February are the 11th and 12th month of the previous year.
The user thinks in terms of March being the 3rd month and
the algorithm needs to translate it accordingly. We use this
as a simple illustration of how a user may think of a problem
and how our algorithms may think of the same problem may
be different and that we need to raise our programs to the
level of the user and not the other way around.

• The modulo expressed in the above congruence is the true
mathematical modulus[7]. Most programming languages (Java,
C, C++, VB.net, C# inclusive) implement the remainder

operation and not the true modulus. Scheme, Lisp, Ruby,
Python are some notable exceptions that implement true
modulus (i.e., −2%7 is 5 and not −2). This forms a ba-
sis for a discussion of mapping mathematical concepts to
programming languages.

An alternative to determining the day of the week is a nice
method first given by John Conway known as the Dooms-
day rule[2]. The principle is the same but the approach is
different and simple enough to be mentally done with some
practice. Depending on the implementation language one
could also use features of built in libraries. For example,
Java offers a GregorianCalendar class. One can create an
instance of this class for a given date and query the instance
to determine the day of the week. In our Web applications
course students develop a calendar based servlet application
wherein they use this approach as opposed to Zeller’s con-
gruence. Yet another way to determine the day of the week
is to use the current day as an anchor and to write methods
to determine the number of days between the current day
and the target date.

Figure 4: Two calendars for September 1752. On the left is the incorrect calendar many programs will
produce. On the right is the historically correct calendar which reflects the adoption of the Gregorian
calendar in September 1752.

The main point of discussing these alternatives is to demon-
strate to novice programmers that the same sub-task can be
implemented in numerous ways without changing the way
the sub-task is used i.e., without changing its interface.

6. DISPLAYING THE CALENDAR
As discussed earlier, to encourage an early start we set

an intermediate milestone for our assignments. In this case-
study the milestone is to implement a method for the Zeller

congruence. On completion of this milestone the main focus
of the assignment shifts towards displaying the calendar with
the right amount of indentation for the first line. Whether
this assignment is given as a console application, or GUI
based application or web application this part forms a useful
reasoning exercise for our students. Often we see the class
partition into two groups — those who are able to complete
this part unaided and those who need a crucial hint on how
to realize the first line indentation.

In the follow-up course to our introductory programming
course we require students to extend their calendar applica-
tion by associating it with a collection of dated web informa-
tion (e.g., such as the New York Times, slashdot, our local
newspaper etc). By specifying an information source, via
their calendar application students can browse information
pertinent to a particular date. This is the first assignment
our students get to use cascading style sheets and we use
this to illustrate the utility of separating the content of the
calendar from how it appears.

7. TRANSFERENCE: A QUESTION AND A
THOUGHT EXPERIMENT

The ability to apply knowledge acquired in one context to
another context is a measure of deep learning [13]. To eval-
uate how well our students have understood the conceptual
principles behind this assignment we pose the following puz-
zle and thought experiment to them after the assignment is
due and we have discussed our sample solution. The puzzle
is: How many unique yearly calendars are there? In other
words, consider entire yearly calendars printed on cards by
institutions such as banks etc. How many such unique cards
could there be? The ability to answer this question depends
on how well a student is able to transfer some of the con-
cepts of this assignment into a related context. We pose
this question as a quick quiz or a minute-paper type task in

class. Typically about one fifth of the class is able to answer
it immediately1.

Consider the following thought experiment: Why do years
have 365 days as opposed to some other number? Could
an alternative choice be made? Understanding the history
and origin of ideas plays an important role in coming up
with creative alternatives[1]. Concluding the discussion of
this case study with a brief discussion of some systems such
as the New Earth Calendar (which includes a 364 year of
13 identical months of 28 days each and a leap week every
fifth year) opens students minds to alternatives to commonly
accepted solutions.

8. A LESSON FROM HISTORY
As the introductory course proceeds students are aware

of the fact that 80% of the cost of a piece of software is
in maintenance. But the word maintenance, as applied to
software, is bit of a misnomer in that it is not like house
or automobile maintenance — there is no wear and tear.
Rather maintenance is about fixing bugs but more often it is
about enhancing the functionality of a system to do things
above and beyond it was expected to do when originally
conceived. We use this case study to illustrate this point.
The program that the students write will work correctly for
any day in the future. It will also work for any day in the
past up to September 1752. The program will not work for
September 1752 and for any month before it. The output
of the program and the historically correct version of the
calendar for that month are given in Figure 4.

The reason for this discrepancy is socio-political rather
than mathematical. It was in September 1752 that most
of the English speaking countries switched from the Julian
calendar to the Gregorian calendar which more accurately
reflected the natural calendar. Similar to the chronologi-
cal shift that occurs during transition into day-light savings
time, in September 1752 a calendar shift took place requiring
several days to be skipped. Though the Gregorian calendar
was first introduced in the 14th century, it took several cen-
turies for most countries to adopt it. The efforts of Lord
Chesterfield in bringing about the adoption of the Grego-
rian calendar and the aftermaths of its adoption (widespread

1Similar to a monthly calendar being uniquely determined
by the day of the week the month starts on and the number
of days in the month, a yearly calendar is also uniquely
determined by the day of the week the year starts on as
well as the number of days in the year ((365 or 3655 days)
thereby giving 7 ∗ 2 = 14 unique yearly calendars.

riots) offers many valuable lessons for any student of tech-
nology[3]. The main lesson being that technology alone does
not win the day.

9. SOFTWARE MAINTENANCE
The software engineering question to be taken away from

this discussion is: Is the program developed as part of this
exercise“broken”? It is interesting to note how various calen-
dar programs actually handle the adoption of the Gregorian
calendar. The Unix cal utility correctly accommodate for
this adjustment. But the Unix pcal utility, which generates
postscript versions of calendars, does not handle pre Septem-
ber 1752 dates and explicitly flags an error. Contrarily the
calendar function of the popular emacs editor behaves like
the program described in this exercise: it doesn’t correctly
handle the adoption of the Gregorian calendar nor does it
flag an error that it can not handle it. Contrasting the be-
havior of these three programs (cal, pcal, and calendar) is
a useful discussion.

10. ASSESSMENT AND LESSONS LEARNED
On completion of this case-study we handout a feedback

sheet requiring students to anonymously answer three ques-
tions: (i) What did you learn from this assignment (ii) What
did you like about it (iii) What did you not like about it?
i.e., is there anything you feel that could be improved. This
section summarizes student feedback, describes the various
challenges faced and the primary lessons about programming
and software development learned.

Overcoming analysis paralysis. For a novice programmer,
as the second programming exercise, this case-study is chal-
lenging (130 GUI lines of code and 200 program lines of
code). The logic is spread across several methods and a
common concern amongst students is not knowing where to
start. But as we systematically work through the decompo-
sition depicted in Figure 3 students realize that each chunk
is manageable. Experiencing this realization is one of our
pedagogical goals.

Incremental, iterative and interactive development. Many
of the pieces of the overall solution architecture can be worked
on separately. As with prose, we also highlight the value of
re-writing code. Case in point, one can start off with an in-
complete version of a method to test for leap years and then
extend it to take care of century years properly. By the end
of this assignment student’s skill in using a debugger has
also improved considerably.

Alignment of responsibilities. An error that we see at this
introductory stage is a misalignment of responsibilities. For
example, everything that has to do with printing the calen-
dar should be contained within the method for PrintCalen-

dar. Occasionally we see students printing the banner (the
month, year, weekday names) in a place different from where
they print the calendar grid.

Importance of starting early. Many students have favor-
ably commented on the usefulness of having a reward as-
sociated with an early start and successful meeting of an
intermediate milestone.

Grading rubric. Reflecting the earlier discussed problem
decomposition, student are provided with a detailed grading
rubric to help guide their development efforts. Students are
also required to self evaluate their performance on the as-
signment using the rubric. The course grader uses the same
rubric to determine their official score. Comparing their

evaluation against the graders emphasizes the importance
of self-assessment. We use this grading strategy in all our
assignments.

11. SUMMARY
For several years we have successfully used this case-study

in different programming classes — introductory program-
ming (in Pascal, C, Java, .net), scripting languages (Ruby)
and web applications (Java servlet). This assignment forms
a good exercise in algorithmic reasoning for introductory
students. It introduces students to many important ideas of
software development that we expand upon further in the
curriculum: abstraction, decomposition, iterative develop-
ment, using a debugger, data-code trade off, glimpse of the
MVC pattern etc. The case-study provides an example of
what software maintenance is about and provides an intrigu-
ing historical backdrop for what it often takes to have new
technology accepted. In the .net environment students have
personalized their application by placing it in the shortcuts
area of the Windows task-bar. The web based version in-
volves the creation of a calendar based information browser
servlet. Students who have demoed their web application
to friends have commented that their friends have requested
copies of the program for their personal use. It has been re-
warding to see that based on class feedback and evaluations
students have found this case-study to be both interesting
and pedagogically useful.

12. REFERENCES
[1] J. L. Adams. Conceptual Blockbusting: a guide to

better ideas. Perseus Publishing, 4th edition, 2001.

[2] E. R. Berlekamp, J. H. Conway, and R. K. Guy.
Winning Ways for Your Mathematical Plays: Games

in Particular, volume 2. Academic Press, 1982.

[3] P. D. S. Chesterfield. Dear Boy: Lord Chesterfield’s

letters to his son. Bantam, 1989.

[4] M. J. Clancy and M. C. Linn. Designing Pascal

Solutions: case studies with data structures.
W.H.Freeman, 1992.

[5] E. Freeman and E. Freeman. Head First Design

Patterns. O’Reilly Media, 2004.

[6] D. Ginat. On varying perspectives of problem
decomposition. Proceedings of SIGCSE, pages
331–335, 2002.

[7] R. F. Graham, D. E. Knuth, and O. Patashnik.
Concrete Mathematics: A Foundation for Computer

Science. Addison-Wesley, 2nd edition, 1994.

[8] O. Hazzan. Reflections on teaching abstraction and
other soft ideas. SIGCSE Bulletin, 40(2):40–43, 2008.

[9] J. Kramer. Is abstraction the key to computing?
Commun. ACM, 50(4):36–42, 2007.

[10] R. C. Martin. Agile Software Development, Principles,

Patterns, and Practices. Prentice Hall, 2002.

[11] G. Polya. How to Solve It: A new aspect of

mathematical method. Princeton University press, 2nd
edition, 1957.

[12] E. M. Reingold and N. Dershowitz. Calendrical

Calculations. Cambridge University Press, 2nd edition,
2001.

[13] M. D. Svinicki. Learning and Motivation in the

Postsecondary Classroom. Anker Publishing, 2004.

[14] C. Zeller. Kalender-formeln. Acta Mathematica,
9:131–136, 1886.

