Sketch-based Template Creation for Early Automotive Styling

Levent Burak Kara & Kenji Shimada
Carnegie Mellon University
December 2007
Introduction

- **Support early automotive styling**
 - Designers sketch early in the design
 - Cannot realize the concept in 3D

- **Create 3D shape from 2D sketches**
 - Rapidly convert sketches into 3D shape
 - No need for advanced modeling skills

- **Approach**
 - User marks points on a sketch
 - Modify a 3D template to match the sketch
 - 3D Draw on the new template
Major Advances since July 2007

- Renewed car templates
- Improved camera calibration algorithm
- Optimization-based template deformation
- Edge design using pen strokes
- Simplified vertex/tangent manipulation
- Post-Dimensioning
- Curve creation and styling on template
- Case examples for sedan/hatchback/minivan
- Paper submitted to CAD 08 conference
System Overview

- User marks fiducial points
- Template alignment
- Template Deformation
- Impose continuity and shape constraints
- Edge manipulation
- Dimensioning
- Styling
Automotive Templates

- Generic car shapes without details
 - Fiducial nodes, including wheel centers (red)
 - Cubic edges (black)
 - Bi-cubic surface patches (gray)

39 fiducial nodes
62 edges
28 surface patches

41 fiducial nodes
66 edges
30 surface patches
User Input

- User marks fiducial points on the sketch
 - UI widget guides the user
 - User specifies only visible fiducials
 - Skips invisible ones
Template Alignment

- Align the template with the sketch
 - Match template fiducials with users markers
 - Template is not deformed

- Uses *N-point* camera calibration
 - Best camera in the “Least Squares” sense
Template Alignment

Formulation [1]

- User marks N fiducial points in the sketch (p).
- We know the corresponding 3D nodes (P).
- Estimate camera properties

\[
\begin{align*}
\text{Camera Model} & : \quad p_{3\times N} = \frac{1}{s} \cdot K_{3\times 3} \cdot [R_{3\times 3} T_{3\times 1}] \cdot P_{4\times N} \\
p_{3\times N} &= \begin{bmatrix} u_1 & u_2 & \cdots & u_N \\ v_1 & v_2 & \cdots & v_N \\ 1 & 1 & \cdots & 1 \end{bmatrix} \\
K_{3\times 3} &= \begin{bmatrix} \alpha & -\alpha \cdot \cot \theta & u_0 \\ 0 & \beta & v_0 \\ 0 & \frac{1}{\sin \theta} & 1 \end{bmatrix} \\
P_{4\times N} &= \begin{bmatrix} x_1 & x_2 & \cdots & x_N \\ y_1 & y_2 & \cdots & y_N \\ z_1 & z_2 & \cdots & z_N \\ 1 & 1 & \cdots & 1 \end{bmatrix}
\end{align*}
\]

- 2D fiducial points
- Intrinsic camera properties (unknown)
- 3D fiducial points

- R, T rotation/translation matrices (unknown)
- s scale factor (unknown)
- α, β scale factors in u and v directions (unknown)
- u_0, v_0 camera center (unknown)
- θ skew (radians) between u and v axes (unknown)
Template Alignment

- Introduce matrix \mathbf{M}: $\mathbf{M}_{3\times4} = \frac{1}{s} \cdot \mathbf{K}_{3\times3} \cdot [\mathbf{R}_{3\times3} \mathbf{T}_{3\times1}]$
- Compute \mathbf{M} from \mathbf{p} and \mathbf{P} using LDT [2]
- Rewrite \mathbf{M}: $\mathbf{M}_{3\times4} = [\mathbf{A}_{3\times3} \mathbf{b}_{3\times1}]$

- Identify unknowns from \mathbf{A} and \mathbf{b} [3]

\[
\begin{align*}
 s &= \pm 1/||\mathbf{a}_3||, \\
 \mathbf{r}_3 &= s\mathbf{a}_3, \\
 u_0 &= s^2(\mathbf{a}_1 \cdot \mathbf{a}_3), \\
 v_0 &= s^2(\mathbf{a}_2 \cdot \mathbf{a}_3), \\
 \cos(\theta) &= \frac{(\mathbf{a}_1 \times \mathbf{a}_3) \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}{||\mathbf{a}_1 \times \mathbf{a}_3|| \cdot ||\mathbf{a}_2 \times \mathbf{a}_3||}, \\
 \alpha &= s^2||\mathbf{a}_1 \times \mathbf{a}_3|| \cdot \sin(\theta), \\
 \beta &= s^2||\mathbf{a}_2 \times \mathbf{a}_3|| \cdot \sin(\theta), \\
 \mathbf{r}_1 &= \frac{\mathbf{a}_2 \times \mathbf{a}_3}{||\mathbf{a}_2 \times \mathbf{a}_3||}, \\
 \mathbf{r}_2 &= \mathbf{r}_3 \times \mathbf{r}_1, \\
 t &= s \cdot \mathbf{K}^{-1}\mathbf{b}
\end{align*}
\]

Where $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ are the column vectors of \mathbf{A}.

If $t_{z} < 0$, switch s and reevaluate.
Template Alignment Examples
Template Alignment

- Our new template alignment approach provides much improved results compared to old, Bounding Box-based approach.

- However, we are still looking ways to further improve this.
Template Deformation

- Elastically deform the template
 - Adjust template nodes in 3D such that:
 1. Template nodes match user’s markers in 2D
 2. The template has an acceptable 3D shape
Template Deformation

- **Cost function to minimize:**

\[
H = \alpha \sum_{i=1}^{m} \| F_i - P(Vs'_i) \| + \beta \sum_{j=1}^{n} \| V_j - V'_j \|
\]

Minimizes mismatch in 2D Minimizes deviation from undeformed template

- \(V = \{ v_1, \ldots, v_n \} \in R^3 \) 3D positions of original wireframe nodes
- \(V' = \{ v'_1, \ldots, v'_n \} \in R^3 \) 3D positions of deformed wireframe nodes. This is what we are trying to determine
- \(Vs' = \{ v'_1, \ldots, v'_m \} \subset V' \) 3D wireframe nodes whose fiducial points are marked by the user \(m \leq n \)
- \(F = \{ f_1, \ldots, f_m \} \in R^2 \) 2D screen coordinates of user’s fiducial points
- \(P : R^3 \rightarrow R^2 \) Function that projects 3D world coordinates to 2D image coordinates using the current projection matrix.
Template Deformation

- Cost function to minimize:

\[H = \alpha \sum_{i=1}^{m} \| F_i - P(Vs_i) \| + \beta \sum_{j=1}^{n} \| V_j - V'_j \| \]

- First term in \(H \) ensures that red dots match green dots in image plane.
- Second term ensures that deformed template deviates minimally from undeformed template.
- We scale the two terms to make them magnitude-wise comparable.
- We take \(\alpha = \beta = 0.5 \).
Template Deformation

- There are $3n$ optimization parameters $(x, y, z$ for each node$)$ where n is the number of template fiducials (i.e., red nodes)

- We use Sequential Quadratic Programming (SQP) technique to solve the optimization problem.
Optimization Constraints

- Symmetry constraints – Type I
 - For each symmetric node pair (15 pairs below), we have 3 linear equality constraints:

\[
\begin{align*}
 v_{a.x} &= -v_{b.x} \\
 v_{a.y} &= v_{b.y} \\
 v_{a.z} &= v_{b.z}
\end{align*}
\]
Optimization Constraints

- **Symmetry constraints – Type II**

 - For each node on symmetry plane (9 nodes below), we have 1 linear equality constraint:

 \[v_{c,x} = 0.00 \]
Optimization Constraints

- **Shape soundness constraints**
 - Optimization-based deformation can break common-sense rules about car shape
 - Inaccurate, cluttered markers (e.g. markers far from the camera) can yield erroneous shapes

Potentially inaccurate / unreliable markers
Optimization Constraints

- **Shape soundness constraints**
 - Shape soundness constraints prevents nonsensical shapes
 - Similar constraints exist for rest of the car
 - These constraints can be abandoned if desired
Edge Representation

- Edges are represented as Cubic Beziers*
- We maintain two interchangeable forms:
 - (1) Four control polygon nodes, or
 - (2) Two end nodes + two end tangents

* Conventionally, Bezier curves are represented with 4 absolute points. In our case, the above interchangeable representation has been adopted for computational convenience.
G^1 Constraints

- Certain edges maintain G^1 continuity at all times
- This enables natural looking curves

Colored Curves consist of G^1 continuous edges
Algorithm for imposing G^1:

- Compute a weighted average direction:
 \[u_{\text{avg}} = t_a + (-1)t_b, \text{ normalize } (u_{\text{avg}}) \]

- Adjust t_a and t_b to lie on u_{avg}, while maintaining their original magnitudes

\[t_a \leftarrow \text{mag}(t_a) \cdot u_{\text{avg}}, \]
\[t_b \leftarrow \text{mag}(t_b) \cdot (-1) \cdot u_{\text{avg}}, \]
Default Shape Constraints (DSC)

- We impose certain constraints immediately after template deformation.
- These constraints yield better shapes.

Shapes immediately after template deformation:
- **G¹ only**
- **G¹ + DSC**
Default Shape Constraints (DSC)

- Rounding DSC

Side panel edges are pulled out

Front and rear corner edges are pulled out
Default Shape Constraints (DSC)

- **Coplanarity DSC**

 - t_3 forced to lie on the plane defined by t_1 and t_2

 Then, t_4 forced to be coplanar with t_3

Applied to two front and two rear corner edges
Edge Manipulation

- Edges can be modified from arbitrary viewpoints by sketching desired shape
Edge Manipulation

- Edges can be modified from arbitrary viewpoints by sketching desired shape
Edge Manipulation

- For edge modification, we use a minimum surprise method similar to [1]
- Algorithm:
 - Identify the intended curve to be modified
 - Create a 3D surface S that starts at eye, extends into screen passing through pen strokes.
 - Project points $u=1/3$ and $u=2/3$ of original 3D cubic curve onto S
 - Use a four-point Hermite interpolation [4] to reconstruct the new cubic curve

S (invisible from the viewing point)
Node/tangent Manipulation

- Template nodes can be manually adjusted by simple point-and-drag

- Nodes move parallel to current image plane
- Edge tangents are kept unchanged (by design)
- Symmetry automatically preserved
Node/tangent Manipulation

- Tangents can be manually adjusted by simple point-and-drag

- Tangent tips move parallel to image plane
- G1 preserved with neighboring edge
- Symmetry automatically preserved
Edge Beautification

- Disfigured edges can be beautified by automatically applying:
 - (1) “annealing” (fit a simple, cubic chain to n nodes)
 - (2) default shape constraints (DSC)
 - Template node positions are not modified, only the tangent vectors.
Surface Representation

- **Bicubic Coons patches [5]**
 - H_i^3: Cubic Hermite interpolants

\[
x(u,0) = c_{\text{bottom}}(u) \quad x(u,1) = c_{\text{top}}(u) \quad x(0,v) = c_{\text{left}}(v) \quad x(1,v) = c_{\text{right}}(v) \quad u, v \in [0,1]
\]

\[
p(u,v) = h_c(u,v) + h_d(u,v) - h_{cd}(u,v)
\]

Points on surface

\[
h_c(u,v) = H_0^3(u)x(0,v) + H_1^3(u)x_u(0,v) + H_2^3(u)x_u(1,v) + H_3^3(u)x(1,v)
\]

\[
h_d(u,v) = H_0^3(v)x(u,0) + H_1^3(v)x_u(u,0) + H_2^3(v)x_u(u,1) + H_3^3(v)x(u,1)
\]

\[
h_{cd}(u,v) =
\begin{bmatrix}
H_0^3(u) \\
H_1^3(u) \\
H_2^3(u) \\
H_3^3(u)
\end{bmatrix}
\begin{bmatrix}
x(0,0) & x_v(0,0) & x_v(0,1) & x_v(0,1) \\
x_u(0,0) & x_{uv}(0,0) & x_{uv}(0,1) & x_u(0,1) \\
x(1,0) & x_v(1,0) & x_v(1,1) & x_v(1,1) \\
x_u(1,0) & x_{uv}(1,0) & x_{uv}(1,1) & x_u(1,1)
\end{bmatrix}
\begin{bmatrix}
H_0^3(v) \\
H_1^3(v) \\
H_2^3(v) \\
H_3^3(v)
\end{bmatrix}
\]

\[
x_v(u,0) = H_0^3(u)x_v(0,0) + H_1^3(u)x_v(1,0)
\]

\[
x_v(u,1) = H_0^3(u)x_v(0,1) + H_3^3(u)x_v(1,1)
\]

We take twist vectors $x_{uv}(.,.) = 0$

Blending function for cross-boundary derivatives. Similar functions for $x_u(.,.)$
Surface Representation

- G^1 edge continuity produces smoothly blended surface patches
Post-Dimensioning

- Allows user to specify key dimensions
- Preserves shape as much as possible
- 5 dimensions can be set

 WD: width
 HG: Height
 LN: length
 FO: Front overhang
 WB: Wheel base
Post-Dimensioning

- User enters desired values
- Shape is automatically updated
Post-Dimensioning

- Performed in two steps:
 1. Non-uniform scaling with WD, HG, LN
 - All nodes, edges and surfaces are scaled taking (0,0,0) as the origin
 - Edges are converted to conventional Bezier form (absolute positions of 4 control points) to take advantage of affine invariance

\[
\begin{align*}
 s_x &= \frac{WD_{\text{new}}}{WD_{\text{old}}} \\
 s_y &= \frac{HG_{\text{new}}}{HG_{\text{old}}} \\
 s_z &= \frac{LN_{\text{new}}}{LN_{\text{old}}}
\end{align*}
\]

Template.Scale(double \(s_x \), double \(s_y \), double \(s_z \))
Post-Dimensioning

- Performed in two steps:
 - (2) Soft deformation with FO and WB
 - Idea: 1D, Cubic Free-Form Deformation
 - Move P₁ and P₂ parallel to z-axis to obtain FO and WB
 - Deform the volume together with P₁ and P₂

![Diagram of FFD lattice with points P₀, P₁, P₂, P₃ and axes for deformation]
Post-Dimensioning

- Performed in two steps:
 - (2) Soft deformation with FO and WB
 - \(P_0, P_1, P_2, P_3 \) form a 1D cubic Bezier curve

\[|P_0P_1| = |P_1P_2| = |P_2P_3| = LN/3 \]

Initial config.
Post-Dimensioning

- Performed in two steps:
 - (2) Soft deformation with FO and WB
 - P0, P1,P2,P3 form a 1D cubic Bezier curve

\[\text{Final config.} \]

\[P_0 \quad A_{\text{new}} \quad P_1 \quad P_2 \quad B_{\text{new}} \quad P_3 \]

\[\text{FO} = |P_0A_{\text{new}}|, \quad \text{WB} = |A_{\text{new}}B_{\text{new}}| \]
Post-Dimensioning

Algorithm

- Find parametric coordinates: $u_A = \frac{|A_{old} - P_0|}{LN}$, $u_B = \frac{|B_{old} - P_0|}{LN}$
- Find points P_1^* and P_2^* such that $A_{old} \rightarrow A_{new}$, $B_{old} \rightarrow B_{new}$

\[
A_{new} = B_0(u_A)P_0 + B_1(u_A)P_1^* + B_2(u_A)P_2^* + B_3(u_A)P_3 \\
B_{new} = B_0(u_B)P_0 + B_1(u_B)P_1^* + B_2(u_B)P_2^* + B_3(u_B)P_3
\]

\[
\begin{bmatrix}
B_1(u_A) & B_2(u_A) \\
B_1(u_B) & B_2(u_B)
\end{bmatrix}
\begin{bmatrix}
P_1^* \\
P_2^*
\end{bmatrix} = \begin{bmatrix}
A_{new} - B_0(u_A)P_0 - B_3(u_A)P_3 \\
B_{new} - B_0(u_B)P_0 - B_3(u_B)P_3
\end{bmatrix}
\]

- We can analytically solve P_1^* and P_2^*
- Using P_1^* and P_2^*, we apply a FFD [7] to the template on a $1 \times 1 \times 3$ lattice structure
Post-Dimensioning

- Results in smooth deformations
Styling

- After surface template is designed, the user can sketch on it.

- Curves are first smoothed using Savitzky-Golay smoothing \([6]\) in image plane, then projected onto template surface.
Results
Results
Results

(a) Input sketch and marked fiducial points
(b) Aligned template
(c) Result immediately after deformation
(d) Result after edge modification
(e) Styling curves drawn on the template
(f) Styling curves with template removed
(g) Final results
Results

(a) Template alignment and deformation

(b) Final results
Results
Ideas for Improving ShrinkWrap

- ShrinkWrap method wraps a sphere on a wireframe via shrinking and subdivision.

- Shrinkwrap has difficulty with concave regions.
Ideas for Improving ShrinkWrap

- Anchor shrinkwrap vertices to wireframe nodes
 - Detect shrinkwrap vertices S that are far from wireframe.
 - Detect wireframe vertices W that are far from S and have normal vectors similar to those in S.
 - Anchor $S \rightarrow W$.
 - Continue shrinking
References