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The authors introduce a new estimation procedure, Augmented
Kalman Filter with Continuous State and Discrete Observations (AKF(C-
D)), for estimating diffusion models. This method is directly applicable to
differential diffusion models without imposing constraints on the model
structure or the nature of the unknown parameters. It provides a system-
atic way to incorporate prior knowledge about the likely values of
unknown parameters and updates the estimates when new data become
available. The authors compare AKF(C-D) empirically with five other esti-
mation procedures, demonstrating AKF(C-D)’s superior prediction perfor-
mance. As an extension to the basic AKF(C-D) approach, they also
develop a parallel-filters procedure for estimating diffusion models when
there is uncertainty about diffusion model structure or prior distributions

Diffusion Models

Kalman Filter Estimation of New Product

of the unknown parameters.

The desire to forecast the diffusion of new products has in-
spired a large body of research during the past two decades.
The accurate prediction of new product diffusions is critical
in designing marketing strategies for new product planning
and management. Before predicting sales, diffusion model
specifications must be determined and parameters must be
estimated. A variety of estimation methods for estimating dif-
fusion models have been proposed. (For a review of the liter-
ature on these estimation techniques, see Mahajan, Muller,
and Bass 1990.) In their article, Mahajan, Muller, and Bass
(1990) classify diffusion model estimation procedures into
two groups: time-invariant estimation procedures and time-
varying estimation procedures. Time-invariant estimation
procedures include the conventional estimation methods such
as ordinary least square (OLS) (Bass 1969), maximum likeli-
hood estimation (MLE) (Schmiittlein and Mahajan 1982), and
nonlinear least squares (NLS) (Srinivasan and Mason 1986).
These estimation procedures suffer two coramon limitations.
First, to obtain stable and robust parameter estimates, time-
invariant procedures often require data to include the peak
sales (Mahajan, Muller, and Bass 1990). Time-invariant pro-
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cedures are not helpful in forecasting a new product diffusion
process because by the time sufficient data have been col-
lected, it is too late to use the estimates for forecasting or
planning marketing strategies.

Second, though diffusion models often are expressed by a
continuous differential equation, the time-invariant proce-
dures can be applied only to a discrete form of a diffusion
model or to a solution to a diffusion model. The discrete
form used to estimate diffusion models often results in bi-
ased and high variance estimates. Requiring a diffusion
model to be analytically solvable limits the applicability of
the estimation procedures. For example, Bass’s (1969) orig-
inal diffusion model is expressed by

dn(t) _
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where n(t) is the cumulative number of adopters, p is the
coefficient of external influence, q is the coefficient of inter-
nal influence, and m is the potential market size. None of
the time-invariant procedures can estimate Equation 1
directly.

To use OLS estimation, a discrete analog must be formu-
lated to approximate the differential Equation | (Bass 1969),
as in the following:

(2) x(1) = [p + -‘Ln(l - l)][m - n(t - I)]
m
= oy +on(t - 1) +oyn2(e -1),0 =1,2,..,

where x(t) is the number of new adopters in the tth interval, and
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The transformation of the variables p, q, and m into «,
07, and 03 is necessary to produce a linear equation suitable
for OLS estimation. After obtaining OLS estimates of a,,
0, and a3, we can derive the parameters in the Bass model
(p. 9. and m ) using Equation 3. Schmittlein and Mahajan
(1982, p. 60) demonstrate that this approach introduces a
time interval bias: “This substitution causes a problem in
that, as defined, [x(t)] will underestimate [dn(t)/dt] for time
intervals before.the maximum adoption rate is reached and
will overestimate after that point.” Moreover, multi-
collinearity between the explanatory variables of Equation 2
can lead to large sampling variances of the estimated OLS
coefficients, great covariance of the estimated OLS coeffi-
cients, and great sensitivity of the estimated coefficients to
small data changes (Johnston 1984; Mahajan, Muller, and
Bass 1990).

Schmittlein and Mahajan (1982) show how to use MLE for
estimating the Bass model. Using MLE allows researchers to
avoid using a discrete analog by estimating unknown para-
meters directly from the solution to the Bass model:

l—e-(p+qr
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where F(t) is the cumulative fraction of adopters at time t,
and n(t) = mF(t). Although MLE eliminates the time-inter-
val bias present in the OLS procedure by using a continuous
time model and provides forecasts that are significantly bet-
ter than OLS (Mahajan, Mason, and Srinivasan 1986;
Schmittlein and Mahajan {982), it is limited to diffusion
models that are solvable (i.e., the cumulative number of
adopters can be expressed as an explicit function of time).
Nonlinear least squares, suggested by Srinivasan and Mason
(1986), produces more robust forecasts than both MLE and
OLS, but it suffers from the same limitations as MLE: It
requires that the diffusion model be solvable.

Requiring a diffusion model to be solvable imposes a sig-
nificant limitation on the applicability of the estimation pro-
‘cedures. For example, many diffusion models have been de-
veloped to study the impacts of marketing mix variables on
new product diffusion (e.g., Dehbar and Oren 1985, 1986;
Horsky and Simon 1983; Kalish 1983, 1985: Simon and Se-
bastian 1987; Xie and Sirbu 1995). Incorporating marketing
mix variables into diffusion models often-increases the com-
plexity of the model structure and hence causes diffusion
models to have no analytical solutions. Diffusion models al-
so could be unsolvable if diffusion patterns are not assumed
to be symmetric. As pointed out by Easingwood, Mahajan,
and Muller (1983), the Bass diffusion curve is assumed to be
symmetric (1.¢., the diffusion pattern after the point of inflec-
tion is a mirror image of the diffusion pattern before the point
of inflection), which might not be the case for all diffusion
processes. [n recent years, researchers have generated a new
set of diffusion models, called flexible diffusion models, to
relax the assumption of a symmetric diffusion pattern. Of the
ten flexible diffusion models reviewed by Mahajan, Muller,
and Bass (1990), five do not have an analytical solution.

Time-varying estimation procedures have been introduced
to overcome some of these limitations of time-invariant pro-
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cedures (Mahajan, Muller, and Bass 1990).! Time-varying es-
timation procedures start with a prior estimate of unknown
parameters in a diffusion model and update the estimates as
additional data become available. Time-varying estimatic
procedures in the marketing science literature include the
Adaptive Filter (AF) developed by Bretschneider and Maha-
Jan (1980), the meta-analysis conducted by Sultan, Farley,
and Lehmann (1990), and the Hierarchical Bayesian intro-
duced by Lenk and Rao (1990). By incorporating prior esti-
mates of unknown parameters and updating initial estimates
as new data become available, time-varying estimation proce-
dures often can provide better early forecasts. However, these
procedures also are subjected to the second major limitation
of the time-invariant estimation procedures; that is, they can-
not be applied directly to differential diffusion models. For
example, though AF can update parameters dynamically on
the basis of newly obtained observations and can be applied
to models with time-varying parameters, it uses the same dis-
crete analog as the OLS procedure. Procedures developed by
Sultan, Farley, and Lehmann (1990) and Lenk and Rao (1990)
are applied to the solution of the Bass model; therefore, they
also require that the diffusion model be solvable.

In Table 1 we summarize the six estimation procedures
discussed in the review by Mahajan, Muller, and Bass
(1990). We show that three procedures are time-invariant
methods and that all procedures require either an analytical-
ly solvable diffusion model or a discrete analog. Given that
(1) an important benefit of diffusion models is to provide
early forecasting of new product diffusions and (2) diffusion
models often are expressed by differential equations that do
not have analytical solutions, a method for use with diffu-
sion models should have at least two desirable properties.
First, to facilitate forecasts early in the product cycle, when
only a few observations are available, the method should
provide a systematic way of incorporating prior information
about the likely values of model parameters and an updating
formula to upgrade the initial estimates as additional data
become available. Second, it should be directly applicable to
diffusion models expressed as a differential equation for cu-
mulative sales. It should require neither a discrete analog
(i.e., not require that a continuous differential equation be
rewritten as a discrete time equation in a way that introduces
a time interval bias), nor an analytic solution to the equation
(i.e., not require that cumulative sales be written as an ana-
lytic function of t). However, as we show in Table 1, the ex-
isting estimation procedures either do not allow incorpora-
tion of prior information or can not be directly applied to
differential diffusion models.

Our purpose here is to introduce a new approach to diffu-
sion model estimation—an Augmented Kalman Filter with
Continuous State and Discrete Observations [hereafter re-
ferred to as AKF(C-D)]. The procedure removes the defi-
cienctes associated with the current estimation methods and

'Following Mahajan, Muller. and Bass (1990), we use the terms time-
invariant and time-varying to classify estimation methods. In the marketing
literature, the term “time-varying™ has been used to refer to two different
categories of estimation methods: (1) estimation methods. which start with
a prior and update the prior as additional evidence accumulates (Bayesian
updating procedures), and (2) methods, which can estimate models with
parameters changing over time. Here. we use the term time-varying by the
first meaning, even though the method we introduce can apply to both
categories.
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Table 1
SUMMARY OF PROCEDURES TO ESTIMATE THE BASS MODEL
Estimation Procedure Reference Estimation Equation Limitation
OoLsS Bass (1969) x) =0t - 1) + ot - Da(e- 1) *Requires a discrete analog
Heeler and Hustad (1980)° + ay(r - Dn2(t - 1) + &1) *Time-invariant
xyT-1
MLE"* Schmittlein and Mahajan (1982) Lix;) = (1 - Fep)] H[F(r,.) ~ F(t;_\)]  *Requires analytical solution

NLS Estimation Srinivasan and Mason (1986)

Bayesian Updating
in Meta-Analysis Sultan, Farley, and Lehmann (1990)

Adaptive Filter Bretschneider and Mahajan (1981)

Hierarchical Bayes Lenk and Rao (1990)

[x(t¥m] = c[F(t;) - F(t; _ )] + £1)

i=1 *Time-invariant

x(t;) = m{F(t;) = F(t; )] + &) *Requires analytical solution
*Time-invariant

x(;) = m{F(t) - F(t;_ )] + €(1) *Requires analytical solution

x(0) = oy(t - D+op(t— Dn(t—-1) *Requires a discrete analog

+ a3(t = Dt~ 1) + &)

*Requires analytical solution

x(r): Sales in period {¢ - 1.1).
n(1): The cumulative sales up to time 1.

l-—e-tpray,

F(t)): The cumulative fraction of adopters at time 1;, where F(f;)) = —————— i = |, T.

1+ ie ~(p+qn;

14

m: The size of the population of potential adopters.
c: Potential adoption rate.
T: The final period of estimation.

oy, 0, 0y Oy = pm, 0 = q ~ p, and a3 = «q/m), where p and g are coefficients of internal and external influence as defined in the Bass model.
*They consider OLS to produce a biased result, so they make some adjustments of estimated parameters by using empirical equations.

**Define the likelihood function as L(x;).

possesses the two desirable properties outlined previously.
Compared with other estimation procedures, the proposed
procedure also has several additional advantages: It can be
used for estimating parameters that change over time (deter-
ministic or stochastic); it explicitly incorporates observation
error in the estimation process, which is ignored in other
procedures; and its algorithm is straightforward and easy to
implement. Furthermore, a parallel AKF(C-D) procedure
can be used to overcome the uncertainty in choosing diffu-
sion model structure and/or prior distributions of unknown
parameters. Using data from several different products, we
compare the predictive performance of the proposed proce-
dure with other commonly employed estimation methods.
The empirical results presented subsequently demonstrate
that AKF(C-D) has some significant advantages over other
techniques.

The article is organized as follows: In the next section,
we present the AKF(C-D) estimation procedure and show
how the procedure can be applied to estimate diffusion
models. Next, we make an empirical comparison between
the AKF(C-D) and five other estimation procedures. We
then extend the procedure by introducing parallel filters for
estimation of diffusion models when the model structures
and the prior estimates of the parameters are uncertain. We
conclude by summarizing the advantages of the proposed
procedure.

INTRODUCTION OF AKF(C-D)
The Standard Kalman Filter Technique

The standard Kalman filter, one of the major contribu-
tions to optimal control theory, was first developed to esti-

mate engineering systems in the early 1960s. During the
past two decades, the standard Kalman filter also has been
adopted to estimate social systems (e.g., Athans 1974; Dun-
can, Gorr, and Szczypula 1993; Morrison and Pike 1977;
Slade 1989; Tegene 1990, 1991).

The standard Kalman filter is a state estimation technique
(i.e., it is designed to estimate state variables of a dynamic
system). It is based on a probabilistic treatment of process
and measurement noises. The basic form of the discrete
Kalman filter consists of two sets of equations: system equa-
tions, which describe the evolution of the state variable y,,
and measurement equations, which describe how the obser-
vations are related to the state of the system2;

(5) Systemequations: ¥ .1 = fi{ys.Boug, 1]+ Gow,,

where3

Yo ~ (o, Po), wy ~ (0,Q)
6) Measurement equations: z, = H;y; + v,
where

v, ~ (0.R),

2In the rest of this article, the upper case bold letters denote matrices.
Lower case bold letters denote column vectors. ltalic lower case letters
denote scalar variables and parameters.

3The notation yg ~ (¥,Pp) indicates yq is a random vector with expecta-
tion E(ygl = y and covariance matrix Cov({yo, ¥o! = Py. Expectations and
covariance are always unconditional unless otherwise indicated.
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where y, is the state vector, and z, is the observation vec-
tor; {w,} and {v,] are stationary white noise processes
uncorrelated with y; and with each other; [, is a vector
function of state (y,), parameter vector (), control vector
(ug), and time t;. G, and H, are known matrices, and Q and
R are covariance matrices of the process and measurement
noises, respectively.

The purpose of the standard Kalman filter is to use the ob-
served data (z;) to estimate the state variables that can be
measured with noise or might not be measured directly.
When the noise statistics are all Gaussian, the standard
Kalman filter is known to be an optimal estimator (i.e., the
estimator that minimizes the mean squared error of the esti-
mate). When the noise statistics are not Gaussian, it is still
the best linear estimator (Lewis 1986). The standard Kalman
filter has been proved to be a powerful tool for a variety of
applications in both the engineering and management sci-
ence literature (Kahl and Ledolter 1983; Lewis 1986; Meade
1985; Morrison and Pike 1977; Tegene 1990, 1991).

Can the standard Kalman filter technique be applied di-
rectly to estimate a new product diffusion process? The dif-
fusion process of a new product can be considered a dy-
namic system. A diffusion model can be viewed as a system
equation in which the state variable is the number of
adopters. The measurement equations can be expressed sim-
ply by the observed number of adopters plus a measurement
noise. Unfortunately, several difficulties prevent direct ap-
plication of the standard Kalman filter to the estimation of
diffuston models. First, in a standard Kalman filter model,
both the system equation and the measurement equation are
the same type, either discrete (Equations 5 and 6) or contin-
uous.4 Because diffusion models often are expressed by a
continuous differential equation, whereas sales data are ob-
tained at discrete time intervals, neither the discrete nor the
continuous Kalman filter is directly applicable in estimating
diffusion models. Second, the standard Kalman filter treats
the parameter vector f3 as given, but in estimation of diffu-
sion models, the parameters (such as p, q, and m in the Bass
model) are often unknown.

The discrete standard Kalman filter can be used to esti-
mate the unknown parameters if an autoregression equation
can be used to describe the diffusion process: x; = §f= 1 B
X4 - + €, where x, is the number of new adopters in the kth
period (Kahl and Ledolter 1983; Meade 1985; Morrison and
Pike 1977. Tegene 1990, 1991). However, because it re-
quires that the sales at a given time, x,, be expressed as a re-
cursive function of the parameters and previous observa-
tions, this formulation of a discrete Kalman filter cannot be
applied to diffusion models expressed as a differential equa-
tion unless (1) the differential equation is approximated by
a difference equation describing x;, possibly introducing
time interval bias, or (2) the differential equation for x(t) has
an analytical solution and x(t) can be explicitly written as a
function of lagged values of x. Therefore, it also is subject-
ed to the same limitations as other conventional estimation
procedures discussed previously.

1A continuous Kalman Filter is given as -
System equations: dy/dr = f(y B.u.t) + Gw, y(0) ~ (yo.Py). w ~ (0. Q).
Measurement equations: z= Hy + v, v ~ (0, R).
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The Proposed AKF(C-D)

To overcome the preceding limitations of the standard
Kalman filter and to make better use of the Kalman filter
technique, we introduce an AKF(C-D) by combining two
ideas recently developed in the engineering literature: (1)
the Extended Kalman Filter with continuous state and dis-
crete observations, which uses discrete observations to esti-
mate the state of a continuous system with known parame-
ters (Lewis 1986), and (2) the Augmented Filter for parame-
ter estimation, which estimates unknown parameters in a
continuous Kalman filter model (Stengel 1986). Reviewing
the technical formulations and details of the two methods is
beyond the scope of this article. (For a review of the two
methods, refer to Lewis 1986; Stengel 1986.) Included in
this subsection are the basic description of the AKF(C-D)
model formulation, the estimation algorithm, and a discus-
sion of the advantages of the proposed procedure.

The AKF(C-D) model formulation. The AKF(C-D) mod-
el formulation for diffusion models is as follows:

dn
M 7 = n@.u@.Bal = w,
(¢9) L-JE = fﬁ[ﬂ‘”(')' 1+ WB
dt
©) IR

where n is the cumulative number of adopters, u is the mar-
keting mix variable vector, B is the unknown parameter vec-
tor, w, and wp are the process noise, n; and z, are the actual
and observed cumulative number of adopters at time t;, and
vy is the observation noise. It is assumed that n(0) ~ (ng, 6,4)
and B(0) ~ (By. Ppo), {w,, wg}, and {v;} are white noises;
{w, wg) ~(0,Q), vg~ (0, ), and {w, wg} and {v,]} are not
correlated to one another.

Equations 7-9 are very general formulations of any new
product diffusion processes. Equation 7 is the system equa-
tion that characterizes the diffusion rate at time t as a func-
tion of the number of current adopters (n), the marketing
mix variables (u), the diffusion parameters (), the time (1),
and a random noise (w,). Equation 8 specifies the time-vary-
ing behaviors of unknown parameters. If the unknown para-
meters are constant, then df/dt = 0. Otherwise, we can use a
deterministic function fg and a stochastic component wp to
describe changes of unknown parameters over time. Equa-
tion 9 is the measurement equation that assumes that the
number of adopters can be measured directly but might con-
tain measurement errors, v;. Notice that different errors in-
volved in the estimation process can be formulated as dif-
ferent noises. The process noise, w, includes (1) model
specification errors, which could be a result of either ex-
cluding some important variables, such as prices or adver-
tising effect, from the diffusion model or misspecification of
the diffusion function (Srinivasan and Mason 1986); and (2)
sampling errors, which can occur when using the model to
describe the diffusion process of a sampled group instead of
the entire population. The random error in the data collect-
ed is modeled by v,.

The AKF(C-D) estimation algorithm. Without loss of
generality, we form an augmented state vector (y) that con-
sists of the original state (n) and the unknown parameter
vector (B):
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Figure 1
AKF(C-D) ESTIMATION OF DIFFUSION MODELS
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Then, Equations 7-9 can be rewritten as

dy

(n - = fy(y.u.n) + wy, wheref, = (fmfp)T

y»
(|2) = gty

We now describe the estimation algorithm based on Equa-
tions |1 and 12.

The AKF(C-D) algorithm is essentially a Bayesian updat-
ing procedure. in Figure 1-we provide an overview of the
AKF(C-D) algorithm. The figure presents the relationships
among the real market. the diffusion model, and the AKF(C-
D) estimation process. To estimate a new product diffusion
process in a real market, one identifies a diffusion model
with unknown parameters to describe the new product adop-
tion process. Using prior experience or knowledge, one
gives initial estimates for the unknown parameters. AKF(C-
D) updates the parameter estimates of the diffusion model as
new sales data become available. It estimates parameters
and updates the state variables through two processes: a time
updating process and a measurement updating process (see
Figure 1). More specifically, the AKF(C-D) algorithm takes
the following four steps:

1. Att =1, (k = 0). based on prior information, the best prior es-
timate of the parameter distributions (g and Bg) and the noise
statistics (r and Q) are developed to initialize the filter.

2. Time update: at a given time, t;, the diffusion model predicts
sales and parameter values for the next time period (y . |,

ori estimate of the state5 defined by § , |:

(13) Yeer = E(Yk-nlzk)'

where z; = {z,, z,. ..., z;} includes all available observations
at t; The corresponding error covariance matrix of the a priori
estimate is given by

(14) P, = cOv(yk‘fl Vil I'zk).

Time updating is accomplished by integrating Equations 15
and 16 over time interval (it , | )©

4

(15) o fy(y.u,1)
(16) f;B = F(y.0)PT + PFT(y, 1) + Q,
t
where
of, | y(). u(r), 1
Fly.1) = MP“':’

v

and Equation 15 is the augmented system Equation || with-
out process noise.

. Measurement update: when a new observation, z, , .
becomes available, the estimate is modified using the fore-

9]

31 the parameters are time-varying and if we know how the parameters
change with time: df/dr # 0. then the model will predict both sales and
parameter values for the next period. I df/dr = 0. then the modei will pre-
dict sales only.
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casting error (i.e., the difference between the observed sales,
Z; + . and the predicted sales, fi; , ;) through the measurement
updating process, which generates the a posterior estimate
defined by §, . |:

Zi+d ) ,

where z; , | = {Z;, Z; .}, and the corresponding error covari-
ance matrix is given by
Zi41 )

The measurement updating process is accomplished by Equa-
tions 19 and 20:

an Yesr = E()’k+|

(18) Pis) =C°V(5'I+|v)'k+|

9 Feor = Trar + dcafzenn —er.]
(20) i’k«rl =[l“¢k+lhlpk—+l'

where I is an identity matrix, h = [1, 0...0] and

@n $ca1 = By, 0T[HB, 0T + /]
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Uniform [nfluence (NUI) diffusion model, in which the
coefficient of internal influence in the Bass model (q) is
specified as a function of current penetration level:

a-1
q(n = %[n—(’-)-] ,

m

where gy and « are constant. Allowing q to vary over time
complicates the differential equation, and the model does
not have an analytical solution. As we discussed previousty,
AKF(C-D) does not require a solvable diffusion model, and
we can apply the procedure directly to the NUI model by
simply defining -

B=(rgmu)y,f, = (p + —'q;n)(m - n),

T
§=[o.i‘i,o.0] .
dr dt

where

da _ @-fn0]*
dt o m m

4. Go back to step 2 and iterate.

dn q
Advantages of AKF(C-D) model and algorithm. In the & A\PT o fm- n).
following discussion, we demonstrate some major advan-
tages of AKF(C-D) in its model formulation and estimation These examples demonstrate that AKF(C-D) can be applied

algorithm. directly to a variety of diffusion models. The first example

. General applicability. By specifying f, in Equation 7 and {3 in shows that AKF(C-D) is directly applicable to the Bass

Equation 8, the AKF(C-D) can be applied to estimate all dif-
ferential diffusion models in the marketing literature. We
show its usefulness and its easy application using three major
types of diffusion models.

a. The Bass model. Comparing the original Bass (1969) model
(Equation 1) with Equation 7, we can see that the Bass model
is a special case of Equation 7. The Bass model assumes that
diffusion rate dn/dt is determined by the cumulative number
of adopters (n), extenal influence parameter (p), intemal
influence parameter (q), and market potential (m). The
model does not include marketing mix variables (u = 0), nor
does the diffusion rate depend explicitly on t. All parameters
are constant. Mathematically, the Bass model can be written
in the form of Equations 7-9 by specifying

p=(pgmT, [ = (p+ iI-n)(m - n), and ig =0.
m dt

b. A diffusion model incorporating marketing mix variable.
Horsky and Simon (1983) extend the Bass model by incor-
porating the impact of advertising into the diffusion
process. Their model is as follows:

d)

& [ + @ Ln(a) + m()}(m ~ n),
dt

where a is advertising expenditures, and «, ®, ¥, and m are
parameters. We can use AKF(C-D) to estimate this model
by specifying Equations 7-9 as foliows:

B=(rwymT u=a

ap
= L —n), and — = 0.
fo = [a + oln(a) + ynfim - n). an ~

c. A diffusion model with parameters changing over time.
Easingwood, Mahajan, and Muller (1983) develop a Non-

model, the most commonly used diffusion model in the
erature. The last two examples illustrate how AKF(C-.
can be used to estimate diffusion models with marketing
mix variables or parameters changing over time as well as
diffusion models without analytical solutions.

2. Capability of estimating time-varying parameters. AKF(C-D)

is a Bayesian updating process that starts with a prior estimate
and updates it as additional data accumulates. We refer 10 the
procedure as a time-varying estimation method also because it
is capable of estimating parameters that change over time. In
many cases, it is unrealistic to expect diffusion parameters—
such as the coefficient of internal influence, coefficient of
external influence, and market potential—to stay constant’
throughout the entire diffusion process. These parameters
change “because of the changing characteristics of the poten-
tial adopter population, technological changes, product modi-
fications, pricing changes, general economic conditions, and
other exogenous and endogenous factors™ (Bretschneider and
Mahajan 1980, p. 130). The parameters’ time-varying behav-
iors can be captured by the AKF(C-D) procedure in two ways.
First, because parameters are modeled in Equation 10 as state
variables of the augmented state vector, y, we can update
parameter values with the time-updating process if how para-
meters change over time is known. For deterministic changes,
we can update the value of the parameters by integrating df/dt
= fg[B, n(t), t], which is part of the integration given by Equa-
tion 15. For random changes, we can incorporate the variance
of the fluctuation in the noise matrix, Q, which we then use to
update the variance of parameters (see Equation 16).

Second, even if there is not enough knowledge to specify
parameter changes in the diffusion model, AKF(C-D) is sf
capable of capturing these changes by adjusting to predictic
error. Because the number of new adoptors in each period is a
function of the diffusion parameters, changes in the parame-
ters will be reflected in the prediction error. As shown in
Equation 19, when we incorporate a new observation, we use
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the prediction error (z; , | ~ fi; , ) to update parameters.
Therefore. we will use information about parameter changes,
which is embedded in the prediction error, to generate new
parameter estimates. Using such an adaptive approach “pro-
vides self-adaptive diffusion parameters that can adjust auto-
matically to changing diffusion data patterns and are espe-
cially useful when causes of the variations in the diffusion
parameters are not known” (Bretschneider and Mahajan 1980,
p. 131).6

3. Capability of incorporating observation noise into the esti-
mation process. In comparison with other estimation proce-
dures, one important advantage of AKF(C-D) is that it explic-
itly acknowledges random errors in the data collected and for-
mulates them as the observation noise. The variance of obser-
vation noise (r) is incorporated in the measurement updating
process (see Equation 21). If the variance of measurement
errors, r, is larger, which means the data collected is less reli-
able, then ¢, ; in Equation 21 will decrease. A smaller ¢, .,
implies updates to §; , |, are less dependent on the prediction
error (z; 4 | — fig 4 1), SO the newly obtained observation will
have less impact on the parameter updating process.

These advantages are derived from AKF(C-D)’s model
formulation and estimation algorithm, which make AKF(C-
D) a better estimator for diffusion model estimation in gen-
eral. However, the performance of an estimation procedure
is determined not only by its formulation and algorithm, but
also by the data sources. In the cases in which the data col-
lected contain substantial error (sampling error or nonsam-
pling error), these advantages in AKF(C-D)’s model formu-
lation and estimation algorithm will be less effective. In
Appendix B, we provide, through mathematical analysis and
numerical simulations, a detailed discussion of AKF(C-D)’s
advantages and the conditions that strengthen or weaken
these advantages.

AN EMPIRICAL EVALUATION OF AKF(C-D)
ESTIMATION

In this section, we empirically evaluate the predictive per-
formance of the AKF(C-D) procedure by comparing its
forecasting results with five commonly used procedures.
Because most studies of the evaluation of estimation proce-
dures use the Bass model as a basis for comparison, the Bass
model has the most reported empirical results. Although one
of the major advantages of AKF(C-D) is its capability to
estimate more complicated diffusion models, to facilitate
comparison with other estimation approaches suggested in
the literature that were tested for the Bass model, we foliow
the literature and evaluate AKF(C-D) using the same Bass
new product diffusion model.

Data, Evaluation Criteria, and Prior Estimates

We use diffusion data for seven products, including three
consumer durables (room air conditioner, color television,
and clothes dryer), two types of medical equipment (ultra-
sound and mammography), and two educational programs

6The prediction error also can be used implicitly by some time-invariant
estimation methods when they are applied recursively to estimate parame-
ters with each newly available observation. In Appendix B, we prove that
AKF(C-D)'s updating formula enables researchers to use the prediction
error more cfficiently as feedback in updating parameters than do other
methods. Simulation results also demonstrate AKF(C-D)’s advantage in
following parameter changes.
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(foreign language and accelerated program). Mahajan,
Mason, and Srinivasan (1986) [hereafter MMS] use the
same seven data sets to present a comprehensive evaluation
of four commonly used diffusion model estimation meth-
ods: OLS (Bass 1969), MLE (Schmittlein and Mahajan
1982), NLS (Srinivasan and Mason 1986), and Algebraic
Estimation (AE; Mahajan and Sharma 1986). MMS use
three criteria for comparing the one-step-ahead forecasts of
the four methods: mean absolute deviation (MAD), mean
squared error (MSE), and mean absolute percentage devia-
tion (MAPD) (for mathematical formulae for the three crite-
ria, see Table 2). After examining the one-step-ahead fore-
cast errors of the four estimation procedures, they conclude
that NLS produces the best forecasting results. We apply
AKF(C-D) to the same data sets and use the same criteria to
compare AKF(C-D)’s performance with the four time-
invariant methods reviewed in MMS’s article. We also com-
pare AKF(C-D) with a time-varying method—the Adaptive
Filter developed by Bretschneider and Mahajan (1980).
Lenk and Rao (1990) discuss a Hierarchical Bayesian
approach whose primary focus is on the development of pri-
ors to use in a Bayesian update procedure. The procedure
requires making quite different assumptions about the dis-
tributions of the parameters as compared to AKF(C-D), so
we do not compare AKF(C-D) and the Hierarchical
Bayesian approach here.

As discussed in the AKF(C-D) algorithm, we need prior
estimates of the unknown parameters to initiate the filter.
For marketing managers who are in charge of forecasting
sales for a given new product, initial estimates can be con-
structed on the basis of information from various sources
such as marketing research results or experience with com-
parable products. Because we do not have this product-spe-
cific knowledge, here, we construct the prior estimates on
the basis of research results reported in the literature and on
common knowledge. According to results of a meta-analy-
sis of 213 products conducted by Sultan, Farley, and
Lehmann (1990), for most Bass-type diffusion processes,
the coefficient of external influence (p) is on the order of
10-2, and the coefficient of internal influence (q) is on the
order of 10-!. Therefore, we set the mean value of the prior
distribution for p as 10-2 and that for q as 10-! for all seven
products. The meta-analysis also shows that the variances of
p and q are on the same order as the parameter values.
Therefore, the variances of the prior distributions are simply
set to equal the means.” The mean value of the prior distrib-
ution for the potential market (m) is set as a percentage of
the total population (or of the sample population). To be
consistent with priors of p, q, we also set the variance of m
as its mean. {All values used for the prior estimates are giv-
en in Appendix A.) If AKF(C-D) produces superior esti-
mates with this generic approach to estimating priors, it can
only perform even better with priors provided by managers
with product-specific knowledge.

"Because the purpose of our empirical analysis is to provide a compan-
son between AKF(C-D) and other estimation methods in a general setting.
we prefer to use a generic rule 1o construct priors rather than product-spe-
cific knowledge. Although setting prior variance as equal to prior mean is
not a sophisticated way to set prior variances. il is a generic rule that is easy
to apply.
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Table 2
PREDICTION ERROR OF AKF(C-D) AND OTHER METHODS
Room Air Color Clothes ~ Foreign Accelerat.
Period Criterion Method Conditioners Televisions Dryers Ultra. d M graphy Language Program

Before MAD AF 524.3 27144 368.2 5.9 5.1 1.5 3.6
Peak AKF(C-D) 261.0 971.0 211.0 4.8 27 1.0 2.8
MSE AF 429,032 10,048,812 188,493 68.2 59.3 4.8 39.]
AKF(C-D) 104,000 1,092,000 63,000 353 14.0 2.0 289
MAPD AF 51.27 71.3 475 50.1 40.5 48.5 83.1
AKF(C-D) 40.1 33.0 35.2 56.5 27.8 50.1 85.5

After MAD OLS 791.3 2,523.0 401.7 a 2 a a
Peak MLE 454.7 1,218.5 316.0 5.1 6.1 3.7 2.6
AE 794.3 340.0 487.3 58 1.7 1.2 43
NLS 3343 1,083.8 296.0 4.8 4.2 1.0 2.5
AF 558.3 3,835.4 103.6 17.0 29 24 5.0
AKF(C-D) 55 241.0 71.0 4.6 3.1 2.1 2.2

MSE OLS 648,993 7,099,978 171,583 a a a a
MLE 220,117 1,726,315 107,309 334 516 24.1 10.4
AE 639,474 175,136 255,973 46.1 141.7 1.6 235
NLS 129,326 1,548,310 97,662 243 33.0 1.9 9.2
AF 330,247 14,914,101 24,000 289.9 13.6 6.3 440
AKF(C-D) 4,000 59,000 9,000 38.6 154 7.8 5.4

MAPD OLS 48.3 46.5 303 a L] 2 a
MLE 277 225 240 46.3 133.5 235.1 96.9
AE 49.3 7.5 39.0 61.8 416.0 36.7 70.8
NLS 20.3 19.0 223 41.5 62.0 66.0 39.0
AF 339 72.5 7.4 123.6 103.6 85.8 61.3
AKF(C-D) 3.6 4.6 5.9 27.5 71.5 133.2 533

20LS yielded an incorrect sign for these parameters.

K K K
bMAD = %ZIx(k) - ik} MsE = %Z[x(k) - X(k)]2, MAPD = %z

k=1 k=1

lOle(k) - i(k)l

k=1 X(k)

where K is the number of forecasts, x(k) is the observed number of incremental adopters in the kth time interval (% = 1. 1), and &, is the predicted value of

x(k).

Empirical Results

In Table 2 we report a detailed comparison of one-step-
ahead forecasting performance between AKF(C-D) and the
five methods using the three criteria. (The empirical results
of the four time-invariant procedures [OLS, MLE, AE, and
NLS] are taken from Table 8-6 in MMS’s review.) Subject to
the limitation of time-invariant methods, no results are
available before the peak for the first four of the five meth-
ods. (To obtain stable and reliable estimates, MMS use data
up to and including the peak period to estimate the diffusion
model and then present one-step-ahead forecasts in each
period after the peak.) Like AKF(C-D), AF starts with a pri-
ori values of unknown parameters and upgrades the initial
estimates as additional data become available. To maintain
the objectivity of comparisons, we initiate AF estimation
with the same prior as that used for AKF(C-D) estimation.

In Table 3 we highlight the comparisons. In Table 3, a
plus means that AKF(C-D) provides a better prediction than
the comparison procedure does using the corresponding cri-
terion, and a minus indicates that the AKF(C-D) prediction
is worse. The results in Table 3 suggest that, in general,
AKF(C-D) provides better one-step-ahead forecasting than
the other five methods. Of the total 126 comparisons,
AKF(C-Dj) is better in 109 cases. Compared with each

method separately, AKF(C-D) is better than OLS in all 21
cases; better than MLE in 20 of 21 cases; better than AE in
18 of 21 cases; and better than AF in 35 of 42 cases. In com-
parison with NLS, which MMS consider to be the best fore-
casting method, AKF(C-D) is better in 15 of 21 cases.

We can explain the result that AKF(C-D) outperforms
other estimation methods by its advantages (discussed pre-
viously). First, unlike OLS and AF, which'rely on discrete
analogs in the estimation procedure, AKF(C-D) is applied
directly to the Bass model and thus avoids time-interval
bias. Second, the diffusion parameters in the Bass model can
vary over time. The rationale for believing the parameters in
the Bass model vary over time and the empirical evidence of
time-varying behavior of these parameters are documented
in the marketing literature (Bretschneider and Mahajan
1980). Unlike methods that presume constant parameters
(OLS, MLE, AE, and NLS), AKF(C-D) is an adaptive filter
capable of adjusting automatically to changing diffusion da-
ta patterns even without a priori knowledge of how the pa-
rameters change over time. Sometimes, a time-invariant
method such as NLS can be applied recursively to mak
one-step-ahead forecasts, and in that process, prediction er-
ror is used implicitly to update parameter estimates. Even in
these cases, AKF(C-D) is still more efficient than other
methods in using the information in the prediction error to



386

modify parameter estimates (for details, see Appendix B).
Third, AKF(C-D) explicitly models observation errors as a
measurement noise (v;), and the error variance (r) is used as
input to the measurement updating process (see Equations
19-21). As shown by simulations in Appendix B, the ap-
proach of explicitly considering observation errors can im-
prove AKF(C-D)’s forecasting performance significantly
over that of AF. Given the advantage of AKF(C-D) in the
formulation of the estimation model and the estimation al-
gorithm, it is not surprising that AKF(C-D) gives better
overall forecasting results than other methods, as shown in
Table 3.

However, as we also can see from Table 3, the perfor-
mance of AKF(C-D) varies by conditions. Although AKF(C-
D) outperforms all the other methods for all three consumer
durable products (total 54 comparisons), its forecasting per-
formance with the four nondurable products is less out-
standing. Although the overall performance of AKF(C-D) in
forecasting these four products is still better than the com-
peting methods in most cases (55 of 72 comparisons), its
performance is less impressive. Although AKF(C-D) is still
better than OLS in all 12 cases and is better than MLE in 11
of 12 cases, it is better than AE in 9 of 12 cases and better
than AF in 17 of 24 cases. Particularly, we found that
AKF(C-D) and NLS have comparable performances.
(AKF(C-D) is better than NLS in only 6 of 12 comparisons.)

To understand this result, we must consider not only the
difference between estimation methods in model formula-
tion and estimation algorithm, but also the data source. Note
that the data for durable goods are collected from all 50 mil-
lion American households, and the data for medical equip-
ment and educational programs are collected from survey
studies of 209 hospitals and 107 schools, respectively. The
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major difference between the two types of data is that the
former contains almost no sampling error and the latter is
more subject to it. Our empirical results show that, when
sampling error in the data used for estimation is large, the
advantages provided by AKF(C-D)’s model formulation and
estimation algorithm are diminished. The simulation results
presented in Appendix B also confirm this conclusion.

PARALLEL AKF(C-D): AN EXTENSION

In previous sections, we discuss the AKF(C-D) estimation
procedure that estimates a new product diffusion process on
the basis of a given diffusion model and a set of given prior
distributions of unknown parameters. In this section we extend
the AKF(C-D) estimation to the situation in which there is
uncertainty in choosing model structure or prior distributions.

Various diffusion models have been developed in the past
two decades. Models often differ from one another in terms
of the model structure (e.g., how price should be incorporat-
ed into the diffusion model—should it influence market po-
tential, hazard rate, or both?) and assumptions about their
parameters (e.g., are parameters constant or varying over
time). For a given product, a manager or researcher could
have uncertainties about choosing a model for describing the
underlying diffusion process from competing models in the
marketing literature. Furthermore, he or she also could have
uncertainty in constructing prior estimates of parameters be-
cause information from different sources might suggest dif-
ferent initial estimates. For example, when developing a pri-
or estimate for the market potential in the Bass model, prior
estimates suggested from a survey could be different from
test-market results. In this section, we show how researchers
can use a parallel AKF(C-D) procedure to construct fore-
casts when there are multiple alternatives.

Table 3
COMPARISON BETWEEN AKF(C-D) AND OTHER METHODS
Room Air Color Clothes Foreign Accelerated
Period Method Criterion Conditioner Television Dryer Ultrasound Mammography Language Program

Before AF MAD + + + + + + +
Peak MSE + + + + + + +
MAPD + + + - + - -
After OLS MAD + + + + + + +
Peak MSE + + + + + + +
MAPD + + + + + + +
MLE MAD + + + + + +
MSE + + + - + + +
MAPD + + + + + + +
AE MAD + + + + + - +
MSE + + + + + - +
MAPD + + + + + - +
NLS MAD + + + + - +
MSE + + + - + - +
MAPD + + + + - - -
AF MAD + + + + - +
MSE + + + + - - +
MAPD + + + + + - +

A “+" indicates that AKF(C-D) provides a better prediction than that of corresponding procedure based on the corresponding criteria. A “=" means that

AKF(C-D) prediction is worse.
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Figure 2
PARALLEL FILTERS PROCEDURE
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We show the process of parallel AKF(C-D) estimation in
Figure 2. Suppose that L alternative models are considered.
The models differ from one another either in system equa-
tions (i.e., the diffusion model structures) or in prior esti-
mates of unknown parameters. L filters that correspond to
the L alternatives are used in parallel. At the beginning of
the estimation, we assign each filter an initial weight ©,0)
on the basis of the researcher or manager’s preference
(where 00)>0,i=1,2,..,L, and ¥, @; (0) = 1). If no
preference is given for any particular filter, then the initial
weight will be the same for all filters (i.e., ®{0) = 1/L). Fol-
lowing the AKF(C-D) estimation algorithm discussed previ-
ously, each filter does time-updating and measurement up-
dating independently. The combined forecast is the weight-
ed sum of L forecast results from the L filters. The weight
assigned to each filter is adjusted dynamically according to
the filter’s forecasting performance. If filter i provides rela-
tively better forecasting, its weight will increase; therefore
in the next period, its forecast result will have a stronger im-
pact on the combined forecast. But, if filter i’s forecasting
error is relatively large compared with other filters, its
weight will be reduced. When the weight of a filter is re-
duced to 0, this filter is eliminated from the estimation
process (for a more detailed discussion of this process, see
Appendix C).

As an example, we apply the parallel AKF(C-D) filters
procedure to estimate the diffuston process of room air con-
ditioners. Assume that the Bass model is considered an ap-
propriate model but there are two alternative prior estimates
of the market potential m: 10% or 50% of the total popula-
tion. We use two parallel AKF(C-D)s that differ only in the
prior estimate of m. At the beginning of the estimation,
equal weights are given to both filters, w;(0) = w,(0) = .5.
The results are presented in Figure 3 (Figure 3a shows four
curves: observed sales and three predicted sales; Figure 3b
shows how the weights of the two filters change over time).
From Figure 3a, we find that the prediction results of filter 2
are consistently better than those of filter 1. From Figure 3b,
we can see that filter 2’s weight increases and filter |'s
weight decreases accordingly. Eventually, filter 1's weight

reduces to 0, and it is eliminated from the estimation
process. The results suggest that filter 2 is a better model.
This example demonstrates that, if there is uncertainty about
the prior distributions, a marketing manager can start with
several possible prior distributions, and the parallel AKF(C-
D) eventually will select a “best™ model.

Figure 3
USING PARALLEL FILTERS PROCEDURE TO ESTIMATE
DIFFUSION OF ROOM AIR CONDITIONER

Ja. Observation, Predictions by Individual Filters,
and Combined Prediction Results

sales
20
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CONCLUSION

We introduce a new diffusion model estimation procedure
(AKF(C-D)) and provide conditions under which the new
procedure has a superior predictive performance. Our
empirical results suggest that, in many cases, the AKF(C-D)
provides better predictive performance than the five com-
monly used methods. In summary, AKF(C-D) has the fol-
lowing advantages.

First, AKF(C-D) is a general estimation approach that is
not restricted by the model structure or by the nature of the
unknown parameters. It can be applied directly to a differ-
ential diffusion model without requiring the diffusion mod-
el to be replaced by a discrete analog or requiring that the
diffusion model have an analytical solution. It can be used to
estimate both constant parameters and parameters changing
over time (both deterministic and stochastic changes). Al-
though many diffusion models have been developed in mar-
keting, only limited empirical results are reported in the lit-
erature. Among others, the specific requirements imposed
on model structure by existing estimation approaches make
it difficult to test many of the diffusion models in the mar-
keting literature empirically. The general applicability of
AKF(C-D) makes it possible to test many differential diffu-
sion models empirically.

Second, AKF(C-D) is a Bayesian estimation procedure.
By incorporating prior information in the estimation process
and updating the estimate adaptively, AKF(C-D) can pro-
vide better forecasts from the early stages of the diffusion
process. As a Bayesian approach, AKF(C-D) uses any avail-
able information about prior distributions of the parameters
and incorporates them explicitly into the initial distributions
of the unknown parameters. Any qualitative procedures
(e.g., focus groups) or quantitative procedures (e.g., Hierar-
chical Bayes and meta-analysis) that produce more refined
prior values for the parameters can be used in conjunction
with AKF(C-D) to improve the final performance of the
forecasts.

Third, the empirical results show that AKF(C-D) is capa-
ble of providing overall superior prediction. Compared with
other procedures, three advantages in its model formulation
and estimation algorithm make AKF(C-D) a better estimator:

1. Although the data typically are collected at discrete time in-
tervals, AKF(C-D) assumes continuous state evolution and
updates the state variables accordingly; it thus avoids the
time-interval bias problem incurred when continuous models
are converted to their discrete equivalents.

2. AKF(C-D)'s model formulation makes it capable of estimat-
ing parameters with time-varying behavior, with or without a
priori knowledge of how the parameters change over time.

3. The AKF(C-D) method accounts explicitly for possible noise
during the data collection process. Despite its advantages in
model specification and estimation algorithm, AKF(C-D)'s
forecasting superiority can be compromised if the data used
for estimation contatn significant sampling error.

Fourth, the algorithm is straightforward and easy to
implement. When AKF(C-D) is used to estimate parameters
changing over time, we simply can modify Equation 8, with-
out changing the fundamental algorithms. In the case of
nonstationary noise processes, all that is necessary is to
replace the covariance matrices r and Q with r, and Q,.
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Fifth, when multiple model structures or prior distribu-
tions are considered, the parallel AKF(C-D) procedure can
be used to deal with the uncertainty. Starting with multiple
filters reflecting different diffusion model specifications or
initialized with different prior distributions, it is possible to
converge rapidly on a “best” model.

APPENDIX A: PRIOR ESTIMATES

To initiate AKF(C-D), we must provide prior distributions
of unknown parameters. These prior estimates can be
obtained by conducting a marketing survey or by using pre-
vious experience with similar products (for discussion of
more sophisticated ways of generating prior estimates, see
Lenk and Rao 1991; Sultan, Farley, and Lehmann 1990). In
Table A1, we present prior estimates of unknown parameters
used for AKF(C-D) estimation here.

1. Prior distribution. We make use of results of the meta-analy-
sis conducted by Sultan, Farley, and Lehmann (1990), which
suggests that for most Bass-type diffusion processes, the co-
efficient of external influence (p) is on the order of 10-2, and
the coefficient of internal influence (q) is on the order of 10-1.
We let E(pg) = .01 and E(qg) = .l as prior estimates of the
means of p and q for all seven products. The mean value of the
prior distribution for the potential market (m) is set as a per-
centage of the total population. The prior mean of m, the num-
ber of potential adopters, is given as a percentage of total
American households in 1960. Given that a higher percentage
of the population will adopt color televisions rather than room
air conditioners or clothes dryers, we set the mean value of m
as 40% of the total households for room air conditioners and
clothes dryers, but 80% for color televisions. For both medical
equipment and educational programs, the prior mean of m is
set as 2/3 of the number of hospitals/schools being surveyed.
Without product-specific knowledge, we simply set var(py) =
E(pg), var(qq) = E(qp), and var(mg) = E(my).

2. Noise statistics. We also must determine the variances of
process noise and observation noise. Given that the number of
adopters of durable goods numbers in the millions (around 50
million total households in the 1950s), whereas the number of
adopters for medical equipment and educational programs
numbers in the hundreds (209 hospitals and 107 schools ), we
set the variance of process noise for all three durable goods as
105 and the process noise for all four nondurable goods as 5.
As for observation noise, as discussed previously, it can be
ignored for the medical equipment and educational programs
but must be considered for the durable goods. Accordingly,
we set the standard error of the observation noise for all three
durable goods as 10% of the observed number of adopters,
and we assume there is no observation noise in the four sur-
vey data sets.

3. To examine the robustness of the estimation, we conducted
sensitivity analysis of prior estimates for three durable goods.
For the prior estimates shown in Table Al, we increase the
values of the initial estimate of one parameter (e.g., p) by as
much as 100% and decrease them by as much as 75%, while
holding the other two initial estimates constant. The overall
results are consistent with what we report here.

APPENDIX B: A DISCUSSION OF ADVANTAGES
OF AKF(C-D)

This empirical study demonstrates that AKF(C-D) pro-
vides better one-step-ahead forecasting results than do other
procedures. We note that AKF(C-D) achieves that superior-
ity because of three advantages: (1) The procedure is applied
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Table A1
VALUES USED IN AKF(C-D) ESTIMATION
Prior Distribution p All seven products: .01
(Meaa = Variance) q All seven products: K
m Room air conditioner and clothes dryer: 2 X 107 (40% of houschold)
Color television: 4 X 107 (80% of household)
Medical equipment: 140 (2/3 of sampiles)
Education programs: 67 (2/3 of samples)
Noise Statistics Process noise All durables: 105
(Variance) All non-durables: 5

Observation noise All durables:

(Standard Deviation)

All non-durables:

10% of observation
0

directly to diffusion models instead of using a discrete ana-
log; (2) The procedure is more capable of following para-
meters that change over time; and (3) The procedure explic-
itly considers observation error. We also discuss how the
sampling error affects the superiority of AKF(C-D). Clearly,
it is always better to apply an estimation procedure to a dif-
fusion model instead of its discrete analog. However, it
might be less intuitive why AKF(C-D) is more capable of
following parameters that change over time, how explicitly
considering observation error will improve AKF(C-D)'s
forecasting results, and why sampling error will reduce the
superiority of the AKF(C-D) procedure. The following for-
mal analysis and numerical simulations further illuminate
these issues.

The Capability of Following Parameters that Change
Over Time

As is documented in the literature (Bretschneider and
Mahajan 1980), it is unrealistic to assume that in the Bass
model, p, g, and m stay constant for all time. These parame-
ters are influenced by different time-varying factors and are
likely to change over time. However, in many cases, how
parameters vary over time might not be easy to specify in the
diffusion model. Under such circumstances, the change of
parameters can be captured only indirectly: Because the
number of new adopters is determined by the diffusion para-
meters, the prediction error (defined as observation—predic-
tion) contains some information on parameter changes. As a
result, the change of parameters can be followed in an esti-
mation process if the prediction error is used as feedback in
updating parameter estimates. By definition, all adaptive fil-
ters, including AF and AKF(C-D), use the prediction error
as feedback to modify parameter estimates. The prediction
error also can be used implicitly by some time-invariant esti-
mation methods in making one-step-ahead forecasts when
those methods are being applied recursively to estimate
parameters with each newly available observation. We now
examine the advantage of AKF(C-D) over time-invariant
methods first by comparing parameter updating formulas
between AKF(C-D) and NLS and then by considering
numerical simulation results. To reduce the complexity of
the problem, we assume p, q in the Bass model are known
constants (p =.01, q =.1) and focus our analysis only on one
unknown parameter, the market potential.

AKF(C-D) estimation. In the AKF(C-D) procedure, when
a new observation becomes available, the parameter m is up-

dated through the measurement updating process. Applying
Equations 19-21, AKF(C-D) updates m by the following
equation:

B1) Ay = g+ —22 (g i)
|

(note: because %'T" = 0,m, = my_, forall k),

where iy _ is the optimal estimate of m given observations
up to time & _ , and fi; and z; are the predicted and the
observed accumulated number of adopters at time t. py; is
the variance of fig, r is the observation noise, and P13 is the
covariance between the prediction of n and the estimate of m.
NLS estimation. Following Srinivasan and Mason (1986

the formulation of the Bass model in NLS estimation is
(B2) x;. = mAF,,

where x, is the number of new adopters in period [k - 1,k), and

(B3) AF, 1 — ¢ —(p+qn, | — e ~(pran,
[ S .
1 +ie-(f‘+ll)ll 1 +ie_(f'+‘l)'l-|
P P

Because p and q are known, AF; is an exogenous variable
that changes with k. Given Az, Az,,..., Az, as observations
of X}, X3..... X¢ (2 is the accumulated number of adopters by
time k), the optimal estimator for m using the NLS proce-
dure is

(B4)

To facilitate the comparison, we rewrite Equation B4 in a
recursive form:

(BS) ';Ik =';lk—l+k‘—

where %, is the one-step-ahead forecast of X
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(B6) Xy = my_AF;.

In both Equations B1 and BS, the estimate of m at time t;,
is expressed as the sum of the estimate of m at time t,_ | and
the weighted prediction error at t;:

(B?) ’;'k = ';ll’—l + ga,

where g is the weight assigned to the feedback and § is the
prediction error (measured in incremental or accumulated
number of adopters). A major difference between these two
formulas is the weight assigned to the feedback. In AKF(C-
D), the weight is a function of different error variances and
covariance:

P12 .
piptr

(B3) 8AKF =

Equation B8 implies that the weight will be larger when
there is a strong correlation between forecasting error and
parameter estimation error (i.e., p;; is larger) and smaller if
the variance in forecasting errors is larger (i.e., p; is larger)
or the observation is less reliable (r is larger). In NLS esti-
mation, the weight parameter is a decreasing function of the
number of observations, k, regardless of estimation errors:

_ 4R
2
Y aF?

Equation B9 implies that when k becomes large enough, the
prediction error, which contains information resulting from
parameter changes, has little influence in updating parame-
ters. Consequently, the method fails to follow the time-vary-
ing behavior of diffusion parameters closely.

The conclusion of this mathematical analysis is con-
firmed by our numerical simulations. To demonstrate the ad-
vantage of AKF(C-D) in estimating parameters that change
over time, we generate a series of data that are based on the
Bass model with time-varying market potential:

(B9) 8NLS

(BIO) ’;'k = ';1‘._' +.4+rk.k=l.2,... mg = IOO,

where .4 is the deterministic increase of m from time t, _ | to
Y. [ is the normally distributed random variable with mean
0 and standard error of 5% of m,. We apply both AKF(C-D)
and NLS to estimate simulated diffusion data series assum-
ing there is no prior knowledge on how m changes over time
(set fB = 0 in AKF(C-D)). In Figure Bla we compare the
results from estimating m using both NLS and AKF(C-D).
As k increases, the estimated value of m by NLS is signifi-
cantly smaller than the true value of m, and the estimated
value of m by AKF(C-D) can follow the change closely in
its true value. Because AKF(C-D) follows the change of
parameter better than NLS, it should not be surprising that
AKF(C-D) generates a better one-step-ahead forecast result
than NLS, as shown in Figure B1b.

The Advantage of Explicitly Considering Observaition Error

An impontant feature of the AKF(C-D) algorithm is its
explicit consideration of the observation error in the estima-
tion process. This feature provides AKF(C-D) some advan-
tages in diffusion model estimation for two reasons. First, it
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enables researchers to make better use of market data on the
basis of its reliability. As shown in Equation B8, the weight
of the feedback for AKF(C-D) procedure is a decreasing
function of the variance of the observation noise, r. As a
result, if the observation contains a larger error (r is larger),
then the parameter estimates depends less on observations;
and if observation contains a smaller error (r is smaller),
then the observation becomes more important in parameter
updating.

Second, explicitly considering.observation error in the es-
timation process improves the estimation of n; by reducing
its error variance, which can be proved as follows.

For a procedure that does not consider observation error
(e.g., AF), at , its best estimate of n is simply the observed
number of adopters:

(Bll) 'ik = 2i.

The variance of the estimation error can be calculated as

(B12) E[(r?k - nk)z] = E[(zk - nk)z]
= El(m + v - m)'] = {n?) =

Figure B1
AKF(C-D)'S ADVANTAGE IN ESTIMATING TIME-VARYING
PARAMETERS

Bla. Estimation of a Time-Varying Parameter m (AKF versus NLS)

AKF estimation

80 t

Blb. Forecasting in the Presence of Parameter Changing Over Time
(AKF versus NLS)

Incremental sales
4.5

Observation
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In AKF(C-D) estimation, however, the observation error
is considered explicitly, and the estimate is taken as the
weighted sum of the observation and the previous prediction
of n;. Using Equation 19 we have

(B13) Ay =i+ AL,

/mtr e tr

where fi; is the prediction of n; made at time t; _ | The vari-
ance of estimation error by AKF(C-D) can be calculated as

(G

.

(B14)

2
r_ - Pn
= n, + 2t — N
. putr ) putr * ‘]
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D). This can be explained by the fact that NLS generates pa-
rameter estimates that minimize the sum of squared predic-
tion error for all available data. As a result, the current r
diction error does not have much influence on paramete:
dating, so the observation error does not affect the parame-
ter estimate much. Therefore, the advantage of explicitly
considering observation error also becomes less significant.
Finally, to incorporate observation error in the estimation
procedure, we must know the value of the variance of ob-
servation noise, which could be difficult to obtain, In our
empirical study of three durable products, we assume the
standard error of observation at each time is 10% of incre-
mental sales at that time, which seems to work quite well.
However, this is just a rough simplification; a more through
approach to adaptively calculating variance of the observa-
tion noise is suggested by Stengel (1986). Because of the
complexity of that approach, we do not include it here.

The Influence of Sampling Error

We conclude from our empirical study that the prediction
performance of an estimation procedure depends not only
on its model formulation and algorithm, but also on the data

2

=E I?-"" P Ve — r n;

pn tr P+ pn tr

r 2

r A= 141

= E nk - ny + Vi

| Pin * ’( ) pip +r
=P,

pntr

Comparing Equations B12 and B 14, we notice that

P < rforallp,y 2 0andr 2 0.

(B15)
py tr

Equation B15 indicates that by explicitly modeling the
observation noise in the estimation process, the AKF(C-D)
procedure leads to a smaller error variance than procedures
that do not consider observation noise.

The advantage of explicitly considering observation noise
also can be demonstrated by numerical simulations. Using
the Bass model, we generate two series of data as observa-
tions of a diffusion process: one with no observation noise
and the other with a normally distributed random noise with
mean 0 and a standard error that equals 10% of true incre-
mental sales. Starting from the same prior, we apply both AF
and AKF(C-D) to the simulated diffusion data. Figures B2a
and B2b present the estimated market potential by AF and
AKF(C-D) using these two series of data. Comparing the
two figures we see that in the absence of observation noise
(Figure B2a), starting from an underestimated prior (initial
value of m is set at 80 and the true value of m is 100), both
methods are capable of converging to the true value of the
parameter. However, when the data are contaminated by a
noise (Figure B2b), the parameter estimate of AKF(C-D)
keeps intact, whereas that of AF has been carried away by
the observation noise.

Another finding of our simulation study is that whether
explicitly considering observation noise will give AKF(C-
D) a significant advantage depends on what estimation pro-
cedure it is compared with. To further investigate the effect
of AKF(C-D)’s advantage of explicitly considering observa-
tion error, we also have conducted a similar simulation to
compare AKF(C-D) and NLS. We did not find a significant
influence of observation noise on the superiority of AKF(C-

Figure B2
AKF(C-D)'S ADVANTAGE IN EXPLICITLY MODELING
OBSERVATION ERROR

B2a. Estimation of m in the Absence of Observation Noise
(AKF versus AF)

True Value

AKF estimation

AF estimation

[

21 . 4

B2h. Estimation of m in the Presence of Observation Noise
(AKF versus AF})

100

15

AF estimation — g -

True Value

AKF estimation

-
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Figure B3
THE IMPACT OF PROCESS NOISE ON THE SUPERIORITY OF
AKF(C-D)'S PREDICTION POWER

process noise

] Y t t
05 4 A5 2 25

. _ MAPD(MLS)
MAPD(AFK)

source. More specifically, we argue that AKF(C-D)’s supe-
riority becomes less significant when the estimate is based
on sample data. The diffusion pattern of a sample could dif-
fer from the diffusion pattern of the entire population
described by the underlying diffusion model. Therefore,
using sample data will increase process noise. The sampling
error weakens AKF(C-D)’s superiority in forecasting
achieved through its advantages in model formulation and
estimation algorithm. When sampling error is relatively
large compared with other error sources, such as time-inter-
val bias, parameter time-varying behavior, or observation
noise, AKF(C-D) does not exhibit significant superiority in
one-step-ahead prediction over other methods.

By modeling sampling error as process noise, Figure B3
shows how sampling error affects the relative forecasting
performance of AKF(C-D) and NLS (same parameters val-
ues are used as in Figures Bl and B2). We define the rela-
tive performance of AKF(C-D) with regard to NLS as 1 ;

_'MAPD(NLS)

(B16) = .
MAPD(AKF)

7> | indicates that AKF(C-D)’s performance is superior to
that of NLS, and the larger the t, the more advantage
AKF(C-D) has over NLS. Figure B3 confirms our argument
that though AKF(C-D) is able to provide better forecasts
than NLS (T > 1), its superiority in prediction power
decreases when sampling error becomes large.

APPENDIX C: PARALLEL AKF(C-D) PROCEDURE

Assume L AKF(C-D)s are used in parallel to accommo-
date L choices over model structure and/or prior estimates.
At the beginning of the estimation, a weight, w,(0), is
assigned to filter i (i = 1, 2, ..., L), where w;{(0) 2 0 and ,
(0) + wx(0) + .. + 0 _(0) = 1. Suppose that, at time t; _ , the
time updating result of filter i is Agk) (i =1, 2, ..., L), then a
combined forecast is constructed as the weighted sum of the
L forecasting results:
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(C1) atk) = o (k) k) + @;(knyk) + .. + 0, (k)ag (k).

When the observed sales, z;, becomes available, the algo-
rithm described here conducts measurement updating for
each individual filter, and at the same time adjusts the
weight assigned to each filter as follows:

(2 ok +1) = M
Z Pr; (k)w, (k)
I=1
where
! ! i |
i = - Zy — n;
© Pult) = = Bepy - 0[ L ] |

Notice that for each filter i, w{k + 1) decreases as the
mean percentage forecasting error (z; — fi{k)]}/z; increases. ¢
is the standard error of the mean percentage forecasting
error; in our case, we set 6 = 1000. Therefore, a filter that
made poor predictions in previous rounds will be given a
small weight in current forecasting. From Equations C1 and
C2, when the weight of a filter is reduced to 0, this filter is
eliminated from the estimation process.
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