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Abstract: We present an approach to manage and price
service level agreements (SLAs) for di�erentiated services
that uses a simple upper bound for the e�ective bandwidth
of the conforming tra�c as a proxy for resource usage.
The bound depends on the user's tra�c pro�le (peak rate
and token bucket descriptor). Usage charges for a speci�c
time period are proportional to this proxy, and their calcu-
lation requires only measurements of volume. We discuss
and present experimental results regarding the incentives
and fairness of the proxy, which is required in order to
achieve economic e�ciency. An important feature of our
approach is the simplicity of the user's procedure for se-
lecting optimal token bucket parameters. Our approach is
quite generic and can be applied to scheduling disciplines
that enable the provision of multiple service classes with
di�erent levels of performance. Finally, we present a case
study for two service classes, real-time and non-real-time,
with actual Internet traces.

1 Introduction

Recent advances in IP networks such as di�erentiated ser-
vices (di�serv) [11] and integrated services (intserv), and
architectures such as multiprotocol label switching (mpls)
[10] support, similar to ATM, services that involve a traf-
�c contract or service level agreement1 (SLA) between the
user and the network. According to such an agreement,
the network provides some level of performance for the
part of the user's tra�c that is within a tra�c pro�le. A
widely used descriptor for a user's tra�c pro�le consists
of a peak rate and a token (or leaky) bucket.
The provision of service level agreements with some per-

formance guarantees is also supported by current tech-
nology of network devices (routers and stand-alone de-
vices) through mechanisms such as priority queueing, class
based queueing (CBQ), weighted fair queueing (WFQ),
etc. Such capabilities enable these devices to o�er a di�er-
ent service to speci�c tra�c ows based on, e.g., physical
port, source/destination address, and protocol.

�The early stages of this work were supported by the European
Commission under ACTS Project CASHMAN (AC-039).

1A service level agreement is typically more general than a traf-
�c contract and can include such things as network availability,
level of technical support, etc. In this paper we use the two terms
interchangeably.

A main focus of the di�erentiated services work in the
IETF is on the de�nition ofmechanisms that are the build-
ing blocks for o�ering di�erent levels of service to di�erent
users [11, 3]. Speci�c issues that are important include
their simplicity, scalability, and deployment. Although
mechanisms are used to provide services, these notions are
separated, i.e., there is an e�ort not to embed a speci�c
set of services in the internal mechanisms of the Internet,
as in the case of integrated services and ATM. Such a sep-
aration allows the actual de�nition of services to evolve
without modifying the internal mechanisms.

Work on pricing of di�erentiated services, such as [2, 17],
focuses more on architectural issues such as where charges
are computed and how multicast sessions and receivers can
be charged, and not on how to compute usage charges.
On the other hand, the proportionally fair pricing work of
[15, 16] ([8] considers modi�cations of the TCP protocol
to implement such an approach) investigates the problem
of pricing services targeted for elastic applications, i.e.,
applications that can modify their tra�c rate according
to the available bandwidth inside the network.

In this paper we present and investigate a framework
for managing and pricing di�erentiated services that of-
fer some level of performance guarantees. Our goal is to
quantify the amount of resources used by an SLA so that
the network manager can decide how many such contracts
can be o�ered simultaneously, and also by pricing certain
aspects of the SLAs, provide users the incentive to se-
lect tra�c contracts that reect their actual needs. The
framework is quite generic and can be used with a variety
of mechanisms for implementing di�erentiated services.

There is a close relation with pricing and managing con-
nections in ATM networks. An interesting di�erence is
that SLAs for di�erentiated services are of a more static
nature and the level of performance guarantees can be
loose. Hence admission control is less strict, and has the
goal of ensuring an average level of performance.

Our approach is based on using a bound to the e�ec-
tive bandwidth [14] as a \proxy" for quantifying resource
usage. This bound, called the \simple" bound [5], con-
siders an on-o� approximation of the input tra�c with a
peak rate which depends on the tra�c contract parameters
(peak rate and token bucket parameters), while keeping
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the same mean rate. Usage charges for speci�c time pe-
riods are proportional to this proxy, and their calculation
requires only measurements of volume.

This rest of this paper is structured as follows. In Sec-
tion 2 we describe our model and discuss the requirements
for economic e�ciency. In Section 3 we describe the proxy
for resource usage, the information a network posts and
how the user can select optimal token bucket parameters,
which minimize his charge. We also discuss important
incentive and fairness properties of the proxy, which are
required for economic e�ciency. In Section 4 we present
a case study with two service classes, real-time and non-
real-time service, and in Section 5 we conclude the paper
and identify issues for further research.

2 The model

The model we consider is that of a single link with some
amount of capacity and bu�er, see Figure 1. The link
is shared by a number of users, each with his own service
level agreement (SLA) with the network provider. In prac-
tice, users can correspond to aggregations of individual
tra�c ows of the same class, such as that of large orga-
nizations (e.g., universities). SLAs are managed, through
admission control enforced by the access link manager, so
that some level of performance or Quality of Service (QoS)
is ensured. An SLA includes tra�c parameters, which de-
scribe the user's tra�c pro�le (constrains the amount of
tra�c the user can send), and performance parameters,
which characterize the level of performance that the net-
work promises to provide to the conforming part of the
user's tra�c. In our framework the QoS is speci�ed as
a maximum queueing delay that is satis�ed by some per-
centage of the conforming tra�c.

Network
Wide Area...

Users

Router

SLAs

Access
link

Network Provider

Figure 1: Access link of a Wide Area Network provider.

We continue with an informal discussion to de�ne eco-
nomic e�ciency and motivate the use of e�ective band-
widths as a proxy for charging. SLAs with the same QoS
are considered as being of the same type. For simplic-
ity, we �rst consider that the link supports a single type
of SLA, i.e., it supports a single service class with some
target QoS.

Given an SLA with the vector of tra�c contract param-
eters xi, user i's utility depends on these parameters and is
a function Ui(xi). The network's goal is to allocate SLAs
to its users in a way that maximizes the sum of utilities
(social welfare), while maintaining a given level of QoS. If
i ranges over the set of contending users, this optimization

can be written as

max
fxig

X
i

Ui(xi)

subject to
X
i

�(xi) � K ; (1)

where �(xi) is a measure of the resource usage, i.e., an
e�ective bandwidth, consumed by the contract xi, and
K is the e�ective capacity of the link (which depends on
the capacity, bu�er, and QoS). The above optimization
problem is equivalent to

max
fxig

(X
i

Ui(xi)� p

 X
i

�(xi) �K

!)
;

where p is the shadow price of constraint (1). The �rst
order conditions for this optimization are

@Ui(xi)

@xji
= p

@�(xi)

@xji
;

where j ranges over the components of the tra�c contract.
The last equation says that if the link is shared optimally,
then there is a price p for which the user's marginal ben-
e�t of increasing some contract parameter xji is equal to
the price of the additional resources required. Hence, p
represents a price per unit of e�ective usage �(x).
To achieve the social welfare optimum in a distributed

manner, the network can post the price p and the function
�(x), which is used to compute the amount of resources
for contract x. The usage charge per unit of time for a user
with contract x will be p�(x). Observe that in the above
formulation economic factors (e.g., demand, competition)
are encoded in the price p, whereas technological factors
(link resources, QoS, and service discipline) are encoded
in the function �(x). Such an abstraction of technological
factors is desirable since it allows the application of well-
known economic results to networks employing statistical
multiplexing and guaranteeing some level of performance.
A generalization for the case of a link o�ering two types

of SLAs (two levels of QoS), each using dedicated re-
sources, is the following2:

max
fxi;yi

g

X
i

Ui(xi;yi)

subject to
P

i �1(xi) � K1P
i �2(yi) � K2 ;

where Kl for l = 1; 2 is the e�ective capacity available for
contracts of type l, and x;y represent contracts of type
1 and 2, respectively. Here �l(x) denotes the e�ective
bandwidth of an SLA of type l with parameters x. Similar
to the single class case, at the optimum there exist prices
p1; p2 that satisfy the following equations:

@Ui(xi)

@xij
= p1

@�1(xi)

@xij
;

@Ui(yi)

@yij
= p2

@�2(yi)

@yij
:

2Simple arguments indicate that a similar approach can also be
used for priority scheduling [14, 1].
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In the above formulation, the prices pl for l = 1; 2 are
determined by the demand for services of type l. Note
that if we can control the sharing of some �xed capacity
C = C1 + C2 among the two service classes, then at the
optimum we will have

p1
@K1

@C
= p2

@K2

@C
:

Hence if @K1

@C
� @K2

@C
and the capacity is optimally shared

between the two classes, then at the equilibrium the prices
per unit of e�ective usage for the two classes will be close.

Interpretation of �(x)
One can assign di�erent interpretations for the e�ective
bandwidth �(x). One alternative is to interpret �(x) as
the e�ective bandwidth of the worst-case tra�c subject
to the tra�c pro�le of the SLA. A disadvantage of such
an approach is that resources are underutilized (the con-
straint (1) will be conservative), since it will typically be
the case that the actual amount of resources used is much
less than the maximum possible by the tra�c contract.
A second alternative is to interpret �(x) as being the

actual e�ective bandwidth. A disadvantage of this is that
e�ective bandwidth expressions are in general complex
functions requiring knowledge of detailed tra�c statistics,
unknown in most cases. Furthermore, a charge based di-
rectly on such a measure would be di�cult for the network
to construct and for the users to understand.
A possible solution is to use an approximation ��(x) of

the actual e�ective bandwidth �(x). Such an approxima-
tion can depend on the tra�c contract parameters (a priori
information) and on simple measurements (a posteriori in-
formation), such as the mean rate. In this case we denote
the above approximation by ��(x;m), where m is the ac-
tual mean rate of the contract x. Now the usage charge
for a time period of duration T is p��(x; V=T )T , where V
is the volume transferred in that period, a quantity which
can be easily measured.

2.1 Requirements for economic e�ciency
An issue with the approach described in the last para-
graph is that pricing in proportion to some arbitrary
function g(x;m) for a contract x and mean rate m does
not necessarily guide the system (network and users) to
the economically optimal operating point that is achieved
when pricing in proportion to the actual e�ective band-
width. A proxy ��(x;m) is fair if the variance of the ra-
tio ��(x;m)=�(x;m) is small, when x;m range over some
interesting set of services (here �(x;m) is the actual ef-
fective bandwidth). This implies that for such services
��(x;m)=�(x;m) � k, for some constant k. Pricing in pro-
portion to ��(x;m) is equivalent to pricing in proportion
to �(x;m), if we set the price per unit of ��(x;m) equal to
p=k. Hence pricing in proportion to a proxy ��(x;m) that
is fair can achieve economic e�ciency.
A proxy for resource usage may be fair for typical users,

as de�ned in the previous paragraph, but pricing based
on it might not give users the incentive to remain typical.

For example, pricing based solely on the tra�c contract
parameters does not discourage users from sending the
worst-case tra�c allowed by their contract. Hence, on a
possibly long time scale, the users' tra�c will change from
typical to worst-case. Since users send more tra�c than
their actual needs, economic e�ciency is not achieved. A
way to remedy this is to account for actual usage instead of
only the worst-case. Hence, when volume measurements
can be obtained, ��(x;m) should be de�ned as the worst-
case e�ective bandwidth of the tra�c resulting from con-
tract x, and having mean m. In this case, users are dis-
couraged from increasing their mean rate, since this would
increase their charge.
A �nal observation is that charges based on a subset

of the tra�c contract parameters can create substantial
problems, by providing the wrong incentives to users to
request unjusti�ably \large" contracts. In addition to cre-
ating problems concerning the management of large con-
tracts, in such cases users will be tempted to no longer
remain typical. In Section 5 we describe such a pricing
scheme.
In conclusion, for a given set of typical users, economic

e�ciency is achieved when the price per unit of actual
e�ective bandwidth, which is proportional to the ratio
��(x;m)=�(x;m), does not vary much. On the other hand,
such a set of users will be unstable on a long time scale if
there are non-typical ow and contract combinations that
achieve a much lower price per unit of e�ective bandwidth.
Since in such cases users end up sending more tra�c than
they actually need to, economic e�ciency is not achieved.

3 Pricing and managing SLAs

In this section we discuss the basic components of our pric-
ing and management scheme, namely the e�ective band-
width bound that we use as a proxy for resource usage
(Section 3.1) and its fairness (Section 3.4), the information
posted by the network, and the pricing and management
of SLAs (Section 3.2), and the user selection of tra�c con-
tract parameters (Section 3.3). We assume that the user's
tra�c contract x includes a peak rate h and a token bucket
(�; �), where � is the token rate and � is the bucket depth.

3.1 A proxy for resource usage
Much research has been done on how to quantify resource
usage in broadband networks. This research has shown
that a stream's resource usage cannot be accurately quan-
ti�ed if the context of the stream (the link and the mul-
tiplexed tra�c) is not taken into account. [14, 5] propose
an e�ective bandwidth de�nition where the stream's con-
text is encoded in just two parameters, the space and time
parameters s; t, which depend on the link resources (capac-
ity and bu�er) and the characteristics of the multiplexed
tra�c. Speci�cally, the space parameter s (measured in,
e.g., Mbit�1) indicates the degree of multiplexing and de-
pends, among others, on the size of the peak rate of the
multiplexed streams relative to the link capacity: For links
with capacity much larger than the peak rate of the mul-
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tiplexed streams, s tends to zero and the e�ective band-
width approaches the mean rate, while for links with ca-
pacity not much larger than the peak of the streams, s
is large and the e�ective bandwidth approaches the peak
rate measured over an interval of duration t. On the other
hand, the time parameter t (measured in, e.g., seconds)
corresponds to the most probable duration of the bu�er
busy period prior to overow.
Investigations with real broadband tra�c [7] have shown

that the above e�ective bandwidth de�nition is quite ac-
curate. These investigations have also shown that the pa-
rameters s; t are to a large extent insensitive to small varia-
tions of the tra�c mix. Hence for given link resources and
service discipline, pairs of s; t can be assigned to periods
of the day during which the tra�c mix remains relatively
constant. The parameters can be computed o�ine from
actual tra�c traces. Related software and typical values
of these parameters for various link capacities, bu�er sizes,
and types of tra�c can be found in [18].
As a proxy for resource usage we consider a bound, the

so-called \simple" bound in [5], which is a function of the
mean rate m and tra�c contract x = fh; (�; �)g. This
bound is given by

��(x;m) =
1

st
log

�
1 +

m

H(t)

�
estH(t) � 1

��
; (2)

where H(t) := minfh; � + �=tg and m is the mean rate.
H(t)t = minfht; �t+�g is the maximum amount of tra�c
that can be sent in time interval t. Note that (2) corre-
sponds to the e�ective bandwidth of an on-o� uid with
peak rate H(t) and mean rate m, for which the changes
of the state occur much slower than the time scale t of
bu�er overow. For the above reason we will refer to H(t)
as the e�ective peak and denote it simply by H. Finally,
observe that ��(x;m) is increasing in H and increasing and
concave in m. An important issue is whether the above
bound has the fairness property discussed in the previous
section. We investigate this issue in Section 3.4.

3.2 Network functions for pricing and managing

SLAs
The network posts the value of parameter t and a family
of pricing curves fH (m) parameterized by H. The time
parameter t, as we discuss in Section 3.3, can be used to
simplify the selection of optimal token bucket parameters,
i.e., parameters that minimize a user's charge. The pricing
curves are given by fH (m) = p��(x;m), where p is the price
per unit of e�ective bandwidth and ��(x;m) is given by (2)
for particular values ofH; s; t. If the user selects a contract
x = fh; (�; �)g, then he will be charged according to the
curve fH (m) with H = minfh; � + �=tg, and his charge
for a time period of duration T will be fH (V=T )T , where
V is the volume transferred in that period.
There is an alternative charging scheme through which

users provide the network provider with an estimate of
their mean rate, which the provider can use to perform
more e�ective admission control [12]. According to the

scheme [13, 5], users select a tari� pair (a; b) from some set
o�ered by the provider, and are charged using the simple
formula aT + bV , where T is the duration of the charg-
ing period and V is the transferred volume. The tari�s
(a; b) correspond to tangents to some bound of the e�ec-
tive bandwidth, for di�erent values of the mean rate. A
rational user will select the pair which minimizes the a
priori expected value of his charge. Because the bound is
concave in the mean rate, this value is minimized for the
pair (a; b) which corresponds to the user's expected mean
rate.

For di�erentiated services, as currently being de�ned by
the IETF, the guarantees o�ered by the network can be
loose. Hence, admission control can be performed in a
less strict manner. Furthermore, connection setup for dif-
ferentiated services is performed at the management level
(service provisioning is on a much longer time scale), and
admission control is performed on a longer time scale com-
pared to admission control in a switched connection envi-
ronment. In such environments, the information regard-
ing a user's expected mean rate might be less important
for the provider to know prior to accepting a user (since
the provider can always measure it after admitting the
user, and take it into account in future actions) compared
to switched connection environments with stricter guar-
antees, such as ATM networks. In what follows, we will
assume that the network posts pricing curves fH and not
a set of tari� pairs from which users select the pair accord-
ing to which they will be charged. We note, nevertheless,
that the two approaches correspond to a trade-o� between
simplicity of the charge computation and simplicity of the
tari� negotiation.

Setting prices

The network sets the price p to reect the demand for e�ec-
tive bandwidth. Since p corresponds to the shadow price
of constraint (1), a direct approach is to measure the sumP

i �i (for simplicity we use �i to denote �(xi;mi)) and
decrease the price p if the sum is smaller than the e�ective
capacity K or increase the price p if the sum is larger than
K. A practical alternative would be to directly measure
the o�ered performance Qm, and compare it with the tar-
get value Qt. If Qm < Qt then the price p is decreased,
whereas if Qm > Qt then the price p is increased.

We note that the above price adjustment occurs in very
long time scales (months/years), hence prices are �xed for
the whole duration of the service level agreement.

Managing SLAs

The above approach for setting the price p does not require
the knowledge of the multiplicative factor k (� ��i=�i).
Nevertheless, this factor can be estimated from measure-
ments of ��i and �i, and its value can be used in admission
control since the QoS constraint is satis�ed if

P
i ��i � kK.

In this sense, k represents an oversubscription factor. The
applicability of such an approach also requires that the
proxy for resource usage is fair.

4



3.3 User functions for selecting tra�c contract

parameters
Given the information posted by the network, the user
must select3 his tra�c contract x = fh; (�; �)g, where h
is the peak rate and (�; �) are the token bucket parame-
ters. This will determine the value of the e�ective peak
H, hence the pricing curve fH according to which he will
be charged. The selection of tra�c contract parameters
can be based on past measurements collected by the user.
Furthermore, if it is possible to modify these parameters,
a user can adjust them to better �t his tra�c requirements
as he collects new tra�c measurements.
The choice of peak rate h depends on the amount of

shaping that the user performs: A smaller peak rate re-
sults from a larger amount of shaping, hence the user's
tra�c incurs a larger delay before entering the network.
We will assume that the user performs the largest amount
of shaping, corresponding to some maximumshaping delay
d that he can tolerate. Given a maximum shaping delay4,
which corresponds to some peak rate h, there will be pairs
of (�; �) for which all of the user's tra�c is conforming.
These pairs form the indi�erence curve G(h). Examples
of such curves are shown in Figure 2(a).
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(a) Indi�erence curves for vari-
ous shaping delays.
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Figure 2: Indi�erence curves for various shaping delays (each
corresponding to some peak rate) and percentages of non-
conforming tra�c (0� 10�3). Bellcore Internet WAN tra�c5.

Users can also select (�; �) so that some percentage of
their tra�c can be non-conforming. Examples of such in-
di�erence curves are shown in Figure 2(b). If the network
o�ers a single packet loss rate, a user will typically select
the percentage of non-conforming tra�c to be of the same
order of magnitude as the loss rate inside the network,
since there are no gains in selecting a smaller percentage
and a higher percentage results in worst performance.

3We implicitly assume that the user has already selected the traf-
�c he will send, hence his mean rate. In general, an organization can
control its quantity of tra�c (set of ows) using policy rules that
specify the treatment of individual end-user and application ows.

4We assume that shaping is performed by averaging the amount
of tra�c in intervals of length d (shaping delay). This is one way of
performing shaping; we are not assuming it is the best. Furthermore,
d represents an upper bound on the maximum packet delay. The
actual maximum and average delay is smaller. For example, when
d = 100 msec the actualmaximumdelay is 47 msecwhile the average
delay is less than 1 msec.

For a particular shaping delay and percentage of non-
conforming tra�c, the indi�erence curve determines the
set of pairs (�; �) from which a user can choose from. The
speci�c choice will depend on how the network charges: A
rational user will select the token bucket pair (�; �) that
minimizes his charge. The structure of the simple bound
(2) allows this selection to be performed without having
to explicitly compute charges. Speci�cally, observe that
(2) is increasing in H. Hence, the user can simply select
the pair (�; �) that minimizes H = minfh; � + �=tg. If
the minimizer of the last expression is h, then the token
bucket selection does not a�ect the charge. On the other
hand, if the minimizer is �+�=t then the pair (��; ��) that
minimizes H is given by the tangent to the indi�erence
curve with slope �t, Figure 3.

Indifference curve

�

t2

�

�2 �2=t2

t1

H2

�2

H1

Figure 3: The optimal token bucket is given by the tangent
to the indi�erence curve with slope �t. Observe that H1 > H2

for t1 < t2, where t1 corresponds to a smaller bu�er than t2.

It is interesting to note that the above approach for
determining optimal token bucket parameters is related
to the interpretation of the time parameter t as the ratio
of the marginal cost per unit capacity over the marginal
cost per unit of bu�er [5]. This interpretation has also
been considered in [9] to guide users, or ows, to select the
same ratio of token rate and bucket depth values. Such a
selection makes it simpler to determine the total amount
of resources required to simultaneously carry all the ows.
The network and user functions are collectively shown

in Table 1. As noted previously, we assume that the user
has selected the tra�c he will send, hence his mean rate.

3.4 Incentives and fairness

Note that, in general, the unfairness of our e�ective band-
width bound increases when users choose in an arbitrary
way their token bucket parameters (�; �); a user's only
requirement is that (�; �) is on or above his indi�erence
curve. However, under the incentives provided through
charging, although any choice of (�; �) does not a�ect the
resulting tra�c hence resource usage, choosing (�; �) ratio-
nally speci�es a tighter tra�c pro�le, i.e., a pro�le closer
to the actual e�ective bandwidth. For such a selection

5Available from the Internet Tra�c Archive at
http://www.acm.org/sigcomm/ITA/
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Network functions

1. Posts a family of curves fH(m) parameterized by H.
3. Posts the time parameter t.

User functions

1. Selects the maximum shaping delay; this determines
his peak rate h.

2. Selects the percentage of non-conforming tra�c;
1 & 2 determine the user's indi�erence curve G.

3. Selects the token bucket parameters (�;�) by
considering the tangent to G with slope �t; this
determines the value of H = minfh; � + �=tg, hence
the price curve fH . His charge for a time period T
will be fH(V=T )T , where V is the volume (measured)
transferred in that period.

Table 1: Network and user functions. We assume the user has
traces of typical tra�c. On a slower time scale, the network
adjusts the price p based on the demand. The price curves are
given by fH(m) = p��(x;m), with ��(x;m) given by (2).

of tra�c pro�les, experimental results indicate that the
simple bound is fairer.
Another important parameter that a�ects a user's

charge is the amount of tra�c shaping he performs, which
determines his peak rate. In many cases shaping does not
a�ect the actual e�ective bandwidth. For example, ob-
serve in Table 2(a) that the actual e�ective bandwidth
is not a�ected much when the peak rate decreases: A
decrease of the peak rate from 2:34 Kbps to 0:28 Kbps
results in a 5.8% decrease of the e�ective bandwidth
(7:37 Kbps to 6:94 Kbps). On the other hand, the same
decrease of the peak rate results in a 50.7% decrease of the
simple bound (21:1 Kbps to 10:4 Kbps). Hence, one might
ask why charges, such as the ones we propose, should pro-
vide the incentive to decrease the peak rate, even when the
peak rate has a small e�ect on actual usage. The answer
goes back to the requirements for economic e�ciency that
were discussed in Section 2.1: Providing such an incentive
guides users to select tra�c contracts for which the simple
bound is fairer and smaller, hence corresponds to a tighter
worst-case tra�c bound.
The last argument is also supported by Tables 2(a),

2(b), and 2(c), which show the e�ective bandwidth and
simple bound for di�erent Internet traces. The bottom
rows of these tables correspond to an average shaping de-
lay less than 4 msec, which is acceptable for delay insensi-
tive Internet tra�c. Observe that for such shaping delays
k(� ��i=�i) 2 [1:5; 2:3] which is smaller than if users did
not have the incentive to decrease their peak rate, namely
[1:6; 2:9], [1:6; 2:7], and [1:6; 2:5] for the �rst three lines in
the tables. Additional results regarding fairness are pre-
sented in [4], where we investigate the variance of k for
various link capacities and bu�er sizes, in the case of In-
ternet tra�c from the same source and MPEG-1 video
tra�c with various content.

6Available from NLANR at
http://moat.nlanr.net/Traces/Traces/

peak(Mbps) �(Kbps) ��(Kbps)

2.34 7.37 21.1
1.33 7.37 20.0

0.76 7.37 18.0
0.28 6.94 10.4

(a) Bellcore Internet WAN tra�c

peak(Mbps) �(Mbps) ��(Mbps)

8.89 1.45 3.65
5.84 1.45 3.53

4.75 1.45 3.42
3.39 1.13 2.64

(b) LBL TCP WAN tra�c5

peak(Mbps) �(Mbps) ��(Mbps)

11.88 3.16 4.90
9.16 3.16 4.90
6.69 3.16 4.90

4.48 1.83 3.48

(c) SDSC FDDI tra�c6

Table 2: E�ective bandwidth and simple bound. C =
34 Mbps;B = 63 � 103 Bytes (maximum queueing delay is
approximately 15 msec) (s = 17 Mbit�1; t = 0:2 s).

4 Case study: real-time and
non-real-time services

In this section we present a case study for real-time and
non-real-time services, demonstrating the application of
the pricing approach discussed in Section 3 for real net-
work tra�c. In addition to showing a typical family of
curves for each of these services and making some obser-
vations regarding the application of our approach, we also
present and discuss experimental results on the e�ects of
the tra�c mix and the scheduling discipline.

Figures 4(a) and 4(b) show a family of simple bound
curves for real-time and non-real-time services, which en-
sure with probability 10�6 a maximum queueing delay
D1 = 4 msec and D2 = 16 msec, respectively. Observe
that as the e�ective peak H increases, the value and con-
vexity of the simple bound increases. This is expected
since a bursty stream (high peak) requires more resources
than a less bursty stream (low peak).

Comparison of Figures 4(a) and 4(b) also shows that
the values and convexity of the simple bound curve for
the same e�ective peak H are higher for non-real-time
service than for real-time service. Although this might
at �rst seem counterintuitive, it can be explained as fol-
lows: For large bu�ers, the value of the time parameter
t and product st increases7. This suggests, see [7], that
for the overow phenomena the tra�c appears smoother.

7Formally, the higher values and convexity of the simple bound
is due to the higher value of the product st which appears in (2).
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(a) Real-time. D1 = 4 msec, s =
64 Mbit�1; t = 0:02 s.
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(b) Non-real-time. D2 =
16 msec; s = 13 Mbit�1; t =
0:24 s.

Figure 4: Simple bound curves for real-time and non-real-time
services in a link with C = 34 Mbps multiplexing Bellcore In-
ternet WAN tra�c. The probability of violating the respective
delay is 10�6. The curves are indexed by the e�ective peak
H = minfh; �+ �=tg.

For this reason the aggregation of streams in a large bu�er
appears as a smooth (constant rate) stream. Hence, mul-
tiplexing these with a bursty stream, whose time scales of
burstiness are slower than the time scale t of the bu�er
overow, requires more additional capacity than in the
case of a small bu�er, where the aggregate tra�c does not
appear as smooth, hence there are gains due to statistical
multiplexing.

It is important to note that the same values of H for
real-time and non-real-time services do not necessarily cor-
respond to the same tra�c contract. Indeed, for the bu�er
sizes considered, the minimizer of H = minfh; �+ �=tg is
� + �=t, which depends on t. Hence, for a larger bu�er,
which corresponds to a larger value of t, the same tra�c
contract has a smaller e�ective peak H = �+�=t. Adding
this last point to that of the previous paragraph, we see
that larger bu�er sizes give rise to two e�ects: (i) larger
values of st (which push towards larger values of the sim-
ple bound (2)), and (ii) larger values of t, hence smaller
values of the e�ective peak H = � + �=t (which push to-
wards lower values of the simple bound). Experiments
for the bu�er sizes considered show that the combination
of these two e�ects results in lower values of the simple
bound for larger bu�ers. This is shown in Figure 5. Of
course, the charges will also depend on the prices, hence
on the demand, for real-time and non-real-time services.
However, as discussed in Section 2, if the capacity of a
link is optimally shared between the two service classes,
then the prices per unit of e�ective bandwidth will be ap-
proximately the same for both classes. In this case, the
same contract will cost less for the non-real-time service
than for the real-time service due to the smaller e�ective
bandwidth, hence resource usage, for the former.

Figure 5 shows the simple bound for the same tra�c
contract for real-time and non-real-time services. How-
ever, as discussed in Section 3.3, the optimal token bucket
parameters, hence the tra�c contract, are not the same for
di�erent values of the time parameter t. In particular, as
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Figure 5: Simple bound for real-time and non-real-time ser-
vices for the same tra�c contract h = 2 Mbps; (�; �) =
(0:2 Mbps; 10000 Bytes).

shown in Figure 3, larger values of t (which correspond to
larger bu�ers) lead to smaller values of the e�ective peak
H. Hence, for the same indi�erence curve one expects a
smaller e�ective peak for a non-real-time service than for
a a real-time service. This is shown in the �rst and second
line of Table 3.

shap. service �(Mbps) �(bytes) H(Mbps) ��(Mbps)

20 r-t 1.43 1000 1.82 0.025

20 non-rt 1.43 1000 1.46 0.110
20 non-rt 0.16 11700 0.54 0.016
200 non-rt 0.15 9900 0.48 0.014

Table 3: Token bucket selection for real-time and non-real-
time services. Comparison of the second and third line shows
that the optimal selection of token bucket parameters has a
large e�ect on the charge. (We assume that the price per unit of
e�ective bandwidth is the same for both classes.) Comparison
of the �rst and third line shows that transferring the same
tra�c with lower quality would incur a smaller charge. Finally,
comparison of the third and fourth line shows the e�ect of
shaping (the �rst column shows the shaping delay in msec.
Bellcore Internet WAN tra�c.

4.1 E�ects of the tra�c mix
Figure 6 shows the simple bound curves for e�ective peak
H = 2 Mbps and various tra�c mixes of Bellcore and LBL
tra�c. These �gures show that the simple bound is not
uniformly a�ected when the tra�c mix varies. In practice,
see Figure 6, tra�c mixes with over 50% LBL tra�c can
be characterized by the same simple bound curve.

4.2 E�ects of the scheduling discipline
Figure 4 shows the family of simple bound curves when
each service class (real-time and non-real-time) has dedi-
cated capacity 34 Mbps. Now we consider the case when
the two service classes share capacity C = 2 � 34 =
68 Mbps, with class 1 (real-time service) having priority
over class 2 (non-real-time service). A minimum capacity
C2 = 34 Mbps is guaranteed for the non-real-time services
(see [14, 5] for details on how our approach can be applied
to priority queueing). Each service class guarantees the
same QoS as before, namely maximumdelay D1 = 4 msec
(real-time service) and D2 = 16 msec (non-real-time ser-
vice) with probability 10�6.
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(a) Real-time. D1 = 4 msec.
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(b) Non-real-time. D2 =
16 msec.

Figure 6: Simple bound curves for real-time and non-real-
time services in a link with C = 34 Mbps multiplexing a mix
of Bellcore and LBL tra�c. The probability of violating the
respective delay bound is 10�6. H = 2 Mbps.

The family of simple bound curves for the real-time ser-
vice are identical to those shown in Figure 4(a), while
those for the non-real-time service are di�erent, and are
shown in Figure 7. Observe that the simple bound is lower
in the case of shared capacity than in the case of dedicated
capacity. This is due to the more e�cient statistical mul-
tiplexing which results from sharing the total link capacity
between the two service classes.
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Figure 7: Non-real-time services for classes with dedicated
capacity and for priority classes with shared capacity. A max-
imum queueing delay D2 = 16 msec with probability 10�6 is
ensured. For dedicated capacity s = 13 Mbit�1; t = 0:24 s,
and for shared capacity s = 11 Mbit�1; t = 0:2 s.

5 Conclusions and further research

This paper has presented a framework for managing and
pricing service level agreements (SLAs) for di�erentiated
services that uses a simple upper bound for the e�ective
bandwidth as a proxy for resource usage. This bound de-
pends on the tra�c parameters of the SLA and the mean
rate of the tra�c sent. Usage charges for a speci�c time
period are proportional to the proxy, and their calculation
requires measurements of the transferred volume. We have
discussed and investigated the incentive and fairness prop-
erties of the proxy and how the network can set prices for
various services. An important feature of our approach is
the simplicity of the procedure for selecting optimal to-
ken bucket parameters. This procedure, along with the
computation of indi�erence curves, can be performed on
behalf of the user by an intelligent agent.

Charging in proportion to the mean rate is a special
case of our approach when there is a large degree of mul-
tiplexing, for example due to large capacities or relaxed
performance guarantees. In such cases, the e�ective band-
width of typical users approaches their mean rate. For
this reason, we expect that the mean rate may be fairer
than a bound of the e�ective bandwidth (which accounts
for worst-case users), hence more preferable for use as a
proxy of resource usage. Furthermore, usage charges be-
come proportional to the measured volume. Of course,
for very large degrees of multiplexing, e�ective bandwidth
bounds also tend to become linear in the mean rate, hence
will be as fair as the mean rate. Charging according to
the mean rate, however, does not discourage users from
selecting large tra�c contracts, which create problems for
network management. The provider must use other means
to limit the size of contracts, for example by setting upper
limits for the values of the tra�c contract parameters.
It is interesting to consider the properties of charging

in proportion to the rate � of the token bucket, and not
take into account the other contract parameters. Under
such a pricing scheme, users will have the incentive to
select a small value for �, hence � will be very close to
the mean rate. Since in the case of large bu�ers the ef-
fective bandwidth of typical users is close to their mean
rate, pricing in proportion to the token rate will be fair.
However, the scheme does not discourage users from re-
questing large values for the peak rate h and bucket depth
�, nor from sending the maximum tra�c allowed by their
tra�c contract (such wrong incentives were discussed in
Section 2.1). Since the contract for typical users has ef-
fective bandwidth much larger than their mean rate, this
scheme cannot lead to economically e�cient operation of
the network. With the presence of increasing intelligence
at the user end, such issues should be carefully considered.
Issues for further investigation include the extension of

our framework to the case of a network. One approach can
be to separately consider the national tra�c (which typi-
cally traverses lightly loaded links) and international traf-
�c (which typically traverses highly congested and expen-
sive international links) of a large organization. Another
issue is how to provide incentives to avoid tra�c splitting.
This is important because the underlying theory of sta-
tistical multiplexing assumes that the multiplexed tra�c
streams are independent.
We are currently looking into the application of our

charging approach to a real networking environment, and
in particular the link connecting a large organization (uni-
versity) to a Wide Area Network provider (e.g., see [6]).
Speci�c issues we plan to investigate include the following:

� Selection of token bucket parameters for di�erent pe-
riods of the day. One would expect that these param-
eters change throughout the day, but are similar for
the same periods of di�erent days.

� Investigation of the oversubscription factor (k �
��i=�i) and fairness for di�erent periods of the day,
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and application of the oversubscription factor to ad-
mission control.

� Investigation of the link parameters s; t for di�erent
periods of the day, and creation of a library of simple
bound curves for various link resources, scheduling
disciplines, and tra�c mixes. [18] is a step in this
direction and contains related software.
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