
AN ANGLE-BASED APPROACH TO
TWO-DIMENSIONAL MESH SMOOTHING

Tian Zhou1 and Kenji Shimada2∗

1Carnegie Mellon University, Pittsburgh, PA, U.S.A. tzhou@andrew.cmu.edu
2Carnegie Mellon University, Pittsburgh, PA, U.S.A. shimada@cmu.edu

ABSTRACT

We present an effective and easy-to-implement angle-based smoothing scheme for triangular, quadrilateral and tri-quad mixed
meshes. For each mesh node our algorithm compares all the pairs of adjacent angles incident to the node and adjusts these angles
so that they become equal in the case of a triangular mesh and a quadrilateral mesh, or they form the ideal ratio in the case of a
tri-quad mixed mesh. The size and shape quality of the mesh after this smoothing algorithm is much better than that after
Laplacian smoothing. The proposed method is superior to Laplacian smoothing by reducing the risk of generating inverted
elements and increasing the uniformity of element sizes. The computational cost of our smoothing method is yet much lower than
optimization-based smoothing. To prove the effectiveness of this algorithm, we compared errors in approximating a given
analytical surface by a set of bi-linear patches corresponding to a mesh with Laplacian smoothing and a mesh with the proposed
smoothing method. The experiments show that a mesh smoothed with our method has roughly 20% less approximation error.

Keywords: mesh smoothing, average angle, Laplacian, optimization-based, triangular, quadrilateral

∗ Correspondence to: Kenji Shimada, Mechanical Engineering, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213-3890
Phone: (412) 268-3614, Fax: (412) 268-3348

1. INTRODUCTION

This paper presents an angle-based approach to two-
dimensional mesh smoothing. For each mesh node our
algorithm compares all the pairs of adjacent angles incident
to the node and adjusts these angles so that they become
equal in the case of a triangular mesh and a quadrilateral
mesh, or they form the ideal ratio in the case of a tri-quad
mixed mesh. In this paper, we show that this new easy-to-
implement smoothing scheme generates a higher quality
mesh than the Laplacian smoothing method with less
computational cost than the optimization-based smoothing
method.

Although automatic mesh generation tools are widely used
for finite element analysis, these tools may not guarantee
the quality of the meshes. Not only in the process of
meshing, but also in mesh refinement and cleanup, it is
possible that some severely distorted or ill-shaped elements
are created. Even when a uniform mesh is desired, a
mesher might generate some elements that are too small or
too big compared with the desired element size.

Those mesh quality problems stated above could
significantly influence the performance and the accuracy of
finite element solutions. There are at least two factors to be
considered, the element shape quality and size uniformity.
As for the shape quality, for example, a too flat or too thin
element in a triangular mesh may increase the
approximation error in the finite element solution. For size
quality, an excessively coarse mesh can affect the accuracy

of the solution, while a too fine mesh is sometimes
unnecessary and increases the computational cost.

It is therefore appropriate to perform a post-process to
improve the quality of a given mesh in order to improve the
performance and the accuracy of the finite element
solutions. Such post-processing methods include
topological operations and smoothing. Topological
operations insert or delete nodes or make edge/face swaps;
usually these operations change the topology of the mesh
without moving the nodes in the original mesh. Smoothing
changes node locations without making any topological
changes. We will limit our discussion to the second type of
post-process, smoothing, in the rest of this paper.

There are several kinds of mesh smoothing schemes, such
as Laplacian smoothing and optimization-based smoothing.
Typically each method has a trade-off between quality and
computational cost. For example, Laplacian smoothing
requires a very low computational cost, but it often results
in some low quality mesh elements or even invalid
elements. On the other hand, while optimization-based
smoothing is more likely to avoid the invalid elements and
achieve a higher quality mesh, the computational cost is
much higher than Laplacian smoothing.

Our goal is to devise a new mesh smoothing method that
strikes a balance between mesh quality and computational
cost. The proposed method is applicable to all types of
two-dimensional meshes, triangular, quadrilateral and
mixed meshes. Our method is stable and effective,
guaranteeing a better mesh quality than Laplacian

smoothing and avoiding some invalid elements while the
computational cost remains much less than optimization-
based methods. Furthermore, the algorithm is very easy to
implement.

The remainder of this paper is organized as follows: in
Section 2, we briefly review the previous work of mesh
smoothing, in particular Laplacian smoothing and
optimization-based smoothing. Section 3 gives the
problem statement along with requirements that we
considered in designing our algorithm. The detailed
algorithm of our angle-smoothing scheme is presented in
Section 4. Some smoothing examples are presented in
Section 5.

2. PREVIOUS WORK

There are several methods proposed for mesh smoothing,
including Laplacian smoothing [1], optimization-based
smoothing [2-7], their combinations [3,5] and some
variations of Laplacian smoothing [8-10]. Some general
surveys can be found in papers by Owen [11] and Canann
et al [3]. This section reviews the two most common
smoothing schemes, Laplacian smoothing and
optimization-based smoothing, used in practical
applications.

2.1 Laplacian smoothing

Laplacian smoothing is the most commonly used and
straightforward method for mesh smoothing. It simply
moves each node to the centroid of the polygon formed by
its adjacent nodes. It is a local smoothing algorithm
because, in each step, the movement of a node is calculated
by using the locations of its adjacent nodes only. We
usually run the iteration only a few times because the mesh
quality is not improved by further iterations; in fact the
quality worsens in many cases.

Figure 1. Laplacian smoothing

In Laplacian smoothing we can consider a mesh as a spring
system, as shown in Figure 1. Each edge connecting the
central node with its neighboring node can be seen as a
linear-spring with an initial length of zero. Let vi be the

vector from the central node to the i th neighboring node:

(),= − −vi i ix x y y

The sum of the spring forces acting on the central node is:

1=

= ∑F v
k

i
i

K

where K is the spring constant, and k is the number of
neighboring nodes. When the central node is located
exactly at the geometric center of the polygon, the spring
forces are balanced out and the spring system is in
equilibrium.

While Laplacian smoothing is an iterative way to find this
force-balancing state, we can also solve the problem by
minimizing the energy of the spring system. Considering
that all the springs have initial lengths of zero, we can
compute the potential energy of the system as:

()
2

2

1

1
2=

= ∑ v
k

i L
i

E K

This is an optimization problem, where the cost function is
the above simple quadratic function, as also shown in
Figure 2. By minimizing this cost function we can obtain
the same results as by Laplacian smoothing.

Figure 2. Contour plot of the linear spring energy

Laplacian smoothing can thus be viewed as a kind of
optimization of nodal locations. The cost function is the
sum of the squared lengths of the edges shared by the same
node:

() ()()2 2

1

(,)
k

i i
i

f x y x x y y
=

= − + −∑

Because the cost function for the Laplacian smoothing
method is a simple quadratic function, it becomes very easy
to find the node position to minimize this function. We can

1v

2v

3v

5v

4v

1 1,x y

2 2,x y

3 3,x y
4 4,x y

5 5,x y

', 'x y

,x y

obtain position (),x y that minimizes the cost function by

simply finding the geometric center of the neighboring
nodes:

0
∂ ∂

= =
∂ ∂
f f
x y

1

1 k

i
i

x x
k =

= ∑ ,
1

1 k

i
i

y y
k =

= ∑

This cost function, however, does not necessarily reflect the
mesh quality, and this is the reason why Laplacian
smoothing often fails to improve the mesh quality, and
sometimes even generates invalid elements.

Below are the advantages and disadvantages of Laplacian
smoothing:

Advantages:

• Computationally efficient

• Easy to implement

Disadvantages:

• Does not always move the node to the optimal
position to get the best element quality

• May generate inverted elements

• Tends to lose element size uniformity if iterated more
than a few times.

• Tends to yield lower quality elements if iterated more
than a few times.

2.2 The variations of Laplacian smoothing

In order to overcome some of the disadvantages of
Laplacian smoothing, some variations of the algorithm
have been proposed. These schemes include:

• Length-weighted Laplacian smoothing [8]

Although this method uses a set of vectors from an
interior node to all its adjacent nodes, the vectors are
not simply the vectors from the central node to its
adjacent nodes; some weighting factors are applied to
these vectors for adjacent nodes on a boundary. This
method improves the element quality along the
boundary and realizes a rapid convergence speed.

• Surrounding nodes based Laplacian smoothing [9]

This variation applies to quadrilateral elements only.
While the original Laplacian method considers the
neighboring nodes connected with the central node, in
this variation of Laplacian smoothing, all the
surrounding nodes contribute to the displacement of
the central node, improving the element shape quality.

• Constrained Laplacian smoothing [3-5]

In this method, also called “smart” Laplacian
smoothing, some mesh quality measures are calculated
before and after Laplacian smoothing. If the mesh
quality would not be improved by moving a node, the

algorithm either does not move the node or moves
only a fraction of the calculated amount of
displacement. The quality measures used for
optimization-based smoothing can also be used here as
constraints. This method is effective in avoiding
inverted elements. The computational cost, however,
is much higher; for example, if the minimum angle is
used as the constraint, three angles need to be
calculated for each triangular element before and after
smoothing.

2.3 Optimization-based smoothing

Optimization-based smoothing methods use some mesh
quality measures to define cost functions. Mesh nodes are
moved so that the cost function is minimized or maximized.

Some cost functions used in optimization-based smoothing
include:

• Minimum/maximum angle [4, 5]

The minimum/maximum angle is a straightforward
index for measuring mesh quality. An element with
angles near 0° or 180° will create difficulties in the
process of finite element analysis. In optimization-
based smoothing, therefore, either the minimum angle
is maximized or the maximum angle is minimized in
order to eliminate severely distorted elements.

• Aspect ratio [2]

Aspect ratio is the radius ratio of the circumscribed
circle to the inscribed circle of a mesh element. An
equilateral triangle has the optimal aspect ratio of 2.0.
When the element becomes more distorted, the aspect
ratio increases.

• Distortion metrics [3, 12-14]

The distortion metrics are related to the area and the
edge length of elements. The shape quality of an
element can be evaluated quantitatively by using this
type of metrics. An equilateral triangle has the
optimal value, and a severely distorted element has a
value near zero. These metrics can also be used for
quadrilateral elements.

One advantage of optimization-based smoothing is that it
can guarantee the improvement of mesh quality. By
optimizing the quality measures, severely distorted
elements are effectively eliminated. The computational
cost, however, is much higher than Laplacian smoothing.
For a two-dimensional triangular mesh, for example,
optimization-based smoothing method can be five times
more computationally expensive than smart Laplacian
smoothing, a variation of Laplacian smoothing [5], and 30
to 40 times more computationally expensive than Laplacian
smoothing.

2.4 Hybrid methods

In order to improve the efficiency of smoothing schemes,
some approaches are proposed that combine Laplacian
smoothing with optimization-based smoothing [3, 5]. The
goal of these hybrid methods is to obtain a high quality
mesh with relatively less computational cost. One

successful approach is to use Laplacian smoothing for most
elements for computational efficiency and use
optimization-based smoothing only for the poorest quality
elements. While the mesh quality of the hybrid methods is
not as good as pure optimization-based smoothing, its
computational cost is significantly lower.

3. PROBLEM STATEMENT

The smoothing problem we are interested in can be stated
as follows:

Input: a two-dimensional triangular, quadrilateral or
tri-quad mixed mesh

Output: a smoothed mesh with improved quality

We believe that a good mesh smoothing method should
satisfy the following requirements:

• Generality
A smoothing method should be applicable to
triangular, quadrilateral and tri-quad mixed meshes in
a consistent manner.

• High quality
After the smoothing, there should be neither inverted
elements nor very poorly shaped elements. It should
also work for cases where an input mesh is severely
distorted.

As pointed out by Freitag [4] and Shimada [7], with a
severely distorted mesh Laplacian smoothing may
result in inverted elements. This flaw can be avoided
by adding some constraints, but the mesh quality often
cannot be improved further. A good smoothing
method should be able to improve the mesh quality
while avoiding inverted elements.

• Computational efficiency
Pure optimization-based smoothing can be too
computationally costly to be used in practice. Ideally,
a smoothing method has a computational cost
comparable to Laplacian or smart Laplacian
smoothing.

• Easy implementation
The Laplacian smoothing method is very
straightforward and easy to implement, which is one
of the reasons why it has been used widely in practice.
Whereas the implementation of an efficient and robust
optimization-based smoothing scheme is more
complicated.

• Stability and convergence
We usually run Laplacian smoothing only for a couple
of passes and do not use its final convergent result[4].
This is because after the second or the third pass, the
improvement becomes very minor, or the mesh quality
even degrades. Another reason is that there is a
tendency in Laplacian smoothing for a mesh to
become less uniform in sizes when we run more
passes. This undesirable non-uniformity of element

sizes may decrease the accuracy of finite element
analysis.

4. ANGLE-BASED SMOOTHING ALGORITHM

This section describes a new smoothing algorithm based on
what we call “angle-based smoothing” for triangular,
quadrilateral, and tri-quad mixed mesh. The central idea of
our method is to make each pair of adjacent angles equal or
in a certain ratio, and this is effective in eliminating angles
near 0° or 180°. This method is easy to implement, and the
quality of a resultant mesh is significantly better than that
after Laplacian smoothing, while the computational cost is
much lower than optimization-based smoothing.

4.1 Algorithm for triangular mesh

Our angle-based smoothing method can also be considered
as a spring system. The difference between this method
and the Laplacian method is that the springs used here are
torsion springs. The potential energy of such a system of
torsion springs is:

2
2

1

1
2

k

i
i

E Kθ
=

= ∑
where k is the number of vertices of the polygon, K the
spring constant, and θ the angle on the boundary of the
polygon. Each pair of angles shares one vertex of the
polygon; therefore there are 2k angles in total to be
considered.

Figure 3. Contour plot of the torsion spring energy

The contour plot of this energy is shown in Figure 3. We
use the same polygon as used in Figure 2 for Laplacian
smoothing. Comparing these two contour plots we find
that the minimum energy positions are different. This
position is where the central node will be moved. The
angle-based energy optimization gives a better node
location than Laplacian’s linear spring energy optimization.

We implement an iterative method that minimizes the
potential energy of the torsion spring systems. Our angle-
based smoothing algorithm is outlined in the following five
steps:

1. As shown in Figure 4, for each node iN , there are k
pairs of angles around it, where k is the number of
neighboring nodes. The two adjacent angles are
calculated as:

11
1

1

cos +−

+

 
 =
 
 

v v

v v

ij j

j j

α

11
2

1

cos −−

−

 
 =
 
 

v v

v v

ij j

j j

α

where 1−v j , v j and 1+v j are the vectors that share

vertex jN ; v is the 2L norm of the vector; and

1α , 2α are the angles determined by the three
vectors.

jN

1−jN

iN

1+v j
v j

1−v j

'iN

1α

2α

Figure 4. Angle-based method for
triangular mesh

2. Calculate the difference between two adjacent angles,
and decide the angle for vector v j to be rotated:

()2 1 / 2= −jβ α α
where jβ is the angle by which vector v j will be

moved.

3. Rotate vector v j by angle jβ about jN , so the new

coordinates of iN will be:

() ()0 0 0' cos sinj jx x x x y yβ β= + − − −

() ()0 0 0' sin cosj jy y x x y yβ β= + − + −

where ()0 0,x y is the location of node jN , (),x y is

the old location of node iN , and ()', 'x y is the new

location of node iN .

4. By going through all the neighboring nodes, there are
k sets of new locations for the same node iN . We

compute the final new location of node iN by taking

average of ()', 'x y computed from all the

neighboring nodes.

1

1
'

k

new i
i

x x
k =

= ∑

1

1
'

k

new i
i

y y
k =

= ∑

4.2 Algorithm for quadrilateral mesh

The algorithm for a quadrilateral mesh is similar to that for
triangular mesh. The only difference is that we use
diagonal nodes in addition to those connected to the central
node (see Figure 5). In this case, the ideal angle is 45°, and
we can use the same iterative method as for triangular
elements to calculate the target angles and then move the
node accordingly.

1+jN

jN

1−jN

iN

1+v j

1−v j

'iN

1α
2α

vj

Figure 5. Angle-based method for
 quadrilateral mesh

1+jN

jN

1−jN

iN

1+v j

v j

1−v j

'iN

1α 2α

Figure 6. Angle-based method for
 tri-quad mixed mesh

4.3 Algorithm for tri-quad mixed mesh

In case of smoothing a tri-quad mixed mesh, because the
ideal angles for triangular elements and quadrilateral
elements are different we need to divide the two adjacent
angles into a particular ratio instead of finding the bisection
of the angles. We use the ratio of 90 : 60 3 : 2° ° = ; as

shown in Figure 6; suppose that 1α is an angle from a

quadrilateral element, and 2α from a triangular element,

the target ratio should be 1 2: 3 : 2=α α .

5. RESULTS AND DISCUSSION

5.1 Quality improvement

Both the shape quality and the size quality are important for
finite element analysis, for they can affect the accuracy and
efficiency of the analysis. The following results and
discussion highlight the advantage of our angle-based
method by showing how our method can improve the
quality of different types of meshes: topologically irregular
meshes, severely distorted meshes, uniform meshes and
graded meshes.

5.1.1 Special cases handling

The first special case can be often found on the boundary of
a mesh. Such an example is shown in Figure 7. If
Laplacian smoothing is used, the element at the bottom
becomes flat. Whereas, the angle-based method improves
the shape of this element significantly.

(a) Original mesh (b) Laplacian
smoothing

(c) Angle-based
smoothing

Min angle=4.40° Min angle=11.31° Min angle=15.48°
Max angle=169.70° Max angle=157.38° Max angle=149.04°

Figure 7. The original topologically irregular
mesh, the same mesh after Laplacian smoothing

and average angle smoothing

One disadvantage of Laplacian smoothing is that it
occasionally generates invalid mesh elements. The
example shown in Figure 8 illustrates how Laplacian
smoothing can lead to such elements by moving the center
vertex out of the boundary, yielding an invalid mesh for
finite element analysis. We could choose not to move this
node to avoid the inverted elements, as done in a smart
Laplacian smoothing, but it does not improve the quality of
the original mesh at all.

By using the angle-based smoothing, we can effectively
avoid the inverted element while improving the quality of
the mesh as can be seen from Figure 8(c).

(a) Original mesh (b) Laplacian
 smoothing

(c) Angle-based
 smoothing

Figure 8. A comparison between Laplacian
smoothing and angle smoothing for severely

distorted mesh

5.1.2 Shape improvement

In this sub-section, we present two examples of mesh
smoothing, one with a triangular mesh and the other with a
tri-quad mixed mesh. For the triangular mesh example, we
placed 500 nodes in a square domain, and 20 equally
spaced nodes on each edge of the boundary. We used
randomly placed nodes and then triangulated them using
the Delaunay method, yielding 580 nodes and 1078
triangular elements in the domain. Also for the mixed
mesh example, we used a similar method to generate the
mesh, and there are 580 nodes, 262 triangular elements and
408 quadrilateral elements in total.

We implemented Laplacian smoothing, smart Laplacian
smoothing and angle-based smoothing to compare the mesh
quality improvement. In smart Laplacian smoothing, we
used the minimum angle as the constraint function. Tables
1 and 2 list the numerical results of quality improvement.
The meshes are shown in Figures 9 and 10.

For the triangular mesh, smart Laplacian method can
produce a higher quality mesh than Laplacian smoothing.
For the quad mesh, although smart Laplacian improves the
minimum angles better, it could not improve the maximum
angle and even generated concave elements. Perhaps we
could avoid the concave elements by using other
constraints, but it would be more computationally
expensive.

In our angle-based method, we use the same scheme for
triangular and quad meshes, described in Section 4, and the
results are better than Laplacian and smart Laplacian
smoothing.

Table 1. Mesh quality improvement
for triangular mesh

Case Min angle Max angle (a) (b) (c)

Original 0.061° 179.76° 281 48 6.05E103

Laplacian 9.99° 156.20° 13 5 86

Smart
Laplacian 11.85° 154.06° 11 6 75

Angle-
based 20.01° 136.32° 0 1 17

(a): Number of angle < 20°

(b): Number of angle >130°

(c): The ratio of minimum area and
maximum area of the element

(a) Original mesh (b) Laplacian smoothing

(c) Smart Laplacian smoothing (d) Angle-based smoothing

Figure 9. Example for triangular mesh smoothing

(a) Original mesh (b) Laplacian smoothing

(c) Smart Laplacian smoothing (d) Angle-based smoothing

Figure 10. Example for tri-quad mixed mesh smoothing

(a) Original mesh (b) Laplacian smoothing (c) Angle-based smoothing

Figure 11. Example of smoothing graded mesh

Table 2. Mesh quality improvement
for tri-quad mixed mesh

Min angle Max angle (a) (b)

Original 1.37° 176.56° 116 37

Laplacian 8.82° 174.02° 13 13

Smart
Laplacian 11.44° 226.28° 4 32

Angle-
based 19.17° 155.57° 4 5

(a): Number of angle < 20°

(b): Number of angle >150°

5.1.3 Size improvement

Controlling element sizes is also important for finite
element analysis. There are two cases that we should
consider: (1) an original mesh is intended to be uniform,
and (2) an original mesh is intended to be graded. For a
uniform mesh, a too coarse element may decrease the
accuracy of the result, while a too fine element is often
unnecessary and increase the computation cost. Therefore,
the size uniformity is needed for this kind of mesh. For a
graded mesh, we prefer uniformly sized elements in the
same layer, and the size change at the transitional zone
should be smooth.

The uniform mesh examples can be found in Figures 9, 10
and 15. The minimum and maximum element areas were
calculated and shown in Table 3 for triangular and
quadrilateral mesh examples. The angle-based smoothing
can reduce the undesirable difference between the
minimum and maximum areas more than Laplacian
smoothing.

Table 3. Mesh size improvements for 2D uniform
meshes

Original Laplacian Angle-based

Min Max Min Max Min Max

Triangular 0.01 60.36 0.35 35.56 1.42 24.17

Quadrilateral 1.55 197.95 2.95 126.35 8.54 109.02

Another example is a graded mesh shown in Figure 11.
The mesh was generated by placing 300 random nodes in a
square domain. In order to make the gradation, the first
100 nodes were distributed in the whole domain, the second
100 nodes were distributed only in the lower-left quarter of
the domain, and the last 100 nodes were distributed only in
the lower-left 1/16 of the domain. So there are three layers
in this graded mesh. We also placed 48 fixed nodes on the
four edges of the domain. All the nodes were connected by
Delaunay triangulation.

From the result shown in Figure 11, we can see that the
angle-based method yields a better result than Laplacian
smoothing in terms of element size control. In a same
layer, the element sizes tend to be more uniform; and in a
transitional zone, the size change is smoother with angle-
based smoothing than with Laplacian smoothing.

5.2 Computational cost

The most notable advantage of Laplacian smoothing is the
computational efficiency. For a same mesh, optimization-
based smoothing might take 30 or 40 times more
computational time than Laplacian smoothing [4]. Some
researchers [3, 5] use smart Laplacian to improve the
performance of Laplacian smoothing. The computational
cost of those variants of Laplacian smoothing usually falls
between the computational costs of Laplacian and
optimization-based smoothing [4].

To compare the computational cost between our angle
smoothing and other smoothing methods, we estimated the

computational cost of a kind of smart Laplacian smoothing
method and optimization-based smoothing method, and
compared them with our angle smoothing method. The
algorithm of the smart Laplacian method is according to
Freitag [5], and we use the minimum angle as the mesh
quality measure:

1. For each node, calculate all the angles in its adjacent
elements. In a topologically regular triangular mesh,
for example, there are 6 adjacent elements, and
therefore there exist 18 angles to be computed.

2. From the set of angles, find the minimum angle.

3. Compute the new location of the central node using
Laplacian smoothing.

4. Calculate the 18 angles again.

5. Find the new minimum angle.

6. If the minimum angle is improved, move the central
node to the new location. Otherwise keep the node at
its original location.

In this algorithm, there are totally 36 angles to be
calculated before and after one node is moved. The angle
calculation can be simplified to getting the cosine value of
each angle, which can save some computational time, but
this angle calculation is still the most time-consuming part
in the overall smoothing algorithm.

In our angle-based smoothing algorithm, if the number of
adjacent elements is 6, there are 12 angles to be calculated,
and 6 vector rotations. Another more efficient way is to
find the bisection of the angle by normalizing the two
vectors.

The computation cost of optimization-based smoothing is
usually higher than smart Laplacian. For example, some
researchers [3, 5] used steepest descent method and move
nodes in gradient directions so as to increase mesh quality.
If we use the angle to measure the mesh quality, there are
still 36 angles to be calculated before and after the
movement. In addition, the gradient directions need to be
computed.

From the comparison above, we can see that, in every pass,
angle-based smoothing method is faster than smart
Laplacian and optimization-based smoothing method. If
we run the angle-based smoothing only 2 or 3 passes, the
mesh quality is already better than Laplacian smoothing;
and if we run more iterations, the quality will improve
further. In the next sub-section, the convergence speed of
angle-based smoothing is discussed and compared with that
of Laplacian smoothing.

5.3 Convergence

In Section 4 we stated that our angle-based smoothing is an
iterative method of finding the optimal node positions that
minimizes the potential energy in the torsion spring system.
In order to investigate the convergence of our algorithm,
we use the same 5-element shown in Figures 2 and 3.
Three different initial positions are given for the central
node, and our angle-based smoothing is applied. We

iterated the smoothing process 10 times and the converging
paths are shown in Figure 12.

Figure 12. Converging path of the central node
from 3 different initial conditions

During the iteration, the displacement of the central node
decreases exponentially; the amount of the displacement of
the 10th pass is 0.1% of that of the first pass. The angle-
based smoothing converges fast and the final solution is
independent of the initial conditions.

As discussed in Section 3, it is important to decide how
many passes, or iterations, we need to improve a mesh.
Table 4 shows the effect of the number of passes on mesh
quality improvement in Laplacian smoothing and our angle
smoothing.

Table 4. Effect of the number of passes for
Laplacian and angle-based smoothing

Laplacian Angle-based

Passes Min
angle

Min
area

Max
area

Min
angle

Min
area

Max
area

1 8.84° 1.69 56.84 8.70° 1.40 58.75
2 11.45° 1.71 59.82 12.25° 2.85 56.52
3 10.88° 1.64 61.04 13.56° 3.45 55.34
4 10.93° 1.60 61.61 14.20° 3.69 54.69
5 11.01° 1.59 61.89 14.91° 3.90 54.32
6 11.07° 1.59 61.96 15.63° 4.09 54.12
7 11.12° 1.61 61.94 16.33° 4.22 54.01
8 11.17° 1.62 61.85 17.01° 4.31 53.96
9 11.20° 1.64 61.74 17.65° 4.37 53.94
10 11.23° 1.65 61.62 18.25° 4.42 53.95

Figure 13 illustrates how the maximum nodal displacement,
minimum angle, and the ratio of minimum area and
maximum area of elements change as we perform more
passes. From the displacement curves shown in the top of
Figure 13, we can see that both methods become stable
after some passes. It should be noted in the middle of
Figure 13, however, that Laplacian smoothing maximizes
the minimum angle after the second pass, and the angle

becomes slightly worse after that. On the other hand our
angle-based smoothing keeps improving the minimum
angle as more passes are performed. Also note that the
curves shown in the bottom of Figure 13 indicate that our
method generates more uniformly sized mesh elements
than Laplacian smoothing.

1 2 3 4 5 6 7 8 9 10
0

20

40

m
ax

 d
is

pl
ac

em
en

t

Laplacian
Angle-based

1 2 3 4 5 6 7 8 9 10
0

10

20

m
in

 a
ng

le
 (

de
gr

ee
)

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

m
in

 a
re

a/
m

ax
 a

re
a

passes

Figure 13. Comparison of Laplacian and angle-
based smoothing by number of passes

5.4 Application to surface approximation

In order to prove the effectiveness of the proposed angle
smoothing method, we compare errors in approximating a
give analytical surface by a set of bi-linear patches
corresponding to a mesh with Laplacian smoothing and a
mesh with our method[15].

 Assuming that a surface is defined over a square domain
meshed into a set of quadrilateral elements the surface is
approximated by a set of bi-linear patches. Each
quadrilateral element has a corresponding bi-linear patch
that approximates the original surface geometry.

Suppose (),f x y is the actual value of the surface at

point (),x y , ()' ,f x y is the interpolated value obtained

by bi-linear interpolation. Thus the error at the point
(),x y is:

(), (,) '(,)E x y f x y f x y= −

For each element, the square of the errors are summed and
weighted by the element area to quantify the amount of
surface approximation errors:

2

1
2

2
L

E E dA
Ω

 
=  

 
∫

The total approximation error, which we will use to
compare the performance of our method with the Laplacian
method, is the summation of the errors computed for each
quadrilateral element.

We use the following three functions as test cases.

()1
2 2

, sin sin
x y

f x y
l l
π π   =    

   

() 2 2
2 , 62500f x y x y= − −

() 3
3 ,f x y x=

The surface plots are shown in Figure 14.

The original mesh is a quadrilateral mesh with 571 nodes
and 530 quadrilateral elements. We made a comparison
between the approximation errors using a Laplacian
smoothed mesh and an angle-smoothed mesh.

Table 5 summarizes the numerical results of the
approximation errors. As can been seen from these results
a mesh smoothed with our angle-based method typically
has 20% less approximation error than a Laplacian mesh.
Note that this improvement is achieved by moving existing
nodes to better locations without changing the topology or
increasing the number of elements.

This result indicates that our method generates more
uniform mesh elements over a domain, and it helps
improve the surface approximation errors, which is
analogous to the errors in finite element solutions incurred
by polynomial interpolation of a true solution.

It should be noted that we are not adapting a mesh based on
an error estimator or an estimation of the curvature of a
surface. Such an adaptive remeshing scheme would
improve the approximation error more dramatically, but we
would need some knowledge about the surface geometry.
Our interest here is to see how smoothing algorithms alone
can improve the approximation error without adapting a
mesh based on knowledge of the surface geometry.

Table 5. Comparison of the surface approximation
errors with Laplacian smoothing and angle

smoothing

Function Laplacian Angle-based Error Improvement

1f 95.38 77.08 23.74%

2f 0.23 0.19 21.05%

3f 1.16E8 1.00E8 16.00%

(a) The surface plot of function 1 (b) The surface plot of function 2 (c) The surface plot of function 3

Figure 14. The surface plots of the application functions

(a) Original mesh (b) Laplacian smoothing (c) Angle-based smoothing

Figure 15. Application example for quadrilateral mesh

5 CONCLUSION

In this paper we proposed a new angle-based mesh
smoothing algorithm that works for all types of two-
dimensional meshes: triangular, quadrilateral and tri-quad
mixed meshes.

By adjusting the angles of adjacent elements and imposing
a proper angle ratio between adjacent angles, our method
generates a higher quality mesh than Laplacian smoothing
while keeping the computational cost much lower than
optimization-based methods.

We also presented the physically-based interpretation of
our angle-based smoothing as well as that of Laplacian
smoothing. This give us insights explaining why
Laplacian-based smoothing methods do not always
improve the mesh quality, and why our angle-based
approach works better.

Although we discussed only two-dimensional mesh
smoothing in this paper, the same angle-based idea could
be applied for three-dimensional mesh smoothing.

ACKNOWLEDGEMENTS

The material is based in part on work supported under a
NSF CAREER Award (No. 9985288) and a grant from
IBM Research.

We are grateful for the insightful technical discussions with
A. Yamada, T. Itoh and K. Inoue of IBM Research in the
development of this work.

REFERENCES

[1] D. A. Field, “Laplacian Smoothing and Delaunay
Triangulation,” Communications in Applied
Numerical Methods, vol. 4, pp. 709-712, 1988.

[2] V. Parthasarathy and S. Kodiyalam, “A
constrained optimization approach to finite
element mesh smoothing,” Finite Elements in
Analysis and Design, vol. 9, pp. 309-320, 1991.

[3] S. A. Canann, J. R. Tristano, and M. L. Staten,
“An Approach to Combined Laplacian and
Optimization-Based Smoothing for Triangular,
Quadrilateral, and Quad-Dominant Meshes,”
presented at 7th International Meshing
Rountable, 1998.

[4] L. Freitag and C. Ollivier-Gooch, “a Comparison
of Tetrahedral Mesh Improvement Techniques,”
presented at the 5th International Meshing
Roundtable, Albuquerque NM, 1995.

[5] L. A. Freitag, “On Combining Laplacian and
Optimization-based Mesh Smoothing
Techniques,” AMD Trends in Unstructured Mesh
Generation, vol. 220, pp. 37-43, 1997.

[6] L. Freitag, M. Jones, and P. Plassmann, “a
Parallel Algorithm for Mesh Smoothing,” Society
for Industrial and Applied Mathematics, vol. 20,
pp. 2023-2040, 1999.

[7] K. Shimada, “Physically-based mesh generation:
Automated triangulation of surfaces and volumes
via bubble packing,” . Cambridge, MA:
Massachusetts Institute of Technology, 1993.

[8] T. D. Blacker, “Paving: a New Approach to
Automated Quadrilateral Mesh Generation,”
International Journal for Numerical Methods in
Engineering, vol. 32, pp. 811-847, 1991.

[9] J. Z. Zhu, O. C. Zienkiewicz, E. Hinton, and J.
Wu, “a New Approach to the Development of
Automatic Quadrilateral Mesh Generation,”
International Journal for Numerical Methods in
Engineering, vol. 32, pp. 849-866, 1991.

[10] P. Hansbo, “Generalized Laplacian Smoothing of
Unstructured Grids,” Communications in
Numerical Methods in Engineering, vol. 11, pp.
455-464, 1995.

[11] S. Owen, “a Survey of Unstructured Mesh
Generation Technology,”
www.andrew.cmu.edu/user/sowen/mesh.html

[12] S. H. Lo, “a New Mesh Generation Scheme for
Arbitrary Planar Domains,” International Journal
for Numerical Methods in Engineering, vol. 21,
pp. 1403-1426, 1985.

[13] S. H. Lo, “Generating Quadrilateral Elements On
Plane and Over Curved Surfaces,” Computers &
Structures, vol. 31, pp. 421-426, 1989.

[14] M. Berzins, “Mesh Quality: A Function of
Geometry, Error Estimates or Both?,” presented
at 7th International Meshing Roundtable,
Dearborn, Michigan, 1998.

[15] N. Viswanath and K. Shimada, “Adaptive
Anisotropic Quadrilateral Mesh Generation
Applied to Surface approximation,” . Pittsburgh,
PA: Carnegie Mellon University, 2000.

