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Abstract

This paper presents an effective computational technique for reconstructing a three-dimensional shape of an abdominal aortic aneurysm (AAA),
from a limited number of computed tomography (CT) images. The three-dimensional template geometry of a healthy abdominal aorta is used
as a priori knowledge, and the template geometry is deformed by extended free-form deformation (EFFD), to generate a patient-specific AAA
geometry. A two-step optimization scheme is devised to find an optimal set of EFFD parameters that match the cross-section of a deformed
template with an AAA contour shown in a CT image. The geometric continuity of a deformed model is maintained by raising the order of the
polynomial function used in EFFD. Experimental results show that the proposed method creates the three-dimensional shape of AAA suitable for
structural finite element analysis and computational fluid dynamics for medical diagnosis.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction1

Abdominal aortic aneurysm (AAA), a degenerative disease,2

often causes the rupture of an arterial wall. Since such a rupture3

leads to a death in most cases, an accurate prediction of AAA4

rupture is critical. Although the maximum transversal diameter5

of AAA greater than a threshold value of 5 or 6 cm is most6

commonly used in clinical practice as a primary indicator of7

a near-future rupture, not all large aneurysms rupture. There8

is clinical evidence that small aneurysms can also rupture9

abruptly [18].10

An AAA rupture is a biomechanical phenomenon. From11

a mechanical viewpoint, a rupture occurs when wall stresses12

exceed the maximum stress the tissue can withstand; therefore,13

biomechanical analysis can be used to assess the risk of a14

rupture of an aneurysm.15

A patient-specific AAA geometry, obtained from tomo-16

graphic images, is the foundation for a thorough biomechan-17

ical analysis of AAA to assess rupture risk, because maxi-18

mum wall stress depends on the geometry of an aneurysm.19

Recently, patient-specific AAA geometry was generated using20
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magnetic resonance imaging (MRI), and computed tomogra- 21

phy (CT), computational fluid dynamics, structural analysis, 22

and fluid–structure interaction have been performed success- 23

fully [10,18,24]. In these analyses however, generating the ge- 24

ometry is one of the most time-consuming processes, requiring 25

a considerable amount of manual intervention. 26

In this study, an effective computational technique for 27

reconstructing a three-dimensional model of AAA from a 28

set of tomographic cross-sections is presented. The proposed 29

method enables automatic reconstruction of a patient-specific 30

AAA shape from a limited number of CT images. The three- 31

dimensional template geometry of a healthy abdominal aorta 32

is used as a priori information, and the template geometry is 33

deformed by extended free-form deformation (EFFD). A two- 34

step optimization scheme is devised to locate an optimal set of 35

EFFD parameters that match the cross-section of a deformed 36

template with an AAA contour, shown in a CT image. The 37

geometric continuity of the deformed model is achieved by 38

raising the order of the polynomial function used in EFFD. 39

The proposed method has two major advantages: (1) 40

the method reconstructs a patient-specific three-dimensional 41

shape quickly, automatically and robustly by using a template 42

geometry, and (2) the method always generates a topologically 43

and geometrically valid shape for structural finite element 44

analyses and computational fluid dynamics for medical 45

diagnosis. 46
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Fig. 1. Two-dimensional error calculation.

Fig. 2. Overview of the technical approach.

The rest of the paper is structured as follows: Previous1

approaches are discussed in Section 2. Section 3 presents2

the problem statement and the proposed technical approach.3

Section 4 elaborates on the proposed three-dimensional shape4

reconstruction method. Section 5 presents the results of5

applying the method to some test cases. Conclusions are given6

in Section 6.7

2. Previous approaches8

This section presents a survey of previous research on three-9

dimensional shape reconstruction from a set of CT images.10

They can be classified into two categories: methods without a11

deformable object and methods with a deformable object.12

2.1. Shape reconstruction methods without a deformable13

object14

Shape reconstruction methods without a deformable object15

can be further classified into two groups [9]: surface-based16

methods and volume-based methods.17

In surface-based reconstruction, three fundamental problems18

must be addressed in order to build a surface between19

contours in adjacent cross-sections: correspondence, tiling and20

branching [1,19]. The correspondence problem involves finding 21

the correct connections between the contours of adjacent CT 22

images. If the spacing between CT images is large, it is 23

difficult to determine the correct correspondence. The tiling 24

process uses slice chords to triangulate a strip lying between 25

two contours in adjacent CT images. It is difficult to find an 26

optimal and topologically correct tiling. The branching problem 27

occurs when a contour in one image may correspond to more 28

than one contour in the adjacent CT image. A contour in one 29

image, having no corresponding contour in the adjacent CT 30

image, forms a hole, and the existence of branches significantly 31

complicates the task of tiling. 32

Volume-based reconstruction is based on voxel, a spatial 33

equivalent to pixel. Since CT images are arranged on a regular 34

two-dimensional grid, it is natural to extend them to volume 35

elements. The marching cubes algorithm is most popularly used 36

in volume-based reconstruction [16]; it creates a polygonal 37

representation of a boundary surface of an object from the voxel 38

data. 39

Although the above two methods are popular in three- 40

dimensional shape reconstruction research, they have several 41

limitations. Surface-based reconstruction methods often cause a 42

topologically and/or geometrically invalid shape with erroneous 43

holes or overlapping surfaces. As a result, they usually require 44

Please cite this article in press as: Shim M-B, et al. Three-dimensional shape reconstruction of abdominal aortic aneurysm. Computer-Aided Design (2007),
doi:10.1016/j.cad.2007.10.006
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Fig. 3. Control variables of extended free-form deformation lattice.

Fig. 4. Template geometry of an abdominal aorta used in the shape
reconstruction.

a considerable amount of manual intervention to correct the1

errors. Volume-based reconstruction methods have a large2

volume of data to be manipulated. If the distance between3

an adjacent cross-section is too large compared to the pixel4

distance, an additional interpolation step is necessary to avoid5

jagged shapes.6

2.2. Shape reconstruction methods with a deformable object7

Shape reconstruction methods with a deformable object have8

been used to generate the geometrical model of an anatomical9

structure from medical images. The methods overcome many of10

the limitations of the shape reconstruction methods discussed in11

the previous section by providing a template of an object shape12

and by incorporating the knowledge of an anatomical structure.13

They are also capable of accommodating the significant14

variability of a biological structure over time and across15

different individuals. The use of a deformable object can result 16

in a faster, more robust reconstruction technique that ensures a 17

globally smooth and coherent surface. 18

In the last two decades, shape reconstruction techniques 19

with a deformable object have been studied intensively [2–5, 20

7,8,12,13,15,20,21,25]. Among the first and primary uses of 21

deformable objects in medical image analysis was a deformable 22

contour, called “a snake” [13], to segment a structure in 23

an image [8,15]. However, the application of a snake for 24

extracting a region of interest has some limitations. Snakes 25

work well only when an initial geometry is given near the 26

target region of interest. The next formation of deformable 27

objects for medical image analysis was a deformable surface. 28

Miller et al. constructed a polygonal approximation of a sphere 29

and geometrically deformed it until its surface conformed to 30

a target object in CT images [20]. The reconstruction process 31

is formulated as the minimization of a cost function where 32

the desired behavior of the spherical object is determined 33

by a local cost function associated with each vertex of 34

the polygonal model. Battle et al. proposed the usage of 35

a deformable object to reconstruct an unknown attenuation 36

map of the torso from a set of transmission scans [3,4,7]. 37

The deformable object tightly links the description of the 38

object elements (for example, triangles) to the way it can 39

be deformed. The reconstruction methods deform a triangular 40

mesh by directly estimating the displacements of the triangle 41

vertices; the number of the vertices of a geometrical object is 42

103–106, or more. A number of researchers have incorporated 43

the knowledge of a target object shape into a deformable 44

object by using a deformable shape template. The use of 45

anatomical knowledge to guide shape recovery is important for 46

robust and automatic interpretation of medical images. Bardinet 47

et al. fitted a deformable superquadric to segmented three- 48

dimensional cardiac images and then refined the superquadric 49

fit using a volumetric deformation technique known as free- 50

Please cite this article in press as: Shim M-B, et al. Three-dimensional shape reconstruction of abdominal aortic aneurysm. Computer-Aided Design (2007),
doi:10.1016/j.cad.2007.10.006
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Fig. 5. A prismatic lattice obtained by merging two pairs of points of a parallelepiped lattice: • is an unchanged control point. N is a control point to be merged. �
is a merged control point.

Fig. 6. Piecewise Bézier curves with C1 continuity.

form deformation (FFD) [2]. Montagnat et al. proposed a1

general algorithm for performing shape reconstruction with a2

deformable object in a robust and accurate manner by using3

FFD and registration [21]. Battle et al. investigated the use4

of FFD to describe the continuous transformation of space5

to match a set of transmission measurements [5]. Gunay and6

Shimada proposed an x-ray based three-dimensional bone7

shape reconstruction by using hierarchical FFD [11,25].8

Although FFD is a powerful tool in shape reconstruction9

methods with a deformable object, it has a few drawbacks.10

The deformation technique handles only a specific type of11

deformation, defined by a parallelepiped lattice [6]. The12

parallelepiped shape of the FFD lattice with a lower-order13

polynomial function allows only limited types of deformation.14

Although the range of deformation can be expanded by using a15

higher-order polynomial function, this leads to a greater number16

of design variables in optimization, making the process slow17

and unstable. Furthermore, when FFD is used to reconstruct18

three-dimensional geometry through the optimization process,19

there remains a large number of design variables; these often20

make the problem more complex, and additional information –21

such as a regularizing term in the optimization criterion – may 22

be required to solve the reconstruction problem [2]. 23

3. Problem statement and technical approach 24

The problem of three-dimensional shape reconstruction of 25

an abdominal aortic aneurysm (AAA) can be stated as follows: 26

Given: 27

• CT images of an abdominal aortic aneurysm, and 28

• Three-dimensional template geometry of a healthy abdomi- 29

nal aorta 30

Generate: 31

Three-dimensional shape of the abdominal aortic aneurysm 32

suitable for structural finite element analysis and computa- 33

tional fluid dynamics for medical diagnosis. 34

The reconstruction process finds the deformation that 35

minimizes the distance between a CT scan contour and a cross- 36

sectional contour of the deformed template model. According 37

to the previous study, free-form deformation (FFD) can handle 38

this problem [11,25]. The use of FFD in three-dimensional 39

limb-bone geometry reconstruction is suitable because the 40

cross-sectional shape of a limb-bone is relatively simple, and 41

for orthopedic surgical planning the detailed cross-sectional 42

shape is not necessary. However, when a cross-sectional shape 43

is more complex, as in the case of AAA, an FFD-based method 44

does not work well. In the current work, therefore, the use of 45

extended free-form deformation (EFFD) is proposed. 46

The proposed technical approach to the AAA shape 47

reconstruction problem is to find control lattice parameters of 48

EFFD, or deformation parameters that minimize the distance 49

between a CT scan contour and a cross-sectional contour of 50

the deformed template model. The method also generates a 51

topologically and geometrically valid shape for structural finite 52

element analyses and computational fluid dynamics for medical 53

diagnosis, by using three-dimensional template geometry of a 54

healthy abdominal aorta as a priori knowledge. 55

As illustrated in Fig. 1, the distance between a CT scan 56

contour, denoted as Ci , and a cross-sectional contour of the 57

deformed template model, denoted as Oi , is measured by a two- 58

dimensional error, denoted as ai . This two-dimensional error is 59

Please cite this article in press as: Shim M-B, et al. Three-dimensional shape reconstruction of abdominal aortic aneurysm. Computer-Aided Design (2007),
doi:10.1016/j.cad.2007.10.006
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(a) EFFD with a linear polynomial
function.

(b) Generation of new control points by the
natural cubic spline.

(c) EFFD with a cubic polynomial
function.

Fig. 7. Extension of the deformation with a linear polynomial function to the deformation with a cubic polynomial function by the natural cubic spline.

Fig. 8. Abdominal CT scans with outlined AAA contours.

used as the objective function of the optimization process. The1

two-dimensional bounding box that contains both a CT scan2

contour and a planar cross-sectional contour of the template3

model is created. This bounding box is then discretized to shoot4

rays and intersect with the contours. The line segments shown5

in Fig. 1 are summed up to compute an approximate distance6

between a CT scan contour and a cross-sectional contour of the7

deformed template model.8

Fig. 2 shows an overview of our technical approach. The9

input consists of both the template geometry of a healthy10

abdominal aorta and a set of CT images whose contours11

are digitized manually. A cylindrical lattice is generated by12

assembling 8 × 6 prismatic cells, as shown in Fig. 2. The13

top and bottom planes of each layer of eight prismatic cells14

correspond to one CT image. The template geometry is then15

embedded inside the lattice as shown in Fig. 2(a). A two-step16

optimization consists of the generation of initial EFFD lattice17

and the optimization of EFFD parameters. In order to explain18

the two-step optimization, assume there are n CT images, which 19

include contours Ci for i = 1, . . . , n, as shown in Fig. 3. A 20

cross-sectional contour (Oi for i = 1, . . . , n) of the deformed 21

template lies on the plane corresponding to each of the CT 22

images. 23

First, the initial EFFD lattice is created by making the center 24

of a cross-sectional contour of the deformed template model 25

match that of a CT scan contour, by moving all of control 26

points, Pi, j for j = 0, . . . , 8, simultaneously so that the center 27

of gravity of Oi matches that of Ci . Then, the positions of 28

the two contours are roughly matched by finding an optimal 29

radius, roptimal, on the contour via one variable optimization 30

(see Fig. 2(b)). This process is repeated through the entire 31

plane. In the EFFD optimization, the distance between two 32

contours is minimized by finding an optimal radius of each 33

of the cells on a plane (see Fig. 2(c)). Although each of the 34

optimal radii is obtained by one variable optimization, this 35

process must be repeated for all cells on a plane because 36

Please cite this article in press as: Shim M-B, et al. Three-dimensional shape reconstruction of abdominal aortic aneurysm. Computer-Aided Design (2007),
doi:10.1016/j.cad.2007.10.006
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Fig. 9. Three-dimensional shape reconstruction of the external wall of AAA with EFFD: (a) initial shape, (b) shape from initial EFFD lattice, (c) shape from
optimized EFFD lattice, (d) initial contour, (e) contour from initial EFFD lattice, and (f) contour from optimized EFFD lattice.

Fig. 10. Three-dimensional shape reconstruction of the external wall of AAA satisfied with C1 continuity.

these radii are coupled variables in optimization. The whole1

process is repeated throughout the entire plane. Finally, the2

deformed model is refined and made smooth by applying the3

geometric continuity condition to the deformation lattice (see4

Fig. 2(d)).5

4. Three-dimensional shape reconstruction6

This section presents technical details of the proposed7

three-dimensional shape reconstruction method using: (1)8

three-dimensional template geometry of a healthy abdominal9

aorta, (2) extended free-form deformation, and (3) geometric 10

continuity control. 11

4.1. Three-dimensional template geometry of an abdominal 12

aorta 13

Three-dimensional template geometry of an abdominal 14

aorta, shown in Fig. 4, is used as a base model for reconstructing 15

a patient-specific three-dimensional shape. The template is 16

represented as a shell of a polygonal mesh, consisting of a 17

set of vertices and a set of triangular faces. The triangular 18

Please cite this article in press as: Shim M-B, et al. Three-dimensional shape reconstruction of abdominal aortic aneurysm. Computer-Aided Design (2007),
doi:10.1016/j.cad.2007.10.006
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Fig. 11. Verification of three-dimensional shape reconstruction of the external
wall of AAA.

boundary representation of the template makes it easy to1

calculate a planar cross-section. It is important that there be2

no gap or overlap between faces; any gap or overlap will3

make it impossible to create a quality mesh for structural finite4

element analyses and computational fluid dynamics for medical5

diagnosis. Moreover, the resolution of the template should be6

fine enough so that its shape features will remain after the7

template is deformed. Our current template polygonal model8

consists of 4433 vertices and 8823 triangular polygons.9

4.2. Extended free-form deformation10

EFFD used in this study is an extension of the FFD tech-11

nique. This method uses non-parallelepiped three-dimensional12

lattice. We will present EFFD after the implementation of FFD13

is explained.14

The basic idea of Sederberg’s FFD [22] is that, rather than15

directly deforming the object, the object is embedded in a16

rectangular space that is then deformed. This technique defines17

a free-form deformation of space by specifying a trivariate18

Bézier solid, which acts on a parallelepiped region of space.19

One physical and intuitive analogy of FFD is that a flexible20

object is “molded” in a clear plastic block and the entire block21

is deformed by stretching, twisting, squeezing. As the block22

is deformed, an object trapped inside is accordingly deformed.23

The deformation is defined as follows:24

(1) Impose a local coordinate system on a parallelepiped region25

of space by specifying any point X in the following form26

X = X0 + sS + tT + uU, (1)27

(a) 10 CT
images.

(b) 15
CT
images.

(c) 20 CT
images.

Fig. 13. Verification of three-dimensional shape reconstruction of the external
wall of AAA.

where S, T , and U are direction vectors, respectively. The 28

coordinates, s, t , and u are given by 29

(s, t, u) =

(
T × U · (X − X0)

T × U · S
,

S × U · (X − X0)

S × U · T
, 30

×
S × T · (X − X0)

S × T · U

)
. (2) 31

Note that 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, and 0 ≤ u ≤ 1 for any interior 32

point to the parallelepiped. 33

(2) Impose a grid of control points Pi jk on the parallelepiped. 34

Let l, m, and n be the number of subdivisions along each of the 35

three directions, S, T , and U . These form l + 1 planes in the S 36

direction, m + 1 planes in the T direction, and n + 1 planes in 37

the U direction. These points lie on a lattice, and their locations 38

are defined 39

Pi jk = X0 +
i

l
S +

j

m
T +

k

n
U. (3) 40

(3) Deform the control points on the parallelepiped into new 41

control points. 42

(4) Reconstruct any point in three-dimensional space by first 43

calculating its (s, t, u) coordinates, and then applying these 44

coordinates to the trivariate Bézier function 45

X f f d =

l∑
i=0

m∑
j=0

n∑
k=0

Bi
l (s)B j

m(t)Bk
n (u)Pi jk (4) 46

with the Bernstein polynomials 47

Bi
l (s) =

l!

i !(l − i)!
si (1 − s)l−i . (5) 48

(a) 10 CT images. (b) 15 CT images. (c) 20 CT images.

Fig. 12. Three-dimensional shape reconstruction of the external wall of AAA satisfied with C1 continuity.

Please cite this article in press as: Shim M-B, et al. Three-dimensional shape reconstruction of abdominal aortic aneurysm. Computer-Aided Design (2007),
doi:10.1016/j.cad.2007.10.006



U
N

C
O

R
R

EC
TE

D
PR

O
O

F

JCAD: 1355

ARTICLE  IN  PRESS
8 M.-B. Shim et al. / Computer-Aided Design xx (xxxx) xxx–xxx

FFD is a very useful modeling technique, but it is too restrictive1

to allow flexible deformation of an object. The restriction is2

mainly due to the shape of the lattice. The parallelepiped shape3

of the FFD lattice prohibits arbitrarily shaped deformation.4

In contrast to FFD, extended free-form deformation5

(EFFD) allows arbitrarily-shaped deformation by using a non-6

parallelepiped lattice [6,17]. In the extension of FFD to EFFD,7

the primary difficulty is to calculate (s, t, u) coordinates of8

the model points in a non-parallelepiped lattice. Coquillart9

used a Newton approximation to calculate the coordinate [6].10

MacCracken and Joy presented a free-form deformation11

technique, which uses arbitrary lattices, namely, Catmull–Clark12

subdivision volumes [17]; but the lattice space definition is time13

consuming and difficult. Also, this technique requires a great14

deal of CPU time and memory.15

A prismatic EFFD lattice is obtained by merging two16

pairs of control points of a parallelepiped lattice, as shown17

in Fig. 5 [6]. The method used in FFD can be applied to18

calculate the coordinates by using the projection method [26].19

This projection method calculates the (s, t, u) coordinates in a20

prismatic lattice as follows:21

(1) Compute t in the same way as FFD, while the T ∗ axis is the22

cylinder axis.23

(2) Define S∗ axis as the radial coordinate and U∗ axis as the24

angular coordinate on the base plane of the cylinder.25

(3) Calculate u from the angle between a point projected on the26

S∗U∗ plane and S∗ axis.27

(4) The line which connects the origin with the mid-point of the28

others in the triangle can be defined. The projected point on29

the S∗U∗ plane is projected on the line again.30

(5) Calculate s from the ratio between the entire line length and31

the length obtained by the projected point.32

4.3. Numerical optimization33

In order to solve the two-step optimization problem, we use34

the sequential quadratic programming (SQP) algorithm [14,35

23]. SQP is one of the most effective methods for solving36

optimization problems with significant nonlinearity. It is37

thus suitable for our reconstruction problem with the highly38

nonlinear cost function.39

Feasible sequential quadratic programming (CFSQP) [14] is40

used in this study. This is an implementation in C of a modified41

version of SQP that generates feasible iterations.42

4.4. Geometric continuity control43

It is our considered decision to use a linear subdivision44

and interpolate it with a higher-order polynomial function45

later. When the prismatic lattice is deformed, the deformation46

maintains only the C0 continuity, and the tangent continuity47

(C1) between two cells is not guaranteed. Two ways for48

maintaining C1 continuity are: (1) using a linear subdivision49

and raising the order of an interpolation function later; and (2)50

using a higher-order polynomial function from the beginning.51

We choose the former strategy because the deformation with a52

higher-order polynomial function leads to a greater number of53

Fig. 14. Effect of the number of CT images used for three-dimensional shape
reconstruction.

Fig. 15. Convergence history of three-dimensional shape reconstruction of the
external wall of AAA.

(a) 5 CT images. (b) 10 CT
images.

(c) 15 CT
images.

(d) 20 CT images.

Fig. 16. Three-dimensional shape reconstruction of the lumen of AAA with C1

continuity. The proposed method generates a more detailed and accurate AAA
shape as the number of input cross-sectional images increases.

design variables in optimization, making the process slow and 54

unstable. 55

It is possible to apply the deformations with a cubic 56

polynomial function in a piecewise manner in order to maintain 57

C1 continuity between the lattices. For example, assuming that 58

two cubic Bézier curves are connected, as shown in Fig. 6, the 59

C1 continuity is achieved by making b, Pi+1, j , and c collinear. 60

Please cite this article in press as: Shim M-B, et al. Three-dimensional shape reconstruction of abdominal aortic aneurysm. Computer-Aided Design (2007),
doi:10.1016/j.cad.2007.10.006
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(a) 5 CT
images.

(b) 10 CT
images.

(c) 15 CT
images.

(d) 20 CT
images.

Fig. 17. Verification of three-dimensional shape reconstruction of the lumen of
AAA.

Fig. 18. Effect of the number of CT images used for three-dimensional shape
reconstruction.

The deformation with a cubic polynomial function is obtained1

both by inserting two new control points between two control2

points in vertical direction and by interpolating all of the control3

points lying on the plane corresponding to a CT image. The4

natural cubic spline is used to make three control points around5

the common control point of the lattices collinear. Fig. 7 shows6

the refinement of an EFFD lattice with a linear polynomial7

function to a EFFD lattice with a cubic polynomial function8

by using the natural cubic spline.9

5. Results and discussion10

Some case studies have been performed to verify the11

effectiveness of the proposed approach. EFFD with geometric12

continuity control, described in the previous section, is used13

to reconstruct a patient-specific AAA geometry from a limited14

number of CT images. Generally, there are two important15

contours shown in a CT image of AAA: the external contour16

of AAA, or the external wall, and the internal contour of AAA,17

or the lumen. In these case studies, the internal contour and18

the external contour of AAA are extracted separately from CT19

images.20

Abdominal CT images with a 5 mm interval in the axial21

direction were used, and the CT scans were imported into a22

commercial image processing software package, 3D Doctor23

v3.5, Able Software Corp., USA. The external and internal24

contours of the AAA were marked manually for each CT image25

of the AAA, as shown in Fig. 8. The z-coordinate of each image26

was added subsequently using the image interval information.27

Fig. 19. Convergence history of three-dimensional shape reconstruction of the
lumen of AAA.

Fig. 9 shows the entire process of reconstructing a three- 28

dimensional shape of the external wall of AAA by using EFFD. 29

Five of the contours (Fig. 8) thus created were first selected 30

to recontruct the external wall of AAA. The initial position of 31

three-dimensional template geometry of a healthy abdominal 32

aorta was calibrated to be applied to the CT scan contours 33

and the lattice size was initialized. In this study, the cylindrical 34

lattice which came from eight prismatic cells were utilized on a 35

CT image. The cells were layered according to the location of 36

CT images, as shown in Fig. 9(a) and (d). Both the initial EFFD 37

lattice and the optimized EFFD lattice were obtained through 38

the two-step optimization explained in Section 3, as shown in 39

Fig. 9(b), (e), (c) and (f). The C1 continuity is obtained by 40

refining the EFFD lattice with a linear polynomial function to 41

an EFFD lattice with a cubic polynomial function, as shown in 42

Fig. 10. 43

In order to verify the accuracy of the reconstructed shape, 44

the average area error was investigated between the entire 45

CT image contours and the cross-sectional contours of the 46

deformed model corresponding to the CT image contours. The 47

average area error was computed by: 48

AE =
1
n

n∑
i=1

ai

Ai
=

1
n

n∑
i=1

1
Ai

m∑
j

li, j∆, (6) 49

where m is the number of the line segments, li, j the j th line 50

segment on the i th CT image, and ∆ spacing between the line 51

segments. ai , Ai is the area error and the area of the i th CT 52

image, as shown in Fig. 1. Fig. 11 shows the area error of the 53

deformed model obtained by using five CT images. The average 54

area error in this case is about 14%. In order to reduce the area 55

error, we increased the number of CT images to 10, 15, and 56

20. Fig. 12 shows the deformed models obtained by applying 57

EFFD with a cubic polynomial function. Again, the accuracy 58

of the reconstructed shape was investigated by calculating the 59

average area error, as shown in Fig. 13. Fig. 14 illustrates the 60

effect of the number of CT images used for three-dimensional 61

shape reconstruction on the accuracy of shape reconstruction. 62

The more CT images are used, the more accurate the deformed 63
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Fig. 20. Mockups of a healthy abdominal aorta and AAA.

model becomes. A patient-specific three-dimensional shape1

with less than 5% error can be obtained by using 15 CT images.2

This level of error is usually small enough for the purposes of3

medical diagnosis.4

The converging history and computational time were5

investigated in order to evaluate the performance of EFFD.6

Fig. 15 shows the converging process of the external wall of7

an AAA obtained with 5, 10, 15, 20 CT images; it took 169,8

267, 464, and 669 s, respectively to reach a converged result,9

using an AMD Athlon 1.83 GHz with 1.0 GB of memory.10

In Fig. 16, the convergence trend was steep in the initial11

EFFD process and steady in the EFFD optimization process,12

the reason being that in the initial EFFD process the distance13

between two contours was rapidly fitted by locating an optimal14

radius on each image via one variable optimization. In the15

EFFD optimization process, the distance between two contours16

was stably and steadily reduced, by numerical optimization17

repeated through all the cells on each image, because these18

radii are coupled variables. Moreover, it meant that when the19

prismatic lattice was deformed, the proposed method – which20

used a linear subdivision and raised the order of an interpolation21

function later – was reasonable.22

For the lumen, (the internal contour of AAA), the same23

reconstruction process was performed with the contours24

obtained in Fig. 8. Fig. 16 shows the deformed models25

obtained by applying EFFD with a cubic polynomial function.26

The accuracy of the deformed models was investigated by27

calculating the average area error, as shown in Fig. 17. Fig. 1828

explains the effect of the number of CT images used for29

three-dimensional shape reconstruction. The results obtained30

for the lumen are quite similar to the results from the external31

wall. To evaluate the performance of EFFD in the case of the32

lumen, the converging history and computational time were also33

investigated. The convergence trend and the computational time34

of the lumen were virtually identical to those of the external35

wall, as shown in Fig. 19.36

As a means for verification of the reconstructed result,37

half-sized mockups of the interior and exterior surfaces of38

AAA were generated by using a commercial rapid prototyping 39

machine (ZPrinter 310 System, Z corporation, USA), as shown 40

in Fig. 20. 41

6. Conclusion 42

An effective computational technique was developed for 43

reconstructing a three-dimensional shape of AAA from a 44

limited number of CT scan images. The three-dimensional 45

template geometry of a healthy abdominal aorta was used 46

as a template, and the template geometry was deformed by 47

EFFD to generate a patient-specific AAA geometry. A two- 48

step optimization scheme was devised to find an optimal set 49

of EFFD parameters that match a cross-section of deformed 50

template with an AAA contour shown in a CT image. The 51

geometric continuity of a deformed model was maintained by 52

raising the order of the polynomial function used in EFFD. 53

Experimental results were presented to demonstrate the 54

effectiveness of this method. The proposed method can 55

reconstruct a patient-specific three-dimensional shape quickly, 56

automatically, and consistently by using the template geometry 57

after a set of contours from CT images are given. Both the 58

template geometry and EFFD with a cubic polynomial function 59

always generated a topologically and geometrically valid shape 60

for structural finite element analysis and computational fluid 61

dynamics for medical diagnosis. 62
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