
Sketch-Based Interaction

36 January/February 2007 Published by the IEEE Computer Society 0272-1716/07/$20.00 © 2007 IEEE

W hile recent decades have seen signifi-
cant progress in CAD software, cur-

rent state of the art still appears insufficient when it
comes to the styling design of products. This is evi-
denced by the fact that a significant portion of early
design activities such as concept development and style
generation occurs almost exclusively in 2D environ-
ments—be it the traditional pen-andF-paper environ-
ment or its digital equivalents. While part of this bias
toward 2D tools in the early design stages comes from
the undeniable convenience and familiarity of such
media, we believe the lack of suitable software and

interaction techniques to support
3D styling design has a significant
role in the current bias.

In this article, we propose a pen-
based modeling system for 3D-
object styling design. Our system
lets users create and edit 3D geom-
etry through direct sketching on a
pen-enabled tablet computer. A dis-
tinguishing feature of our system is
that we tailored it toward the rapid
and intuitive design of styling fea-
tures—such as free-form curves and
surfaces—which is often a tedious
and complicated task using conven-
tional software.

A key commonality among the
product types we consider is that

their aesthetic appeal is a central consideration. Addi-
tionally, given that the final aesthetic form usually
evolves in time rather than simply occurring, it’s impor-
tant that users of our system can accurately reproduce
their ideas, while having the ability to quickly explore
alternatives. From a geometric standpoint, this often
translates into users creating and frequently modifying
free-form curves and surfaces. Our system’s main utili-
ty lies precisely at this point in that it supports the direct
creation and editing of such entities through an intu-
itive, pen-based interface. We intend that a wide vari-
ety of designers will use our system—ranging from those
who prefer the traditional pen-and-paper interface to

those who are accustomed to, and frequently use, exist-
ing CAD tools.

In a typical scenario using our system, the user begins
by constructing the base wireframe model of the design
object. For this, the user sketches the initial feature
curves on a rough and simplified 3D template model.
This template acts as a platform that helps anchor users’
initial strokes in 3D space. Once the initial curves com-
prising the wireframe are constructed, the base 3D tem-
plate is removed, leaving the user with a set of 3D
curves. Next, through direct sketching, the user modifies
the initially created curves to give them the precise
desired shape. After the generating the wireframe, the
user constructs interpolating surfaces that cover the
wireframe. Finally, using two physically based deforma-
tion tools, the user modifies the newly created surfaces
to the desired shapes. Once the basic wireframe and sur-
faces are created, the user can add further details using
the same strategy of curve creation, curve modification,
surface creation, and finally surface modification.

Our approach
In our previous work,1 we advocate the use of

deformable wireframe models as a base to facilitate
styling design. In that work, users’ input strokes help
manipulate existing edges of a wireframe model. While
the work presented here shares several similarities with
our previous work, this article presents extensions to
our previous work; here users can create an initial topol-
ogy in the form of a network of curves on a simplistic
surface model of the design object. With our proposed
system, the network of curves the user designs can be
arbitrarily complex with no restrictions on the number
of faces. Moreover, our subsequent curve modification
techniques allow drastic modifications to the initially
created wireframe, thus making the selection of the ini-
tial template surface model a relatively noncritical issue.

This work also introduces several new techniques for
3D curve creation and modification. For curve creation,
in particular, we present a new and simple technique for
creating free-form 3D curves with varying depth coor-
dinates, so long as the two ends of the curve can be
anchored in 3D using existing primitives in the scene.

The authors describe a pen-
based modeling system for the
styling design of 3D objects.
Their system is tailored toward
the rapid and intuitive design of
styling features such as free-
form curves and surfaces. Basic
wireframe and surfaces are
constructed and modified using
the strategy of curve creation,
curve modification, surface
creation, and finally surface
modification.

Levent Burak Kara and Kenji Shimada
Carnegie Mellon University

Sketch-Based
3D-Shape Creation
for Industrial
Styling Design

For curve modification, we introduce the notions of sin-
gle- and two-view modifications as two alternatives to
modifying 3D curves. Both our curve creation and mod-
ification methods enjoy the use of active contours,2

which has proven highly suitable for free-form curve
design. A key feature of our techniques is that they allow

both curve creation and modification from totally arbi-
trary viewing points, thus providing the user with broad
flexibility during curve design.

Product design in our target domain is usually differ-
ent than the design of products that are inherently
mechanical or functional in nature. Unlike the target

IEEE Computer Graphics and Applications 37

Related Work
Computer modeling of 3D geometry using alternative

input devices and interaction techniques has received
considerable attention in recent years. While a number of
techniques involving 3D input devices, haptic devices, and
VR systems have been proposed, our focus is on those in
which the primary interaction is purely sketch based—that
is, a stylus on a 2D medium.

The key difficulty of interpreting 3D information from 2D
input has forced researchers to devise a variety of different
techniques. Some works focus on generating 3D geometry
by inflating 2D silhouettes.1,2 Various modeling operations
such as extrusion, sweep, cut, and bend help users modify
the initial geometry. The emphasis in such systems is to
quickly generate a reasonable 3D shape rather than a
precise modeling of the object. In gesture-based
techniques, designers’ strokes are used primarily for editing
an existing primitive object into the desired shape.3 While
such approaches allow a fast construction of the geometry,
they are most useful for constructing rectilinear models with
minimal curved edges and surfaces. Optimization-based
algorithms4 and techniques based on line-labeling5 produce
the most plausible 3D shape from a 2D sketch of its
wireframe. While researchers have recently begun to extend
these techniques to curved edges, their use in aesthetic
shape design is currently still limited, making the techniques
more suitable for engineering-type geometries. In an
interesting alternative method, Cohen et al. exploit
shadows to facilitate 3D interpretation.6 In this system, a
space curve drawn in a 2D interface is complemented with
a sketch of the same curve’s shadow sketched on a plane.
However, this approach relies on the user’s ability to
accurately visualize and depict a curve’s shadow.

A number of template-based methods have also been
proposed.7,8 In these systems, the desired 3D form is
obtained by deforming an underlying 3D template. For
instance, Mitani et al. use a six-faced topological template
for interpretation.7 The nature of the template, however,
limits the method’s scope to objects topologically
equivalent to a cube. Das et al. describe an approach for
free-form surface creation from a network of curves.9 Their
solution to 3D interpretation from 2D input seeks to
produce 3D curves with minimum curvature. This choice is
justified on the grounds that the resulting 3D curve will be
least surprising when viewed from a different viewpoint.
Our formulation of the best 3D interpretation during curve
modification is based on a similar rationale, except we
minimize the deviation from an existing 3D curve as
opposed to curvature. A curve modification technique most
similar to ours10 describes a multiview sketching system that
lets users first create a curve and then modify it from
different views. This system proposes epipolar constraints as
a way to facilitate a reliable registration of the 3D curve with

the users’ input strokes, when the viewing point is altered.
This method is similar to our single-view curve modification
method except they project the sketched stroke onto the
epipolar lines of the existing 3D curve, while we project the
3D curve onto the epipolar lines obtained through the
sketched stroke. Additionally, we introduce the concept of
two-view curve modification that seeks to generate curves
that lie at the intersection of two epipolar surfaces obtained
from two different views.

A large body of work has been devoted to designing and
fairing free-form surfaces.11-13 For surface fairing, most
approaches minimize the integral of squared principal
curvatures (or variations of it), and present descretized
versions of the resulting optimization function that is
applicable to polygonal surfaces. From a geometric
standpoint, our surface modification algorithm based on a
network of springs is analogous to these methods, except
it’s formulated based on a purely physical behavior. Our
current implementation, however, does not consider some
of the issues addressed in others, such as the ability to
specify constrained curves embedded in the surface, or the
ability to dynamically update the mesh connectivity to
obtain regular mesh distributions.

References
1. T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: A Sketching Inter-

face for 3D Freeform Design,” Proc. Siggraph, ACM Press, 999,
pp. 409-416.

2. O. Karpenko, J.F. Hughes, and R. Raskar, “Free-Form Sketching
with Variational Implicit Surfaces, Eurographics, Computer Graph-
ics Forum, vol. 21, no. 3, 2002, pp. 585-594.

3. R.C. Zeleznik, H.P. Herndon, and J.F. Hughes, “Sketch: An Inter-
face for Sketching 3D Scenes,” Proc. Siggraph, ACM Press, 1996,
pp. 163-170.

4. M. Masry, D.J. Kang, and H. Lipson, “A Freehand Sketching Inter-
face for Progressive Construction of 3D Objects,” Computers and
Graphics, vol. 29, no. 4, 2005, pp. 563-575.

5. P.A.C. Varley et al., “A Two-Stage Approach for Interpreting Line
Drawings of Curved Objects,” Proc. Eurographics Workshop Sketch-
Based Interfaces and Modeling, Eurographics, 2004.

6. J.M. Cohen et al., “An Interface for Sketching 3D Curves,” Proc.
Symp. Interactive 3D Graphics, ACM Press, 1999, pp. 17-21.

7. J. Mitani, H. Suzuki, and F. Kimura, “3D Sketch: Sketch-Based
Model Reconstruction and Rendering,” Proc. Workshop Geomet-
ric Modeling, IFIP,2000, pp. 85-98.

8. L.B. Kara, C. D’Eramo, and K. Shimada, “Pen-Based Styling Design
of 3D Geometry Using Concept Sketches and Template Models,”
Proc. ACM Solid and Physical Modeling Conference, ACM Press,
2006, pp. 149-160.

9. K. Das, P. Diaz-Gutierrez, and M. Gopi, “Sketching Free-Form Sur-
faces Using Network of Curves,”

products considered here, the majority of mechanical
components exhibit more structured features such as
sharp and straight edges, flat surfaces, simple geome-
try artifacts such as fillets and holes, and repetitive pat-
terns. The design of such components is greatly
facilitated by the use of conventional solid modeling
techniques such as Boolean operations on primitive
geometry, extrusion, cut, loft, revolve, and sweep, all of
which existing CAD software readily support. Howev-
er, the same set of tools and techniques often becomes
less effective for styling design purposes. The work pre-
sented in this article is one attempt toward alleviating
this shortcoming.

User interface and design overview
Our system’s main input device is a pressure sensitive

LCD digitizing tablet with a cordless stylus. Users’
strokes are collected as time sequenced (x, y) coordi-

nates sampled along the stylus’ trajectory. Similar to the
left and right buttons on a mouse, the stylus contains
two buttons along its barrel, which we have customized
for the camera rotation and translation operations. The
user interface consists of a main drawing region, and a
side toolbar for accessing commonly used commands
and settings.

We break the design process into four main steps. The
first is the initial layout step in which the user constructs
the design object’s wireframe model through direct
sketching on a base template. As shown in Figure 1a,
column 1, the user can lay down a curve on the tem-
plate using multiple strokes, drawn in any direction and
order, thus accommodating casual drawing styles such
as overstroking. After drawing the strokes, the user
invokes a command that processes and beautifies the
collection of raw strokes into a smooth curve lying on
the base template.

Sketch-Based Interaction

38 January/February 2007

1 Modeling operations supported by our system. (a) Curve creation on and off the base template. (b) Single, and
two-view curve modification illustrated on arbitrary curves. In the single-view modification mode the user modifies
the curve using strokes drawn from one particular view. In the two-view modification mode, the system combines
the stroke information gathered from the two views to produce the final modification. (c) Illustration of surface
creation and modification on a user-designed wireframe. (d) Further design is performed in a similar way. Users
draw, modify, and finally surface curve features.

1

User’s raw strokes Corresponding curve created
on the base template

Strokes drawn off the template Corresponding curve

Curve modification from
a single view

Modification result Curve modification from
two views

Modification result

Wireframe obtained
after curve creation
and modification

Polygonal surface
created on part of

the wireframe

Surface modified by
pressure force

(note inflated shape)

Final surfaced model with
a few details added

Further design in progress Final model after various
details added

Close-up view

2 3 4

(d)

(c)

(b)

(a)

View 1

View 2

The base template is typically a simplified solid model
of the design object in question. For instance, as shown
in Figure 1a, column 2, a simple half-egg shape serves
as a suitable template for the computer mouse’s design.
Taking advantage of the graphics engine’s depth buffer,
particularly its fast ray intersection capability, this tem-
plate provides a platform on which users’ pen strokes
can be conveniently captured in 3D space. Since the
curves obtained this way lie directly on the template,
the initial wireframe constructed at the end of this step
will usually possess a roughly correct geometry and rel-
ative proportions. This, in turn, will greatly lessen the
work involved in the subsequent step of wireframe
modification. Besides these practical advantages, the
use of a template also helps avoid the well-known chal-
lenge of one-to-many mapping in 3D interpretation
from 2D input.

In addition to creating curves that lie entirely on the
template, users can also create curves that reside large-
ly off the template, provided that their two ends lie on
the template, see Figure 1a, columns 3 and 4. In this
case, the system determines the best 3D configuration of
the curve based on an energy minimization algorithm.
As explained later, this algorithm forces the 3D curve to
lie right under the input strokes (as expected), while
minimizing its geometric complexity. In both curve cre-
ation methods discussed previously, the user can spec-
ify a symmetry plane, which is typically one of the three
principal Cartesian planes. When the user activates a
symmetry plane, the system replicates symmetrically
the work on one side of the symmetry plane onto the
other side, thus expediting the design process.

The curves obtained in the first step make up the
design object’s initial wireframe. In the second stage,
the user modifies the wireframe’s curves to the desired
shapes using a sketch-based modification technique.
During this step, the user can safely remove the base
template used in the first step, as this template is no
longer required. To modify a curve, the user sketches
the curve’s new shape directly on the computer screen.
Based on the spatial proximity in the image plane—that
is, the display screen on which the user draws and views
the model—our program first identifies the curve that
the user intends to edit. Next, using an energy minimiza-
tion algorithm similar to the one mentioned previously,
the program modifies the curve in 3D (see Figure1b,
columns 1 and 2). The resulting curve, which we call
the minimum surprise curve, closely approximates the
new shape dictated by the input strokes, while minimiz-
ing the deviation from the original 3D curve. As before,
symmetry can be preserved across a user-specified plane
if necessary.

Besides providing the ability to modify a curve from
a single viewpoint, our system also lets a user modify a
curve from two different and arbitrary viewpoints (see
Figure 1b, columns 3 and 4). In this case, the user
sketches separately a curve’s new shape in the two
views. As explained later, the program combines the
information gathered from these two views to produce
the curve’s new 3D shape. This feature is advantageous
especially when the desired curve possesses 3D geom-
etry that is hard to depict from a single viewpoint.

At the end of the first two steps, the system provides
the user with a wireframe model where each of the con-
stituent curves has been accurately designed. In the
third step, the user constructs surfaces on the desired
loops of the wireframe to obtain a solid model, see Fig-
ure 1c, columns 1 and 2. The initial surfaces laid on the
wireframe have a common property of being minimum-
area surfaces, which is analogous to the way a soap film
would stretch across a wire loop. In the fourth step of
the design, each surface patch is modified and refined
using two physically based deformation tools. The first
tool, inspired by the deformation of a thin membrane
under a pressure force, allows the user to inflate or flat-
ten a surface by a controllable amount (see Figure 1c,
column 3). The user can control the amount of pressure
applied to a surface through a simple slider bar located
in the user interface. The intuitive nature of this defor-
mation tool lets the user quickly and straightforwardly
explore different surface shapes. The user can also mod-
ify surfaces using a method inspired by mechanical
springs. This method works to minimize the variation
of mean curvature, producing fair and aesthetically
pleasing surfaces. Using these surface creation and mod-
ification techniques, the user obtains a final surface
model (see Figure 1c, column 4).

While the four design steps nominally take place
sequentially, at any time the user can go back to an ear-
lier step to add new curves or modify existing ones. This
flexibility allows users to later add details to the model
(see Figure 1d, columns 1 and 2). In this case, the sur-
faces created by the user can be used as suitable plat-
forms to create new curves, thus eliminating the need
for the base template used in the first step. Newly added
curves can then be modified and later surfaced using
the same techniques (see Figure 1d, columns 3 and 4).

In this article, we focus primarily on the wireframe
model’s construction and modification. A more thor-
ough discussion of our surfacing techniques can be
found in our previous work.1

Constructing the 3D wireframe
As mentioned previously, in the first step of the

design, the user constructs the wireframe by sketch-
ing its constituent 3D curves. Unlike many of the
previous approaches, our system lets users create
curves with an arbitrary number of strokes, drawn in
any direction and order. With this in hand, our system
offers two methods for creating curves based on
whether the curves are instantiated entirely on the
base template, or otherwise.

Creating curves on the template
In our method, users create curves directly on the

base template. The process consists of two main steps.
The first is a beautification step in which our program
computes a smooth B-spline that closely approximates
the input strokes in the image plane. In the second step,
the 2D curve obtained in the image plane is projected
onto the template resulting in a 3D curve.

Given the input strokes in the image plane, our pro-
gram first fit a B-spline to the collection of strokes using
a minimum least-squares criterion described elsewhere.3

IEEE Computer Graphics and Applications 39

Figure 2 shows an example. By default, we use cubic B-
splines with seven control points. While we determined
empirically these choices to best suit our purposes, we
can adjust them to obtain the desired balance between
computation speed, curve smoothness, and accuracy
approximation. Nevertheless, details of the curve fitting
process and the resulting auxiliary features, such as the
curve’s control polygon, are hidden from the user. The
user is only presented with the resulting curve.

Normally, the data points used for curve fitting would
be those sampled along the stylus’ trajectory. However,
fluctuations in the drawing speed often cause consecu-
tive data points to occur either too close to, or too far
away from one another. This phenomenon—as evi-
denced by dense point clouds near the stroke ends
(where drawing speed tends to be low) and large gaps
in the middle of the stroke (where speed is high)—often
adversely affects curve fitting. Hence, before curve fit-
ting is applied, we resample each stroke to obtain data
points equally spaced along the stroke’s trajectory.

The main challenge in curve fitting, however, arises
from the fact that a curve can be constructed using mul-
tiple strokes, drawn in arbitrary directions and orders.
This arbitrariness often causes spatially adjacent data

points to have markedly different indices in the vector
storing the data points. An accurate organization of the
data points based on spatial proximity, however, is a
strict requirement of the curve-fitting algorithm. Hence,
prior to curve fitting, input points must be reorganized
to convert the cloud of unordered points into an orga-
nized set of points. This reorganization would only affect
the points’ indices in the storage vector, not their geo-
metric locations.

To obtain this goal, we use a principal component
analysis, as Figure 3 shows. The main idea is that, by
identifying the direction of maximum spread of the data
points, we can obtain a straight-line approximation to
the points. Next, by projecting the original points onto
this line and sorting the projected points, we can obtain
a suitable ordering of the original points.

Given a set of 2D points, the two principal directions
can be determined as the eigenvectors of the 2 × 2-
covariance matrix S given as

Here, xk represents the column vector containing the
(x, y) coordinates of the k-th data point, and μ is the cen-
troid of the data points.

The principal direction we seek is the one that corre-
sponds to maximum spread, and is the eigenvector asso-
ciated with the larger eigenvalue. After identifying the
principal direction, we form a straight line passing
through the centroid of the data points and project each
of the original points onto the principal line. Next, we
sort the projected points according to their positions on
the principal line. The resulting ordering is then used
as the ordering of the original points. One advantageous

Σ = −() −()
=

∑1

1
n

k

n
T

x x
k k

μ μ

Sketch-Based Interaction

40 January/February 2007

2 B-spline fitting to raw strokes: input strokes (top) and the resulting B-
spline and its control polygon (bottom).

3 Point ordering using principal component analysis. (a) Input strokes and extracted data points. (b) The program
computes the two principal component directions as the eigenvectors of the data points’ covariance matrix. The
two direction vectors are positioned at the data points’ centroid. (c) Data points are projected onto the first princi-
pal direction e1, and sorted.

i = 0 321

e2

e1

(c)

(b)

(a)

by-product of this method is that it reveals the curve’s
extremal points (that is, its two ends), which would oth-
erwise be difficult to identify.

In practice, we have found this approach to work well
especially because the curves created with our system
often stretch along a unique direction. Hence, the pro-
jections’ ordering along the principal direction often
matches well with the expected ordering of the original
data points. However, this method falls short when
users’ curves exhibit hooks at the ends, or contain near-
ly or fully closed loops. This is because these artifacts
will cause folding or overlapping of the projected points
along the principal direction, thus preventing a reliable
sorting. To circumvent such peculiarities, we ask users
to construct such curves in pieces consisting of simpler
curves; our program can later stitch together separate
curves using a trim function.

Once the raw strokes are beautified into a B-spline, the
resulting curve is projected onto the base template. This
is trivially accomplished using the graphics engine’s depth
buffer. At the end, a 3D curve is obtained that lies on the
template, whose projection to the image plane matches
with the user’s strokes (see Figure 1a, column 2).

Creating curves in space
Users can also create curves that lie mostly off the

template, provided that their two end points lie on the
template (see Figure 4). As before, a user can construct
a curve with multiple strokes drawn in arbitrary direc-
tions and order. In this case, the intersection of the curve
ends and the template helps anchor the curve ends in
3D. The main challenge, however, is to identify the best
3D configuration of the curve’s body, which likely lies
off the template. This is because, unlike in the previous
case, there is no reference object in 3D that can help cap-
ture the curve parts that lie off the template. Hence,
there are infinitely many curves whose projections
would match the user’s strokes in the given view. As a
result, the curve’s best 3D configuration must be cho-
sen based on certain constraints.

Trivially, we would expect the entirety of the 3D curve
to lie right under the input strokes. Additionally, out of
infinitely many possible such curves, we elect to favor
curves with reasonably simple geometry. Under these
premises, our solution is based on an energy minimiza-
tion algorithm that has active contours at its heart.2

Imagine the user wants to modify an existing 3D
curve by sketching its new shape on the display. Our
system provides a way to accomplish this. First, the
existing 3D curve is projected to the image plane pro-
ducing a 2D curve. This projection is precisely the curve
that the user normally sees on the display screen. Next,
using an energy minimization technique, the project-
ed curve is forced to change its shape until it closely
conforms to the strokes sketched by the user. The result
is that the projected 2D curve now takes on the new
shape specified by the user’s strokes. Finally, the new
2D curve is projected back into 3D, resulting in the new
3D curve. As noted previously, there are infinitely many
such inverse projections. The key here is that we per-
form projection back into 3D in a way that produces a
curve that deviates minimally from the original 3D

curve. We have found this choice to produce convincing
results in the majority of cases.

While this idea is used primarily to modify existing
curves, we also use it to create curves in 3D, see Figure
4a. In this case, we use the two points obtained by inter-
secting the curve ends with the base template to instan-
tiate a straight line between the two points as shown in
Figure 4b. This process provides a suitable initial 3D
curve, thereby converting the task of curve creation into
a task of curve modification. The user’s strokes describ-
ing the desired curve shape are then simply treated as
modifiers that change this initial curve. Figures 4c and
4d show two views of the resulting curve. Unlike other
approaches that assume a work plane perpendicular to
the viewing direction—that is, those that resort to sym-
metry constraints, or those that require curves to be
drawn from multiple views—our approach allows users
to create curves from a single view, directly in 3D, with
varying depth coordinates. Moreover, the resulting
curves conform precisely to the shape dictated by the
user, while exhibiting convincing forms when viewed
from different viewpoints. Although the latter is a subjec-
tive assessment, it is based on the premise that visually
simpler shapes are preferable over those with complex
artifacts, for example, bends along the viewing direction.
Our system achieves simplicity during curve creation by
minimizing the deviation from a straight line.

Modifying the wireframe
After creating the initial wireframe, the user begins

to modify its constituent curves to give them the precise
desired shape. During this step, the base template can be
removed, leaving the user with a set of 3D curves.

Two methods can be used to modify a curve. The first
is by sketching the new curve in a single view. In the sec-
ond method, the user sketches the curve from two arbi-
trary views. This second method is advantageous when
it’s difficult to depict the curve’s desired 3D shape using
a single view. In both methods, we use an energy mini-
mization algorithm to obtain the best modification of
the curve in question.

IEEE Computer Graphics and Applications 41

4 Curve construction off the template. (a) Input strokes. (b) The initial 3D
curve (blue) instantiated as a straight line between the extremal points,
and the final 3D curve (black) obtained after modification of the initial
curve using snake-based energy minimization. (c-d) Two views of the
resulting curve.

(d) (c)

(b)(a)

To make matters simple, we designed our approach
so that the wireframe’s curves are modified one at a
time, with freedom to return to an earlier curve. At any
point, the curve that the user intends to modify is deter-
mined automatically, thus allowing the user to modify
edges in an arbitrary order. After each set of strokes, the
user presses a button that processes accumulated
strokes, and modifies the appropriate curve. In this arti-
cle, we call users’ input strokes modifiers, and the curve
modified by those modifiers the target curve.

Single-view modification
Wireframe modification takes place in three steps. In

the first step, curves of the wireframe are projected to
the image plane resulting in a set of 2D curves. The curve
that the user intends to modify is computed automatical-
ly by identifying the curve whose projection in the image
plane lies closest to the modifier strokes. Sampling a set
of points from the curve and the modifiers, and calculat-
ing the aggregate minimum distance between the two
point sets compute the proximity between a projected
curve and the modifiers. In the second step, the target
curve is deformed in the image plane until it matches
well with the modifiers. In the third step, the modified
target curve is projected back into 3D space.

Curve modification in the image plane
We deform a projected target curve in the image plane

using an energy-minimizing algorithm based on active
contour models.2 Active contours (also known as snakes)
have long been used in image processing applications
such as segmentation, tracking, and registration. The
principal idea is that a snake moves and conforms to cer-
tain features in an image, such as intensity gradient,
while minimizing its internal energy due to bending and
stretching. This approach allows us to extract or track an
object in the form of a continuous spline.

We adopt the previously discussed idea for curve
manipulation. Here, we model the 2D target curve as a

snake, whose nodes are sampled directly from the tar-
get curve. The snake’s nodes are connected to one anoth-
er with line segments making the snake geometrically
equivalent to a polyline. The set of modifier strokes, on
the other hand, is modeled as an unordered set of points
(point cloud) extracted from the input strokes. As
before, this allows for an arbitrary number of modifiers,
drawn in arbitrary directions and order. With this for-
mulation, the snake deforms and conforms to the mod-
ifiers, but locally resists excessive bending and stretching
to maintain smoothness. Mathematically, this can be
expressed as an energy functional to be minimized:

where vi = (xi, yi) is the i-th node coordinate of the snake.
Eint is the internal energy arising from the stretching and
bending of the snake. Our solution of minimizing this
term involves applying a restitutive force Frest that sim-
ply moves each snake node toward the barycenter of its
neighboring two nodes (see Figure 5).

External energy Eext describes the snake’s potential
energy due to external attractors, which arise in the
presence of modifiers. The modifiers’ influence on the
snake consists of two components: location forces and
pressure forces. The first component moves the snake
toward the data points sampled from the modifiers. For
each snake node vi, a force Floc(vi) is computed corre-
sponding to the influence of the location forces on vi:

where mn is one of the k closest neighbors of vi in the
modifiers (see Figure 6). w(n) is a weighting factor
inversely proportional to the distance between mn and
vi. In other words, at any instant, a snake node vi is
pulled by k nearest modifier points. The force from each
modifier point mn is inversely proportional to its dis-
tance to vi, and points along the vector mn − vi.

The second component of Eext is related to pressure with
which strokes are drawn. The force created due to this
energy pulls the snake toward sections of high pressure.
The rationale behind considering the pressure effect is
based on the observation that users typically press the
pen harder to emphasize critical sections while sketch-
ing. The pressure term exploits this phenomenon by forc-
ing the snake to favor sections drawn more emphatically.
For each snake node vi, a force Fpres(vi) is computed as

where p(n) is a weight factor proportional to the pen
pressure recorded at point mn.

During modification, the snake moves under the influ-
ence of the two external forces while minimizing its
internal energy through the restitutive force. In each
iteration, the new position of vi is determined by the vec-
tor sum of Frest, Floc, and Fpres, whose relative weights can
be adjusted to emphasize different components. For

F v
m v

m vpres i
n i

n in k neigh

p n() =
−

−
⋅ ()

∈
∑

_

F v
m v

m vloc i
n i

n in k neigh

w n() =
−

−
⋅ ()

∈
∑

_

E E E
snake int i

i
ext i

= ()+ ()∑ v v

Sketch-Based Interaction

42 January/February 2007

5 Internal energy due to stretching and bending is
minimized approximately by moving each snake node
to the barycenter of its neighbors similar to Laplacian
smoothing.

//
//

Frest

vi

vi + I

vi – I

6 Location force on a node.

Modifiers

Snake vi

vi + I

vi + I

F loc

mn

example, increasing the weight of Frest will
result in smoother curves with less bends. On
the other hand, emphasizing Fpres will increase
the sensitivity to pressure differences with the
resulting curve favoring high-pressure regions.
Default weights are currently 30 percent for
Frest, 40 percent for Floc, and 30 percent for Fpres.
We have determined these weights empirical-
ly so that we can obtain subjectively the best
outcomes in our test cases.

Unprojection to 3D
In this step, the newly designed 2D curve is

projected back into 3D space. As mentioned
previously, there is no unique solution because
there are infinitely many 3D curves whose pro-
jections match the 2D curve. We therefore
choose the best 3D configuration based on the
following constraints:

■ The 3D curve should appear right under the
modifier strokes.

■ If the modifier strokes appear precisely over
the original target curve, that is, the strokes
do not alter the curve’s 2D projection, the tar-
get curve should preserve its original 3D
shape.

■ If the curve is to change shape, it must maintain a rea-
sonable 3D form; that is, a solution that the designer
would accept in many cases, while anticipating it in
the worst case.

Based on these premises, we choose the optimal con-
figuration as the one that minimizes the spatial devia-
tion from the original target curve. That is, among the
3D curves whose projections match the newly designed
2D curve, we choose the one that lies nearest to the orig-
inal target curve. This can be formulated as follows: Let
C be a curve in ℜ3 constrained on a surface S. (S is the
surface subtended by the rays emanating from the user’s
viewpoint and passing through the newly designed 2D
curve. This surface extends into 3D space and is not vis-
ible from the original viewpoint.) Let Corig be the origi-
nal target curve in ℜ3 that the user is modifying. The
new 3D configuration C* of the modified curve is com-
puted as

where Ci denotes the i-th vertex of C. With this
criterion, C* is found by computing the minimum-dis-
tance projection points of onto S (see Figure 7.)

The rationale behind this choice is that, by remaining
proximate to the original curve, we can think of the new
curve as least surprising when viewed from a different
viewpoint. One advantage of this is that curves can be
modified incrementally, with predictable outcomes in
each step. That is, as the curve desirably conforms to the
user’s strokes in the current view, it still preserves most
of its shape established in earlier steps as it deviates min-
imally from its previous configuration. This allows geo-

metrically complex curves to be obtained by only a few
successive modifications from different viewpoints.

Two-view modification
As mentioned, we can use successive applications of

the previous single-view modification to modify a curve
into any desired shape. The two-view modification
method provides yet a faster alternative to the single-
view modification, especially when the curve in ques-
tion cannot be easily depicted from a single view. In this
setting, the user sketches the new shape of the curve
from two arbitrary (but distinct) views. Similar to the
single-view method, the modifiers drawn in each view
define a surface that emanates from the current view-
point, and extends into 3D passing through the modi-
fiers. A shown in Figure 8 (on the next page), the key
here is that the intersection of these two surfaces defines
a unique curve in 3D. This curve is the theoretical com-
mon solution of the curves drawn in the two views.

We compute the intersection curve between the two
surfaces in the form of a polyline—that is, a set of points
connected by line segments. The points comprising the
polyline are the intersections between the longitudinal
triangles obtained by triangulating the rays emanating
from the eye.

With this newly obtained 3D curve in hand, we once
again modify the original curve using a snake-based
energy minimization method. The difference, however,
is that the snake algorithm is now applied directly in 3D,
rather than in 2D. In this case, a 3D snake is instantiat-
ed from the original curve. The snake then conforms to
the curve defined by the intersection of two surfaces.

Although the intersection curve can be readily taken
as the new modified curve, we still choose to create the
modified shape through energy minimization. This is

C
i
orig

C argmin C C
C

i i
orig

i

∗ = −∑

IEEE Computer Graphics and Applications 43

7 Curve modification from a single view. (a) User’s strokes. (b) Surface S created by
the rays emanating from the user’s eyes and passing through the strokes, and the
minimum-distance lines from the original curve. (c) Resulting modification from
three different views.

(a) (b)

(c)

because the weights in our energy minimization algo-
rithm can be conveniently adjusted to balance curve
smoothness versus compliance. This flexibility helps
suppress undesirable artifacts such as sharp bends and
kinks that occasionally occur when computing the sur-
face intersection curve.

We have found that the two-view modification method
is most effective when the two viewing directions are
nearly orthogonal to each other. This is because the two

views in this case provide mutually exclusive infor-
mation about the desired curve shape, thus maxi-
mizing the technique’s utility. When the two
viewing directions are the same or nearly parallel,
the information obtained from one of the views
becomes redundant. A more critical issue, howev-
er, is that similar viewing directions might lead to
difficult to resolve situations. This happens espe-
cially when the user sketches markedly different
curves from two similar viewpoints. In such cases,
the two surfaces created through the modifiers
might not intersect at all, or produce unexpected
intersection curves. It’s thus conducive to avoid
similar viewing directions when using this method.

During wireframe creation and modification,
the user operates on the constituent curves one at
a time, without regard to their connectivity.
Hence, the curves in the resulting wireframe will
likely be disconnected. To prepare the wireframe
for surfacing, the user might invoke a trim com-
mand that merges curve ends that lie sufficiently
close to one another. This command applies an
appropriate set of translations, rotations, and scal-
ings to the entirety of a disconnected curve so that
its ends meet with other curves. By transforming
a curve as a whole, rather than simply extending
its ends, the shape established by the user is better
preserved while eliminating the kinks that could
otherwise occur at the curve ends. At the end, we
get a well-connected wireframe that we can subse-
quently surface.

Surface construction and
modification

In the last step, the newly designed wireframe is
surfaced to obtain a solid model. Once the initial
surfaces are obtained, the user can modify them
using simple deformation tools. This section gives
a brief overview of our surfacing operations. A
detailed exposition of these techniques can be
found in our previous work.1

Initial surface creation
Given the wireframe model, this step creates a

surface geometry for each of the face loops in the
wireframe. A face loop is defined as a closed
boundary formed by a set of wireframe curves.
While the face loops could be computed automat-
ically using the techniques presented elsewhere,4

in our current system we ask the user to assist this
process by manually marking the curves involved
in a particular face loop. Each face loop can con-
sist of an arbitrary number of curves. The surfaces

laid across the face loops are all polygonal surfaces con-
sisting of purely triangular elements.

We create a surface geometry across a face loop as fol-
lows. In the first step, our program creates a vertex at
the centroid of the boundary vertices. The program then
creates initial triangles that use the new vertex as the
apex, and have their bases at the boundary. The result-
ing crude triangulation serves as an initial base surface.
Next, we perform a series of edge swapping, triangle

Sketch-Based Interaction

44 January/February 2007

8 Curve modification from two views. (a) The user draws the desired curve
shape from two distinct views. (b) The user’s input defines two surfaces that
extend into 3D. The intersection curve of these two surfaces dictates the curve’s
new shape. (c) Resulting modification from different views.

(a)

(b)

(c)

9 Surface creation and modification via pressure force illustrated on an arbitrary
loop. (a) Two views of the initial polygonal surface. (b) The same surface modi-
fied by a pressure force.

(a)

(b)

subdivision, and Laplacian smoothing operations until
we obtain an adequate number of regularly distributed
triangular elements. The number of triangles obtained
this way is dictated by a user-controlled threshold that
specifies the maximum edge length as a percentage (cur-
rently 20 percent) of the average edge length occurring
during the initial crude triangulation. In other words,
triangle subdivision is iteratively carried out until the
length of the longest edge in the entire set of triangular
faces is shorter than 20 percent of the average edge
length appearing in the initial triangulation.

Out of infinitely many surfaces that could be generat-
ed across the face loop, the surface obtained with this
method has the unique property of having the minimum
surface area, thanks to the application of the Laplacian
smoothing between each iteration. Figure 9a shows an
example of a surface obtained in this way.

Surface modification
Our system offers two physically based deformation

tools to modify the initial surfaces. In both methods, we
apply deformation to the interior of the surface while
keeping the boundaries fixed. This approach preserves
the underlying wireframe geometry, with no alterations
to the designed curves.

The first method simulates the effect of a pressure
force on a thin membrane to deform a surface. With this
tool, users can modify the initial surfaces to create round

and inflated surfaces exhibiting more volume. The
deformation’s extent depends on the pressure magni-
tude, which is controlled by the user through a slider
bar. Users can specify different pressure values for indi-
vidual surfaces, thus giving the user a better control on
the final shape of the solid model. Figure 9b shows a sur-
face deformed in this way.

Inspired by the physical behavior of a network of
mechanical springs, the second method produces sur-
faces in which the variation of curvature is minimized.
In this method, a spring is attached to each surface ver-
tex. Each spring is initially oriented parallel to the nor-
mal direction of its corresponding vertex. The spring
length approximately represents the local curvature.
During modification, the springs work to keep their
lengths equal, which is equal to minimizing the varia-
tion of curvature. Each vertex thus moves under the
influence of its neighbors until the vertices locally lie on
a sphere. This scheme produces fair surfaces that vary
smoothly, which we consider an important factor for
aesthetic design purposes. Additionally, when applied to
a group of adjacent surfaces, it reduces sharp edges by
smoothing the transition across the boundary curves.

Example and discussions
Figure 10 shows snapshots of our system in the design

of an electric shaver. The base template used for this
model is a 6 × 3 × 10 rectangular prism, as Figure 10a

IEEE Computer Graphics and Applications 45

10 Design of
an electric
shaver. (a)
Wireframe
creation. (b)
Surfaced model
rendered in
white. (c) Sur-
faced model
painted. (d)
Bottom and top
faces, and a
detail view of
the polygonal
surfaces.

(a)

(b)

(d)

(c)

shows. The design begins by laying down several curves
on this prism. Next, the initial curves are modified to
give them the appropriate 3D shape. During the con-
struction of the wireframe, users might sometimes
delete curves if they are deemed premature at a given
time. For instance, initially we drew the part of the
curves making up the three buttons on the top surface
on the template prism, but later removed them in the
early stages of curve modification. We then introduced
them toward the end of the design process.

The rightmost image of Figure 10a shows the final
wireframe designed via our system. Figure 10b shows
different views of the solid model obtained after surfac-
ing. Finally, Figure 10c and d show different views of the
model in which individual surfaces have been painted.

The final wireframe consists of 107 individual curves.
Out of these 107 curves, 37 had symmetrical pairs.
Therefore, the user actually designed only 70 curves. The
surfaced model consists of 50 individual surfaces, most
of which were modified using the surface deformation
tools described earlier. This model took one of the
authors about 2 hours to design, excluding the time
expended on surface painting. Our subjective assessment
indicates that the majority of the design time is taken by
curve modification and detailing, while initial curve cre-
ation and surfacing are relatively rapid processes.

Computation times
We obtained the following results on a Windows-

based 2-GHz machine with 1 Gbyte of RAM during actu-
al design sessions. Our curve creation techniques (both
on and off the surface template) are sufficiently fast with
no apparent lag during live sessions. Likewise, our sin-
gle- and two-view modifications are sufficiently fast,
yielding results with no delay even when the target
curve to be modified has not been specified—that is, our
program needs to identify the target curve by project-
ing all wireframe curves to the image plane and finding
the nearest one to the input strokes. However, while not

verified experimentally, we suspect there might be a
slight delay up to a few seconds while identifying the
target curve, as the number of wireframe curves
markedly increases.

Given a boundary loop, creating the initial surface
geometry with triangular faces is computationally more
expensive and may take up to a few seconds. More par-
ticularly, it took 1.1 seconds to generate a surface with
423 vertices and 694 triangular faces, while it took 7
seconds to generate a surface with 1,298 vertices and
2,194 faces. Once created, surface modification via pres-
sure force is relatively rapid with 0.4 and 1.7 seconds
for the previous two surfaces respectively. Our surface
fairing using the curvature minimization approach is
slightly more expensive with 0.6 and 3.1 seconds for the
two surfaces respectively.

Implementation choices and limitations
Our curve creation and modification methods are

most suitable for designing globally smooth curves
where small and complex artifacts along the curve don’t
exist. We based this choice on the observation that for
the styling design of the types of objects we consider,
the characteristic curves that form the perceived style
often are devoid of such artifacts. The number of con-
trol vertices of the B-splines we use during curve cre-
ation and the various weights that control the curve
smoothness in our snake-based curve modification
method are thus set to reflect these choices.

Based on these choices, Figure 11 shows cases that
our current approach does not handle well. In all cases,
the current methodology results in a loss of the intend-
ed features. Some of the discrepancy between the
intended and resulting curves can be attributed to the
choices mentioned previously, such as the number of
control points during B-spline fitting (see Figure 11a).
More critically, however, the nature of our snake-based
modification scheme makes it difficult to deal with
curves with self-intersections (see Figure 11b), or those
with tight bends and hooks (see Figures 11c and 11d).
One implication of this issue during design sessions is
that it precludes us from drawing a 3D curve whose pro-
jection to the current image plane is self-intersecting—
for instance, a helix. Nevertheless, other than this latter
case, we suspect users would encounter the cases shown
in Figure 11 rather infrequently during actual styling
design scenarios.

Currently, the snake-based curve modification algo-
rithm assumes that a target curve is modified in its
entirety. That is, local modifications to a curve are not
permitted. Likewise, the current approach does not
allow two or more curves connected in series to be mod-
ified by a single set of modifiers. We plan to alleviate this
difficulty by extending our snake-based modification
algorithm to enable local modifications to a single curve,
and global modifications to two or more curves.

Similarly, the user currently creates and modifies each
surface patch independently from other surface patch-
es. While this provides substantial flexibility to users
during surfacing, it also has the downside that users do
not have control over the surface continuity across
boundary curves (except for the trivial G0 continuity).

Sketch-Based Interaction

46 January/February 2007

(c) (d)

(b)(a)

11 Current limitations of our curve design methods. (a) B-spline fitting
with seven control points is not sufficient to reliably reproduce the
sketched curve. (b) The original curve (blue) is being modified by a modifi-
er with self-intersection (red), producing erroneous results. (c-d) Similar
failures for modifiers with tight bends and hooks.

Our future plans involve providing a mechanism to the
user to specify continuity constraints across different
surface patches.

Conclusions
To date, we have tested our techniques by designing

a variety of different models with favorable outcomes.
All of our techniques perform at interactive rates,
though some processes (especially those involving sur-
face design) might take up to a few seconds. While our
preliminary results have shown our system to greatly
facilitate 3D shape modeling, we plan to conduct a more
thorough assessment of our techniques with real design-
ers, which is the subject of our future work. ■

References
1. L.B. Kara, C. D’Eramo, and K. Shimada, “Pen-Based Styling

Design of 3D Geometry Using Concept Sketches and Tem-
plate Models,” Proc. ACM Solid and Physical Modeling Con-
ference, ACM Press, 2006, pp. 149-160.

2. M. Kaas, A. Witkins, and D. Terzopolus, “Snakes: Active
Contour Models,” Int’l J. Computer Vision, vol. 1, no. 4,
1988, pp. 312-330.

3. L. Piegl and W. Tiller, The NURBS Book, 2nd ed., Springer-
Verlag, 1997.

4. K. Inoue, Reconstruction of Two-Manifold Geometry from
Wireframe CAD Models, doctoral dissertation, Univ. of
Tokyo, 2003.

Levent Burak Kara is a postdoc-
toral research associate in the Depart-
ment of Mechanical Engineering at
Carnegie Mellon University. His
research interests include pen comput-
ing, geometric modeling, human–
computer interaction, and artificial
intelligence. Kara has a BS in mechan-

ical engineering from the Middle East Technical Universi-
ty, and an MS and PhD in mechanical engineering from
Carnegie Mellon University. Contact him at lkara@
andrew.cmu.edu.

Kenji Shimada is a professor of
mechanical engineering, biomedical
engineering, and robotics at Carnegie
Mellon University. His research inter-
ests include geometric modeling, mesh
processing, computer graphics, and
medical robotics. Shimada has a BS
and MS from the University of Tokyo,

and a PhD in mechanical engineering from the Massachu-
setts Institute of Technology He is a member of the IEEE,
ACM, American Society of Mechanical Engineers, Japan
Society for Industrial and Applied Mathematics, Society
of Automotive Engineers, and Society for Industrial and
Applied Mathematics.

For further information on this or any other computing
topic, please visit our Digital Library at http://www.
computer.org/publications/dlib.

IEEE Computer Graphics and Applications 47

