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Abstract—It is widely believed in the clinical and biosciences
community that Electroencephalography (EEG) is fundamen-
tally limited in the spatial resolution achieved using a few
hundred electrodes. This belief rests on the well known decay
of high-spatial frequencies as the signal passes from the brain
surface to the scalp surface. These high spatial frequencies
carry high spatial resolution information about the source.
However, recent experimental work as well as our theoretical
and numerical analyses strongly suggest that EEG’s resolution
could be improved significantly through increased electrode
density despite this decay. Somewhat counterintuitively, instead
of viewing this decay of spatial frequencies as a detriment
to signal quality (which it is), in this work we propose an
information-theoretic strategy to harness this decay to reduce
circuit area and energy needed for high-resolution signal ac-
quisition. This is made possible by the observation that this
spatial-low-pass filtering of the signal as it passes from the
brain to the scalp induces large spatial correlations that can
be exploited information-theoretically. The proposed techniques
are shown in idealized head models to reduce requirements
on energy required for sensing by 3x. These results are being
applied towards an ongoing project on developing the “Neural
Web,” a 10,000 electrode portable EEG system at CMU.

I. INTRODUCTION AND MOTIVATION

Modern Electroencephalography (EEG) systems used to mea-
sure electric potentials generated by the brain on the scalp
surface use at most 512 electrodes, and often much fewer,
while aiming to understand activity in the brain in a noninva-
sive fashion. A competing noninvasive modality, Magnetoen-
cephalography (MEG), relies on measuring magnetic fields
and is much more commonly used for spatial localization.
While MEG uses only a few hundred sensors (comparable
in number to modern EEG systems), MEG “SQUIDS” are
much more expensiveﬂ and restrict the subjects’ movements.
Despite these shortcomings, MEG is more commonly used
because it is thought to provide higher resolution for brain-
activity localization and imagin especially for shallow
sources. It is well known that high spatial frequencies of
EEG signals are severely attenuated (relative to low spatial

IFor example, the entire Greater Pittsburgh area has only one MEG system
at the University of Pittsburgh Medical Center, and is shared for research
and clinical purposes.

2There are studies that observe that the localization accuracy (e.g. 1] and
references therein) for the the two modalities are comparable, or comple-
mentary [2, Ch. 2], and sometimes, EEG is noted to be better [3]. However,
in practice, EEG is not often used for imaging, but instead for characteristic
signatures such as Event-Related Potentials (ERPs) or emissions in temporal
frequency bands that are well established biomarkers [4].

frequencies), and because these frequencies carry high spatial
resolution information, this attenuation reduces the resolution
of EEG signals significantly. This spatial low-pass filtering
effect of the human head has been used to estimate the
“spatial Nyquist rates” of EEG using idealized head models
by Srinivasan et al. [2], [5 It appears to us that this Nyquist-
rate analysis, which estimates a Nyquist rate of a few hundred
sensorﬂ along with practitioners’ observations of low-spatial
resolution of existing EEG systems (which also use a few
hundred electrodes), has lead to a widespread belief that
the resolution provided by EEG saturates at a few hundred
electrodes.

Our research program challenges this belief. Our accompany-
ing works make an informational case that ultra-high-density
EEG systems, with thousands (if not tens of thousands) of
electrodes can help in improving EEG’s spatial resolution
signiﬁcantlyﬂ [6], [7]. This paper shows that information
theoretic techniques can enable us to better engineer these
systems. This research is a part of an ongoing project for
building the “Neural Web”: a 10,000 electrode portable EEG
system, and this paper brings out how information theory is
a crucial enabler in conceptualizing and building this system.
In [6], [7], we build and improve the analysis in [2f, [5],
concluding that these works underestimate the spatial Nyquist
rate of EEG signals. We estimate that between 500-800
electrodes are needed to achieve the Nyquist rate. However,
recent experimental evidence strongly indicates that there is
value to sampling signals at 3mm inter-sensor distances [_8]]—
[11] (and potentially smaller), which would require thousands
of electrodes.

Motivated by these experimental results, in [6]], [[7] we ques-
tiorﬁ the EEG spatial Nyquist-rate formulation as a frame-
work for understanding fundamental limits on required spa-
tial sampling. Commonly, the goal of spatial sampling is not
to recover the EEG signals themselves, but to use them to re-

3See [2] for a great introduction to the models and techniques.

4We note that a careful reading of Srinivasan et al. [5] makes it clear
that their goal was to increase the number of electrodes used in EEG by
providing a lower, not upper, bound.

50r, at the very minimum, existing theoretical arguments and experimental
results on EEG’s limitations do not rule out improvements in resolution with
increase in number of sensors to the large values proposed here.

SWe note that similar questions are raised in the conclusions section in
work of Srinivasan [5]).



construct the signal source inside the brain. The Nyquist-rate
formulation attempts to minimize the mean-squared error in
reconstructing the EEG signal, not the error in reconstructing
the signal source. Thus, while the Nyquist-rate formulation
provides lower bounds on the required spatial sampling, these
lower bounds are likely quite loose. We illustrate this possible
looseness by using standard source-localization algorithms on
increasing number of electrodes: from a few hundred to a few
thousand. With each increase, we observe that the source-
localization accuracy also increases substantially, suggesting
that even a few thousand electrodes may not be sufficient for
accurate source localization.

In this paper, we focus on the problem of building such high-
density systems. The system design problem is nontrivial
because state-of-the-art EEG recording systems require SmW
of power per electrode (e.g. [[12[]), which quickly scales to
50 W at 10,000 electrodes for just the sensing circuitry. Such
power levels are (in best case) too large to allow the system
to be portable, or even to keep the scalp perspiration-free, and
in the worst case, harmful for moderate-term use. Towards
lowering these energy costs, we observe that the decay of
high spatial frequencies in EEG, while being a detriment
to signal quality overall, also provides an opportunity for
reducing circuit area and power in high-density sensing.
This is because decay of these frequencies induces large
spatial correlations in nearby electrodes (see Fig. [8) that
can be harnessed through information-theoretic techniques. In
particular, we provide a hierarchical referencing mechanism
that reduces power consumption by about 3x or more in
idealized head models with conservative assumptions on
power savings in comparison with classical direct global
referencing strategies, and provides significantly higher fi-
delity of measurements than a natural sequential referencing
strategy.

It might appear that in information-theoretic terms, our
problem is simply a distributed source coding problem of
with correlated sources. However, the twist here is that the
“source” of information itself has an element of choice:
it is generated through taking difference of values of the
underlying process at any two pointﬂ Because the com-
pression is performed through ADCs, it might be difficult to
use sophisticated binning-type strategies such as Wyner-Ziv
coding [13]]. Therefore, it becomes important to “choose a
source” (through choosing which values to take difference
between) that is easily compressible with little coordina-
tion between sensors when compressing. The hierarchical-
referencing approach provides one way to make this choice
which outperforms conventional approaches. We conclude in
Section [V] where we also discuss the need for obtaining fun-
damental limits on referencing strategies, which we believe
will require novel information-theoretic tools.

"This taking of differences is necessitated by measurement of the poten-
tial, which by definition is a relative quantity measured with respect to a
reference.

II. SPHERICAL HARMONICS, NOTATION AND
PRELIMINARIES

We refer the reader to [14, Chapter 19] for an introduction
to spherical harmonics. A suitably nice function f(6,$) on
(the surface of) a sphere, where 6 is the polar angle, and
¢ is the azimuthal angle (in spherical coordinates), can be
represented as a linear combination of spherical harmonics
Yim’s.
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are orthogonal basis functions, and P(-) is the Legendre
polynomial of the first kind [[14]].

Lemma 1 (Parseval’s relation for spherical harmonics):
Fc2)r normalized spherical harmonics discussed here, (i.e.,
fdio Jo—o [Yim (0, ¢)|? sinfdfd¢ = 1), Parseval’s relation
is given by:
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where ¢; ,, are the spherical harmonics coefficients of f(-),
and S = {x : ||x||]2 = r} denotes the boundary of sphere
S of radius r.

Because of the orthonormality of the spherical harmonics
basis function, we can define the “energy” contained in
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A. The “N-sphere model”: computing potentials on the
scalp surface for given potential on the cortical surface using
an idealized model

o,

Fig. 1. The N-sphere model of the human head. Conductivities of different
layers are different. Also shown are the polar angle 6 and the azimuthal angle
¢ in the spherical coordinate system.

Fig. [I] shows the N-sphere model of the human head. The
innermost sphere is the brain, and the outermost sphere is



the scalp. A common approximation is the 4-sphere model
with brain, CSF, skull, and scalp layers. The layers have
radii 4 = 7.8 cm, o = 7.9 cm, r3 = 8.6 cm, and
ry = 9.2 cm, and conductivities of CSF layer 5 times, the
skull 1/15 times, and the scalp equal to, the conductivity
of the brain. The conductivity of the skull has had various
estimates over the years. While Nunez and Srinivasan [2]] use
1/80 a the conductivity of the skull relative to the brain, we
use 1/15 based on more recent estimates that are now widely
accepted [|15].

Solving Laplace’s equation in spherical coordinates for this
model, the potential in the spherical annuli between (s—1)-th
and s-th sphere (denoted generally by ®(*)) is given by [2]:
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As a reminder: here, ®(*) is the expression for the potential
inside the s-th shell.

The following section builds on well-known solutions for
Laplace’s equation with spherical boundary conditions (see,
e.g.. 2], [14]).

III. THE BRAIN-TO-SCALP SPATIAL TRANSFER FUNCTION

We refer the reader to [14] for a quick review of spherical
harmonics, and [2]] for propagation of potential in conducting
media. The following theorem provides the spatial transfer
function for a known potential at the surface of the innermost
sphere (specified by coefficients cl(lgl of spatial harmonics
Y m’s) to a potential at the surface of the outermost sphere,
given the conductivities and the radii of the intermediate
shells. This can be used, for instance, to compute the potential
at an idealized scalp given the potential at the idealized
cortical surface.

Theorem 1 (Spatial transfer function): For the N-sphere
model described in Section the following recursive
equations describe the spatial transfer function connecting
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Proof: This result corrects and extends results obtained
by Srinivasan et al. (see [2], [5] See [6] for a detailed
proof. [ ]
In [2], the authors provide numerical approximations to
fields generated by radial dipoles that are convenient to
use in practice [2, Pg. 565]. Here, we instead simplify the
expressions in Theorem|[I]to provide different approximations
that hold in the limit of large [ (as it turns out, [ does not need
to be very large for the approximations to be quite precise).
Corollary 1 (Exponential decay with spatial frequency):
For large values of [, the transfer function can be
approximated as:

N(1,m 20, 1
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Remark: Notlce ‘that higher frequencies decay primarily be-

cause of the term ’;—ZIV in the denominator, which is the

reason why the decay 1s exponential in [. This means that
the low-pass filtering is not as much influenced by low-
conductivity of the skull as simply by distance from the brain
surface. Further notice that the transfer function does not
depend on o;. This might seem surprising. The reason o3
does not appear in the expression is because by specifying
Cl(l'r)n for all [,m, we specify the potential ¢ on the sphere
of radius r;. With this boundary condition, the conductivity
o1 does not matter. However, to compute potential due to a
spread of dipoles inside the brain will require computation

of Cz( ) themselves, which will require use of o7;.

A. Nyquist rates for a 4-sphere model: Analysis and numer-
ical results

While the fundamental goal is source reconstruction, what
if we simply want to reconstruct the EEG signal on the
scalp? Because the transfer function never becomes zero,
one can think of measuring the spatial bandwidth at, say, the
threshold that contains 99% of the signal’s energy. If so, the
aliased signal will contribute no more than 2% errors. This
philosophy (though not quite the techniques) seems to have
been implicitly adopted in the work of Srinivasan et al. [5].
Observe that the number of sensors required to reconstruct
scalp EEG faithfully should be a lower bound on the required

8We observed that some of the mathematical expressions provided on pg.
563 in [2], [S]] are erroneous. This theorem corrects and generalizes these
expressions. The code for computing the transfer function derived in our
work is available at [16].



number of sensors to do any reasonable whole-brain imaging:
if one can faithfully recover the sources, one can faithfully
recover the EEG as well. Using numerical results, we will
argue in Section that the converse of this statement is
not true, which implies that Nyquist rate for EEG signals is
only a loose lower bound on the required number of sensors.
Nevertheless, it is useful to have an estimate of number of
sensors needed for recovering EEG for practical systems.
In our numerical results (see [6]], [7]) we observe that this
lower bound is 578 sensors, which is more than any system
currently in use.

B. Is Nyquist rate the fundamental limit on number of
sensors? A source-localization perspective
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Fig. 2. A plot of energy in a spherical harmonic on log-scale, illustrating
why the Nyquist-rate analysis might be conservative in estimating the
required number of sensors for achieving close-to-maximum number of
sensors. Without an understanding of the noise spatial spectrum, it is unclear
where signal power is superseded by noise power. Intuitively, that is the point
where gains of increasing number of sensors start diminishing.

The Nyquist-rate analysis effectively provides a limit on the
number of sensors needed to reconstruct the EEG signal
with small mean-square error: by ignoring 1% of energy
in spherical-harmonics domain above, we obtain an estimate
of signal in space such that the error has at most 2% of
the energy of the original signal (the error has twice the
energy because of aliasing it causes). It is worth noting that
both Nyquist-rate analysis and our simulations below are
noiseless. The number of required sensors are only expected
to increase when realistic noise sources are accounted for in
order to overcome loss of accuracy due to noise. Neverthe-
less, for quick estimates, intuitively, the number of sensors
should be increased until the point when the signal power is
superseded by noise power.

However, mean-squared error in reconstructing the EEG
signal is not a good metric to evaluate the goodness of EEG
signal: it is important to estimate the variable that EEG signal
is being used for. For instance, for source-localization, where
the goal is to image the brain activity, accuracy of source
localization is of importance, not the accuracy of EEG signal
reconstruction. In Fig. 3] using simulations and standard
algorithms, we estimate improvements in accuracy as number
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Fig. 3.  The width of the “point-spread-function” (PSF) is used as a

measure of accuracy of reconstruction. The PSF is the spread of dipoles
in the reconstruction of the source, a dipole. All points at distances greater
than the PSF width (from the true source) are guaranteed to have PSF
amplitude less than 1/e times the max PSF amplitude. It is plotted here
vs depth from cortical surface for different number of sensors for noiseless
measurements. The algorithm assumes that the sources can be recovered
using elastic net, which minimizes a linear combination of an Lo and an
Ly cost on the source, and the error in signals estimated (vs measured
signal) at the EEG sensor using the predicted sources. There is significant
improvement in resolution as the number of electrodes increases.

of sensors increase from currently used few hundred sensors
to a few thousand sensors. Our main conclusion is that
there is significant improvement in resolution at all depths
as the number of electrodes increases. Thus, the Nyquist
rate analysis likely provides only a very loose lower bound.
However, in absence of fundamental limits on the required
number of sensors for source localization (a topic of our
current study, which appears nontrivial because these limits
require knowing noise power-spectral-density), it is hard to
be certain that these high-density systems are fundamentally
needed.

Why should we focus on source localization? In effect,
source localization for EEG captures the spirit of the more
classical Nyquist-sampling of 1-D signals: if the source can
be reconstructed, the EEG signal can be reconstructed at any
point simply by using standard forward models [17].

IV. REFERENCING MECHANISMS FOR LOSSY
COMPRESSION

The spatial power-spectral-density of EEG as it passes
through the CSF, the skull, and the scalp (in a 4-sphere
model) is shOWtﬂ in Fig. 2| Because most energy is concen-
trated at low frequencies, the induced correlation is quite high
(see Fig. @) Further, noise due to EMG and EOG (muscle
and eye artifacts) is also spatially highly correlated [§]. Thus,
the sensors are sensing highly correlated signals.

One might be tempted to ask: since the sensors are sensing
highly correlated data, do we need to have high-density

9The induced correlations will be computed and used in Fig. 8] in
Section @ to estimate energy savings using our proposed strategy.
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Fig. 4. An illustration of how the signal attenuates as it travels from
the brain surface to the scalp surface. The inner circle represents the brain
surface, and the outer the scalp surface. The low-frequency signal (denoted
in red) has a much smaller decay than the high frequency signal. Electrodes
sense the sum of the two signals, and thus relatively small difference of
the signals at recorded at nearby locations on the scalp captures the high
frequency signal.

sensing in the first place? For EEG, the answer is illustrated
in Fig. [} there is important information buried even in the
“less significant” bits of each observation. Because of decay
of high spatial frequencies (see Fig.[2), these lower order bits
are the ones carrying high-resolution information. Perhaps
as an acknowledgement of this fact, many state-of-the-art
systems record each electrode at a very high precision (e.g. 24
bit ADCs [12]]) with 256 or more sensors. Small differences
between recordings of nearby sensors matter because these
differences capture events that generate small variations in
potential either due to their shallow depth or small spatial
extent. It is unclear to us, however, if this is the actual
motivation behind the use of 24-bit ADCs.

A. Referencing mechanisms as trees

We first present a simple observation: every referencing
mechanism can be represented as an associated tree. Each
electrode corresponds to one node in this tree. The global
reference electrode is the root node. All nodes referenced
directly against the global reference are the nodes at level 1.
All nodes referenced directly against level 1 nodes are level
2 nodes, and so on. In the tree, a node’s parent is the node
the corresponding electrode is referenced against. Because
each electrode is referenced against exactly one electrode,
each node has exactly one parent, and thus the corresponding
graph for any referencing strategy is a tree.

Let us consider two simple strategies to illustrate this associ-
ation. In the first case, shown in Fig.[5] is a commonly used
system where all electrodes are referenced directly against
a global reference (sometimes called “unipolar” or “direct
global referencing”). The corresponding tree, also shown in
Fig.[5] has one root node with all other nodes as its children.
In the second case, that we will call “sequential bipolar
referencing,” each electrode is referenced to an electrode
prior to it in a chain of electrodes (see Fig. [6) leading to
a tree where each node has 1 child. We now discuss another
possible mechanism: hierarchical referencing.

Y2=V2-Vo ALLELECTRODES MEASURED AGAINST
(AMPLIFIED

A GLOBAL REFERENCE VO

b Vi1 V2
Vo ELECTRODES SURFACE
ASSOCIATED S%ﬁggD
TREE:

Fig. 5. Direct global referencing, and the associated tree, where every
electrode is referenced directly against a global electrode.
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Fig. 6. Sequential bipolar biopotential referencing and the associated tree.

1) The hierarchical referencing mechanism, and comparison
with sequential bipolar and direct global referencing: The
mechanism proposed in this work is illustrated in Fig.
Instead of using sequential bipolar referencing, we arrange
the electrodes in a tree pattern with number of levels that can
be optimized based on spatial correlations. The mechanism
is easy to design. For instance, for placement of electrodes
along a grid, one can simply think of the grid as a hierarchical
subdivision of squares. In case of placement of electrodes on
a spherical surface, commonly used techniques are inherently
recursive (e.g. icosahedron bisections used in EEG grids)
and lend themselves naturally to hierarchical constructions
of unequal but roughly constant degree per level. We now
discuss why this strategy improves on the sequential bipolar
strategy and the direct global referencing (unipolar) strategy.
Comparison with sequential bipolar strategy: Let us first
assume that the input-referred noise variance for all elec-
trodes is the same. To recover potential V; — V) from mea-
surements Y1 =V, — Vo + 21, Yo =Vo - V1 +7,,....Y; =
V, — Vi_1 + Z;, one can simply add these potentials:

ZY ZV Vi 1—|—Z):Vi_V0—|—ZZ
Jj=1 j=1

and thus noise variance increases linearly with the number
of electrodes.

On the other hand, the hierarchical referencing strategy has a
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Fig. 7. The hierarchical referencing strategy. For clarity, we indicate on
top the differences of voltages being measured, and ignore quantization and
thermal noise added by the circuitry. If the circuits were noiseless, and actual
differences of voltages were being measured, all voltages can be recovered
with respect to the global reference in just three steps. For instance, V3 —
Vo = (Va — Vo) + (Vo — Vi) + (Vi — Vp). Of course, what are actually
measured are Y; = Vj —Viep(;) +Z;, where Z; is the noise term. Thus what
is recovered is the sum of these voltages added to a noise whose variance
is the sum of the variance of noise at each electrode.

slower increase in noise. For instance, consider a tree where
every node has D children. Then, to reach every node, one
only requires to sum of O(log(n)) terms, and the noise also
grows only logarithmically.

Alternatively, in sequential bipolar referencing, one could
allocate different levels of resolution to different electrodes,
for e.g., by allocating increasing number of bits of ADCs
as the electrode gets farther from the reference electrode. To
compare with hierarchical referencing, let us assume that the
noise in the worst case is log(n) as well In that case, one
could use 0%, = 02 /i, because Y. ; 1+ ~ log(n). However,
this requires at least half the electrodes to have noise variance
02, < 202,/n, which reduces to zero as n increases (while
this noise variance can be kept constant in the hierarchical
strategy for log(n) increase in overall noise).

The hierarchical strategy also makes it easier to ensure good
contact: as long as (the fewer) electrodes in lower layers have
good contact, the larger number of electrodes in the higher
layers will be sensed accurately. Having poor contact in the
highest layer hurts only the particular electrode with poor
contact (because there are no further electrodes that reference
against the highest layer).

Comparison with direct global referencing strategy: The
savings are in energy and area because of savings in ADC
bits. How many bits are saved? For a sensor that is sensing
a s1gna1 of variance o2, the requlred ADC resolution for
¢ quantization noise scales as log . What happens if
a signal X5 is sensed with X as reference" Assumlng that
the individual variance of the two signals is the same, 02, the
variance of X, — X7 is 20%(1—p), where p is the correlation
between the two srgnals The required ADC resolution is now
smaller, % 5 log M as long as p > 0.5. How large is p?
This depends on sensor spacing and location. For idealized
(4-sphere) head models of EEG, we obtain an estimate in
Section where we also obtain estimates of energy

savings (using simplistic ADC power-consumption models)
using this strategy for the same level of overall quantization
noise.

B. A case study: ultra high density EEG for idealized spher-
ical head models

In this section, we obtain estimates of power savings using
hierarchical referencing for ultra high density EEG sensing
(with up to 9331 electrodes; conventional systems use only
up to 512 electrodes, typically much smaller). The code for
this case study is available online at [16].
Algorithm for optimal tree search: To state the problem of
optimal tree-search formally, there are n sensors sensing volt-
ages V;,i =1,...,n. A goal can be to find the referencing
tree 7 that solves the following problem:

min max IE[(‘A/Z - Vi)?,

T s.t.E7<Emax 1=1,.

Y

where V; is the potential at electrode ¢ with respect to the
global reference, V; is its estimate, Er is the energy required
by measurements corresponding to the measurement tree, and
Ehax is the total available energy. By taking maximum over
i = 1,...,n, we ensure that the maximum distortion over
all electrodes is minimized. The expectation in (II)) is taken
over the (random) values of input V;.

The search for the optimal referencing tree can be hard: the
number of possible trees for n nodes is given by Cayley’s
formula, n™ 2, which is super-exponential in n. Therefore,
we limit ourselves to obtaining the optimal hierarchical
strategy, and comparing it to the global referencing strategy.
Assuming that the spatial correlation between sensors as a
function of distance between them is known in advance, the
following brute-force algorithm provides a solution that is
still polynomial time in number of sensors (simply because
of the symmetry of the hierarchical tree: each node at a level
has the same degree) when the signal is spatially stationary
(as is the case in our idealized model for EEG signals). We
believe that the algorithm can be improved using dynamic-
programming, and are currently investigating this approach.

In Algorithm [T QNVar is the variable estimating the aggre-
gate quantization noise, and Energy counts the total energy
of the ADCs in the hierarchy. An ADC at level ¢ has Bi bits,
and there are o’ such ADCs (because at level i, there are
o' nodes). E_ADC(Bi) is the energy required by an ADC
that quantizes to Bi bits. rho, the correlation between i-th
electrode and its reference ref(:), is computed as discussed
below.

Computing correlations: To perform this case study, one final
piece of the puzzle is computing correlations. Because of
lack of such high-density systems, empirical measurements of
correlations at small distances are lacking. Therefore, we use
idealized 4-sphere models to obtain theoretical estimates (see
Fig. [§). We observe that we underestimate the correlations
somewhat (and therefore, underestimate the energy savings
using our strategy) by assuming that the signal at the surface
of the brain is white. One expects the signal to have more



Algorithm 1 Computing energy and noise with hierarchical
referencing

FOR B1 = [:BMAX]

FOR BL = [1:BMAX]

QN(B1,B2,...,BL) = 0; % Initializing noise variance
Energy(B1,B2,....BL) = 0; % Initializing energy
FOR i=1:L

rho = calc_rho(z,ref(7));
QNVar(B1,....BL) =
9—2Bi.

Energy(Bl,...,BL) = Energy(B1,...,.BL) + o' E_ADC(BI);

QNVar(Bl,....BL) + 202(1-tho)

END

END
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Fig. 8. Computed EEG spatial correlations between two points separated by
6 angular separation on the scalp. The correlations are computed using the
4-sphere model with parameters 71 = 7.8 cm, r2 = 7.9 cm, r3 = 8.6 cm,
and r4 = 9.5 cm, and conductivities of CSF layer 5 times, the skull 1/80
times, and the scalp equal to, the conductivity of the brain, assuming a white
signal on the surface of the brain. Correlations estimated using more realistic
models such as fibre-tracks will likely only be larger because the signals on
the surface of the brain are likely to be more slowly spatially changing than
white signals. Note that parameters are slightly different from [2] to align
with more recent studies in variability of these parameters.

content in lower frequencies because of spatial correlation in
neuronal activity, especially in the cortex.

ADC energy model: How can we model the energy consump-
tion of an ADC as a function of the number of bits? High
precision ADCs (16 bits or larger) are often implemented
using the sigma-delta architecture (see, e.g., [18]]), frequently
in biopotential measurements as well [12]]. For these ADCs,
the power consumption can be modeled as long as we know
what order of filter is used to implement them. For instance,
for second order ADCs, the oversampling needs to increase
by a factor of 2 for every 15 dB increase in SNR [19].
Because one bit is approximately 6 dB of SNR, one obtains
that r bits of saving leads to 215 savings in oversampling
factor. Assuming a simple (if somewhat conservative) linear

model of energy as a function of oversampling ratio yields
the model we are using (see [[16] for details).
Using correlations in Fig. [§] and ADC energy model above,
the energy savings for a 9331-electrode EEG (obtained by
allowing a maximum of 5 levels of hierarchy, with each
reference electrode being used as a reference for a = 6
electrodes in the lower layer) are:

TABLE I

ENERGY SAVINGS AND OPTIMAL BIT ALLOCATION FOR HIERARCHICAL
REFERENCING (HR) IN COMPARISON WITH GLOBAL REFERENCING (GR)

GR bits Optimal HR bits energy savings factor \
24 29, 25, 23, 22, 21 2.788
22 24,23, 21, 19, 18 2.790
20 22,21, 19, 17, 16 2.790

As shown in Table [l the savings are consistently close to a
factor of 3 (and remarkably close to each other as well). We
note that the bit-allocation of hierarchical strategy (HR) is
chosen so that the overall standard deviation of noise for HR
is smaller than the nonhierarchical (global) counterpart. The
search for the optimal hierarchical strategy was performed
assuming ADCs of 16, 17, ..., 30 bits are available. Savings
will only be larger if a larger set of ADCs is allowed. Note
that this architecture can lead to area-savings as well because
lower-order/lower-area ADCs could be used at the levels
farther away from the tree-root.

We believe that this analysis underestimates the benefits of
our strategy because reducing the number of bits in ADCs
can simplify the design itself: a lower order sigma-delta ADC
could be used, or alternatively, one might be able to use a
simpler SAR ADC. The precise amount of power saved will
depend on how much resolution is needed, and most of all, on
how much correlation is there between the signals in the first
place. As density of electrodes increases, this correlation, and
hence the power savings, are expected to increase as well.

V. DISCUSSIONS AND CONCLUSIONS

It is also of interest to obtain fundamental limits on source-
localization accuracy (see, e.g., [20]). The difficulty in using
these bounds is that the noise-spectral density is extremely
ill understood. An information-science guided structured ap-
proach that mixes theory and experiments is needed to better
estimate noise spectrum. Current techniques rely on “empty-
room measurements” (see, e.g., [21]) to estimate noise co-
variance, ignoring the fact that much of the noise is generated
by the subject themselves. A good estimate of noise spectrum
can yield upper and lower bounds on source-localization
accuracy — in spirit of traditional information theory —
helping experimentalists provide confidence intervals on their
results. Beyond source-localization, an exciting problem of
current interest is estimating functional connectivity of brain
networks, and obtaining directions of information flows [[22[]—
[24]], and thus it is also of interest to understand fundamental
limits on required number of sensors for such connectivity-
estimation problems.



On the implementation side, to make an ultra-high-density
EEG system portable will likely require reducing measure-
ment energy below that achieved by hierarchical referencing
strategy proposed here. We believe that techniques that
involve turning on only relevant sensors (e.g. [25] and refer-
ences therein) will prove extremely relevant in this context.
These techniques enable data compression at sensors by
simply turning off less relevant sensors, or quantizing to just
the required amount of precision, saving substantial circuit
energy, offering another avenue for information-theoretic
analyses.

It is also important to experimentally validate the hierarchical
referencing technique. Recently we were able to obtain initial
experimental verification which is quite promising [26].
Finally, while we provide an achievable strategy for the
problem of distributed lossy compression considered here
that outperforms conventional strategies in both theoretical
and experimental analyses, it is unclear if it is close to
optimal. Developing converse techniques for this distributed
sensing setup is an exciting new information-theoretic prob-
lem. The problem could require novel information-theoretic
tools because, as discussed in the intro, this requires choosing
the optimal among all possible referencing trees.
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