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Abstract—Few comparisons have been performed across
torque controllers for exoskeletons, and differences among de-
vices have made interpretation difficult. In this study, we com-
pared the torque-tracking performance of nine control meth-
ods, including variations on classical feedback control, model-
based control, adaptive control and iterative learning. Each was
tested with four high-level controllers that determined desired
torque based on time, joint angle, a neuromuscular model, or
electromyography. Controllers were implemented on a tethered
ankle exoskeleton with series elastic actuation. Measurements
were taken while one human subject walked on a treadmill at
1.25 m·s-1 for one hundred steady-state steps. The combination
of proportional derivative control with iterative learning resulted
in the lowest errors for all high-level controllers. With time-
based desired torque, rms errors were 0.6 N·m (1.3% of peak
torque) step by step, and 0.1 N·m (0.2%) on average. These
results indicate that model-free, integration-free feedback control
is suited to the uncertain dynamics of the human-robot system,
while iterative learning is effective in the cyclic task of walking.

Index Terms—Rehabilitation Robotics, Ankle Exoskeleton,
Torque Control, Human-Robot Interaction

I. INTRODUCTION

Exoskeletons have been used for performance restora-
tion [1] and enhancement [2]. Recently, the importance of
the natural dynamics of the human body [3], energy input
[4] and comfort of human-robot interactions [5–7] has been
given increased attention in exoskeleton applications. In these
approaches to exoskeleton assistance, torque control is crucial
for performance. In such systems, series-elastic actuators [8]
are commonly used to provide low-error torque tracking to
deal with the unknown and changing human dynamics.

It has been a common interest for the lower-limb exoskele-
ton community to improve the locomotion performance. The
ankle joint has drawn major attention for effort reduction
in walking [9] since it produces most of the mechanical
work [10]. Better ankle joint torque tracking would therefore
greatly benefit experimental studies. Such techniques are also
expected be extendable to knee and hip exoskeletons, for
which the control problem is similar.
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Control of exoskeletons is normally hierarchical with high
level controllers determining behavior-related desire torques
and torque control lying at low-level. Therefore, the torque
controllers will be referred to as low-level controllers and the
desired torque generators as high-level controllers in this study.

Many low-level control methods have been employed for
torque or position tracking in exoskeletons, including classical
feedback control [7], model-based control [6], adaptive control
[11] and iterative learning control [12]. However, it remains
unclear which method has the best performance, or how
performance may vary with high-level controllers.

High-level controllers based on time [4], joint angle [13],
neuromuscular models [7], and electromyographic measure-
ments [9] have been used to assist human walking. Each
may be advantageous in some assistance paradigm, and each
generates desired torques with different dynamics.

The topic of exoskeleton torque control has not drawn
significant attention compared to high level control and biome-
chanics experiments. In cases where torque control were
addressed directly, it has typically been investigated under
unrealistic conditions, i.e., during benchtop tests rather than
human-robot interactions [14], and results have often not
been reported quantitatively [15]. Moreover, no systematic
comparisons of torque control methods have been made on
the same platform, making differentiation among candidate
methods very difficult. This study aims to compare the torque-
tracking performance of prominent torque controller, under
realistic experimental conditions, with multiple high-level con-
trollers, in a single exoskeleton platform. These results are
expected to help guide the selection and tuning of exoskeleton
torque controller, particularly in lower-limb exoskeletons for
locomotion assistance.

II. METHODS

Nine torque controllers, including variations and combi-
nations of classical feedback control, model-based control,
adaptive control and iterative learning, were compared by
experiments in this study. Each was tested seperately with four
high-level controllers that determined desired torque based on
time, ankle angle, a neuromuscular model, or electromyo-
graphic measurements. Controllers were implemented on a
tethered ankle exoskeleton with series-elastic actuation and
tuned to minimize error. Under each high- and low-level
controller combination, the exoskeleton was tested with one
subject who walked one hundred steady steps on a treadmill.
The root mean squared torque errors were calculated for each
step and for an averaged step.
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Fig. 1: Schematic and photo of the tethered ankle exoskeleton system. (A):
Schematic of the system that consists of an off-board motor, a Bowden cable
transmission and an exoskeleton frame; (B): Photo of the exoskeleton worn
by a human.

A detailed description of the methodology and complete
results for this study are available in a paper submitted to
International Journal of Robotics Research [16].

A. Exoskeleton Testbed

The ankle exoskeleton testbed for experiments consisted
of an off-board geared electric motor with real-time driver, a
flexible Bowden cable transmission with series compliance,
and an exoskeleton that interfaced with the human body
(Fig. 1).

A dedicated real-time control system sampled sensor data
at 5000 Hz, which were then filtered at 200 Hz. The desired
motor velocity commands were generated at 500 Hz. The
motor unit was composed of a low-inertia 1.6 kW AC servo
motor and a 5:1 planetary gear, with input voltage regulated
by a motor driver running in velocity control mode. A digital
optical encoder measured motor position.

The flexible Bowden cable that transmitted forces com-
posed of a coiled-steel outer conduit and a 0.003 m diameter
Vectranr inner rope, and was 2 m in length. A coil spring
with an effective stiffness of 190 N·m·rad-1 was attached at
the end of the rope to provide increased compliance.

The exoskeleton frame generated a plantarflexion torque
which is measured using strain gauges on the heel lever with
1000 Hz signal conditioning. Joint angle was measured using a
digital optical encoder. Muscle activity was measured using a
wired electromyography system for one high-level controller.

Various components of the system interacted as in Fig. 2.
The high-level controller used time, t, exoskeleton joint an-
gle, θa, or electromyography (EMG) to determine the de-
sired torque, τdes. The low-level controller tracked torque by
changing the desired motor velocity, θ̇m,des determined by
desired torque, measured torque, τ , motor angle, θm, and/or
exoskeleton angle. A motor driver regulated motor velocity.
Motor motion was transmitted through the Bowden cable to
one end of a series spring and generated exoskeleton torque
together with exoskeleton motion. Both the human and the
series spring exerted torques on the exoskeleton frame and
led to exoskeleton rotation.
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Fig. 2: Flowchart of the control system.

B. Controllers

Nine prominent low-level torque control methods were
compared in this study in combination with four high-level
assistance controllers. High-level controllers generated desired
torque, which low-level controllers tracked.

1) Low-Level Torque Controllers: Desired motor velocity
was commanded to a dedicated hardware motor controller for
all torque controllers investigated:

θ̇m,des = ∆θm,desT
-1 = [θm,des − θm]T -1 (1)

where θ̇m,des is the commanded motor velocity; T is a con-
stant related to motor position rise time; ∆θm,des is the desired
motor displacement; θm,des is the desired motor position; θm
is the measured motor position.

L1: Proportional Control with Damping Injection (PD)
This controller was a variant of the classical proportional-
derivative control of torque, with the derivative term
replaced by damping injection [17]:

∆θm,des = −Kpeτ −Kdθ̇m (2)
where Kp is proportional gain, eτ = τ − τdes is torque
error, τ is measured exoskeleton torque, τdes is desired
exoskeleton torque, Kd is damping gain, and θ̇m is
measured motor velocity. Lower noise was obtained with
damping injection compared to the derivative of torque
error since motor position was measured by a digital
encoder while torque was measured by analog strain
gauges.

L2: Proportional Control with Damping Injection and Error-
Dependent Gains (PD+EDG)
This controller was the same as L1, except that the
proportional gain was error-dependent [18]:

kp = min[ceil( |eτ |hτ
)hk,Kmax]

∆θm,des = −kpeτ −Kdθ̇m
(3)

where operation ‘ceil’ rounds the element to the next
smallest integer, kp is the error-dependent proportional
gain, hτ and hk are torque error and proportional gain
step sizes, and Kmax is the maximum allowable gain.
This controller was intended to limit overshoot and os-
cillations during torque tracking.

L3: Proportional Control with Damping Injection and
Previous-Error Compensation (PD+PEC)
This controller was the same as L1, except that desired
torque was altered based on torque error from the previ-
ous time step [19]:

τ ′des = τdes − eτ,prev
∆θm,des = −Kpec(τ − τ ′des)−Kdθ̇m

(4)
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where τ ′des is the compensated desired torque and eτ,prev
is the torque error from the previous time step. This was
intended to increase control response for large errors.

L4: Proportional-Integral Control with Damping Injection
(PID)
This controller was a variant of the classical proportional-
integral-derivative control, with the derivative term re-
placed by damping injection:

∆θm,des = −Kpeτ −Ki
∫ t
t0
eτdt−Kdθ̇m

where Ki is the gain on the integral of torque error, and
t0 is the time at which the step began.

L5: Proportional Control with Damping Injection and Model-
based Compensation (PD+M)
This controller combined the feedback controller of L1
and a model-based feed-forward term, which was in-
tended to anticipate changes in desired motor position
due to either exoskeleton joint displacements or changes
in desired joint torque:

∆θm,des = −Kpeτ −Kdθ̇m + (θmdl − θm)

θmdl = θaR̃− τdesK̃-1
c

where θmdl is model-based motor position compensation,
θm is measured motor position, θa is measured exoskele-
ton ankle joint angle, R̃ is estimated total gear ratio from
motor to exoskeleton joint, and K̃c is estimated total
stiffness of the transmission with respect to the motor
displacement.

L6: Passivity-based Adaptive Control (PAS)
This provably stable adaptive controller was based on a
dynamic model of the motor, transmission and exoskele-
ton. It is described as

∆θm,des = −Kpeτ −Kss+ Yd(τ, τ̇r, τ̈r, θ̇a)Γ̂
where Ks is the sliding control gain and s is a sliding
vector defined as

s = τ̇ − τ̇des + λeτ = τ̇ − τ̇r
where λ is a positive scalar and τr is a virtual reference
torque. Yd is a regressor defined as

Yd(τ, τ̇r, τ̈r, θ̇a) = [τ τ̇r τ̈r θ̇a],
which expresses the dynamics as a linear combination of
system parameters. Γ is the system parameter vector. Its
estimate Γ̂ was updated by the law

˙̂
Γ = −LY Td s,

where L is a positive definite parameter adaptation gain
matrix.
This controller was intended to reduce model uncer-
tainties by parameter adaptation and address unknown
human-robot interactions.

L7: Iterative Learning of Desired Motor Position (LRN)
This controller continuously updated a desired motor
position trajectory for the next step using torque errors
of the current step [12]:

θm,des(i, n+1) = βθm,des(i, n)−Kleflt(i, n)
∆θm,des(i, n) = θm,des(i+D,n)− θm(i, n)

where i is the time index or number of control cycles
elapsed within this step, n is this step and n+1 is the
next step, Kl is the iterative learning gain, and D is an

estimate of the delay between commanding and achieving
a change in motor position. Current torque error thereby
updates desired motor position for the same time index
on the next step, while commanded motor velocity at
this time index is based on a preview of desired motor
position later in the same step.
β ∈ [0, 1] is a weighting term on the learned trajectory to
add “forgetting” into learning. eflt is the filtered torque
error trajectory, initially an array of zeros, expressed as

eflt(i, n) = (1− µ)eflt(i, n-1) + µeτ (i, n)
where µ ∈ [0, 1] is a weighting term on the learned error.
This controller exploited the cyclic nature of the task
to accommodate complex system dynamics without an
explicit model .

L8: Iterative Learning of Desired Motor Position +
Proportional-Damping Compensation (LRN+PD)
This controller combined iterative learning (L7) with
proportional-damping control (L1) compensation. Motor
commands arose primarily from the learned feed-forward
trajectory, while feedback control compensated for step-
by-step variations in desired torque:

θLRNm,des(i, n+1) = βθLRNm,des(i, n)−Kleflt(i, n)

θm,des(i, n) = θLRNm,des(i+D,n)

−Kpeτ (i, n)−Kdθ̇m(i, n)

∆θm,des(i, n) = θm,des(i, n)− θm(i, n)

L9: Proportional Control with Damping Injection + Iterative
Learning Compensation (PD+LRN)
This controller combined proportional-damping control
(L1) with iterative learning (L7) compensation. Motor
commands arose primarily from feedback control, while
a learned feed-forward component compensated for step-
wise consistent tracking errors:

∆θLRNm,des(i, n+1) = β∆θLRNm,des(i, n)−Kleflt(i, n)

∆θm,des(i, n) = −Kpeτ (i, n)−Kdθ̇m(i, n)

+∆θLRNm,des(i+D,n)

2) High-Level Assistance Controllers: During the stance
phase, desired torque τdes was determined by high-level con-
trollers H1-H4 detailed below. During the swing phase, motor
position control was employed to allow free human ankle
movement motion while maintaining minimal cable slack:

∆θm,des = θaR̃− θm (5)
where R̃ is the estimated total gear ratio from motor to
exoskeleton joint.

H1: Time Based Desired Torque Trajectory (TIME)
This high-level controller set desired torque as a function
of time. We used a curve (Fig. 3) that resembled a
scaled-down version of the human ankle moment during
unassisted walking [10] with a stance period of 0.66 s.

H2: Joint Angle Based Desired Torque (ANGLE)
This high-level controller set desired torque as a function
of ankle angle and phase of the gait cycle [13]. We used a
piece-wise linear curve that resembled a scaled-down ver-
sion of the human ankle moment during unassisted walk-
ing (Fig. 4), calculated as τdes =

τi−τi-1
θa,i−θa,i-1

(θa− θa,i-1)
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Fig. 3: High-level control based on a trajectory in time
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Fig. 4: High-level control based on ankle joint angle

(i = 1, 2, 3, 4) in which (θi, τi) defines a node in torque-
angle space. The node (θ2, τ2) marked the transition
from the Dorsiflexion phase, in which ankle velocity
was negative, to the Plantarflexion phase, in which ankle
velocity was positive. Since the exact transition point
varied on each step, the angle and torque at the moment
of transition, (θ′2, τ

′
2) replaced (θ2, τ2) for calculating

desired torque in the first portion of Plantarflexion, i.e.,
when i = 3.

H3: Neuromuscular Model Based Desired Torque (NMM)
This high-level controller set desired torque using a vir-
tual muscle and neural system model. The virtual muscle
took human ankle position and velocity as inputs and
generated a virtual joint torque which was conditioned
and used as desired torque. The virtual torque generated
was also fed into the virtual neural system and linearly
scaled to generate the stimulation signal of the virtual
muscle. This virtual reflex mechanism realized a form of
positive feedback in the model. A complete description of
the reflex-based muscle model was available in [7] and
the details of the implementation of the model in this
study is available in [16].

H4: Electromyography Based Desired Torque (EMG)
This high-level controller set desired torque in proportion
to EMG measurements [9] from subject’s gastrocnemius
muscle. Electrical activity was measured using surface
electrodes, high-pass filtered at 20 Hz, rectified, low-pass
filtered at 6 Hz, offset by a small value of -0.008, and
amplified by a gain of 283 to obtain the desired torque.

C. Experimental Methods

Experiments were conducted with one healthy subject
(30 yrs, 56 kg, 1.65 m tall, female), who walked on a treadmill
at 1.25 m·s-1 with a self-paced step period of 1.08 ± 0.06 s
while wearing the exoskeleton on the right leg.

Before collecting data, we tuned parameters for each
combination of high- and low-level controller as the subject
walked with the exoskeleton. High-level control parameters for
H1-H4 were selected so as to result in peak desired torques of
approximately 45 N·m. Low-level control parameters listed in
Table I were systematically tuned with the aim of minimizing
torque error. During tuning, very similar optimal low-level
control parameters across high-level controllers were seen.
So, same values were used for high-level controllers. For
model-based compensation, the value of R̃ was based on
measurements. K̃c was determined based on measured lever
arm and the reported stiffness of the series spring.

TABLE I: Low-level torque control parameter values
Param. Value Param. Value Param. Value
Kp 0.093 R̃ 2.90 KL 0.0077
Kd 0.010 K̃c 195 N·m·rad-1 D 0.022 s
Kmax 0.15 Ks 0.005 β 1
Kpec 0.046 λ 0.077 µ 1
Ki 7.7e-5 L 1.0e-9 T 0.050 s
hτ 11.3 N·m hk 0.039

For each high-level condition, all low-level controllers
were tested on the same day, without removal of the exoskele-
ton between trials. For each combination of low- and high-
level controllers, data of one hundred steady-state steps were
collected. Root mean squared torque error both for the set
of all steady-state steps and for the average step, which was
obtained by averaging the desired and actual trajectories of the
one hundred steps in time, were then calculated.

III. RESULTS

The best torque tracking performance was observed with
the combination of feedback control and iterative learning, i.e.,
PD+LRN or LRN+PD, for all high-level controllers, both in
real-time and for the average step. Between the two, PD+LRN
showed lower errors before convergence. Depending on high-
level conditions, the real-time torque errors with PD+LRN
were 38%-84% lower than with PD (t-test p <1.9e-34),
and average-step torque errors were 91%-97% lower. Other
additions to feedback control showed minor performance ef-
fects, except that model-based compensation increased torque
error. While providing low errors for average tracking, pure
iterative learning saw high real-time errors. For the EMG-
based condition, torque tracking errors and variability were
generally higher for all torque controllers.

Some interactions between high- and low-level torque
controllers were observed. Pure feedback control outperformed
pure iterative learning control for Angle and EMG based high-
level conditions, while an opposite trend was seen in Time
and NMM. Under Time-based condition, poor tracking at the
onset of desired torque, including a delay and overshoot, was
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Fig. 5: Root-mean-squared torque error calculated for all steps (RMS-E) and for an average step (RMS-E AVG) across all high- and low-level control
combinations.
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observed for all controllers without a learning component.
Adding iterative learning to PD resulted in the greatest im-
provement in performance for Time based condition. Minor
improvement in performance over pure PD was seen with
an additional integral term (PID) for Time and Angle based
conditions. For Time-based high-level control, passivity (PAS)
and previous-error compensation (PD+PEC) also showed a
small benefit.

Means and standard deviations of step-wise root-mean-
squared torque error (RMS-E) and average-step root-mean-
squared error (RMS-E AVG) are shown in Fig. 5. Error values
for PD+LRN and their percentage of the peak desired torque
for the average step, are given in Table II. Overlapped desired
and measured torque trajectories for one hundred steps with
PD+LRN are shown in Fig. 6. Real-time tracking performance
of this controller are demonstrated by four consecutive steps
at steady state in Fig. 8 of Appendix B. PD+LRN with Angle-
based desired torque also showed consistent performance
for higher torque on two different devices (peak torques
86.3±8.5 N·m and 81.2±7.7 N·m respectively) with a taller
male subject in later experiments (Fig. 7 in Appendix A).

TABLE II: Tracking errors with PD+LRN torque control
RMS-E %τmax RMS-E AVG %τmax

Time 0.57 ± 0.18 N·m 1.3% 0.10 N·m 0.2%
Angle 0.99 ± 0.23 N·m 2.5% 0.11 N·m 0.3%
NMM 0.93 ± 0.32 N·m 2.3% 0.12 N·m 0.3%
EMG 2.14 ± 0.77 N·m 5.9% 0.22 N·m 0.6%

IV. DISCUSSION

We evaluated the performance of nine prominent torque
controllers by experiments on a tethered ankle exoskeleton,
with series-elastic actuation, during human walking, with four
of high-level controllers. Model-free proportional control with
damping injection, compensated by iterative learning, resulted
in the lowest torque errors for all high-level controllers, both in
real-time and for the average step. This approach is analogous
to the classical proportional-integral-derivative control; the
proportional term provides basic tracking, iterative learning
eliminates steady-state cyclic errors, and damping injection
provides stability. We thus label the method as proportional-
learning-damping control.

Little attention has been paid to torque control in the field
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of exoskeletons and active orthoses. Few quantitative reports
on torque control for lower-limb exoskeletons are available,
which were mostly benchtop tests [14]. These tests usually do
not reflect the unknown, complex and time-varying dynamics
of human-robot interactions, which define the biggest chal-
lenge in exoskeleton torque control. It is also the case that
little data and analysis have been provided [15], which makes
interpretation of the results difficult. From the information
available, proportional-learning-damping control demonstrated
here showed substantially better performance than existing
approaches.

Some interactions between high- and low-level controllers
were observed. Iterative learning led to bigger improvement in
torque tracking for the Time-based high-level controller, pre-
sumably because the desired motor position were also learned
in time. Therefore, it might be that for Angle-based desired
torque, iterative learning elements could be more effective if
they were performed based on joint angle. When PD control
was compensated by an integral term (PID), previous-error
compensation (PD+PEC), or passivity-based adaptation (PAS),
torque error with Time-based high-level control was slightly
improved, which suggested that the model-free continuous-
time integration elements in torque controllers may be bene-
ficial when the desired torque was consistent in time. Error-
dependent gains (PD+EDG) did not provide benefits and may
be more suited for motion based control in rehabilitation.

While showing promise in simulation and theory, model-
based control elements generally worsened or had no effect
on control performance in our experiments. Sensitivity to
modeling accuracy seems to be a fundamental issue. The
partially model-based PAS controller showed slight benefit due
to its adaptive nature, but not substantial.

Comparisons across high-level controllers were difficult to
make for the same low-level control due to un-normalized
tracking difficulty. Multiple values for high-level parameters
were not tested in this study, which is an area for future work.

Changes in the patterns of desired torque and joint kine-
matics across low level controllers for the same high-level
condition reveal an interaction effect. For example, more
variability in desired torque with NMM-based than Angle-
based assistance was observed using PD, but an opposite
trend for LRN control was seen. This seems to be due to the
complex, multi-time-scale, dynamic interactions between con-
tinuous behavior of the torque controller, within-step human
variations, high-level controller, and human adaptation over
multiple steps. These effects may be important in selecting
and tuning an exoskeleton torque controller.

Hardware, series elasticity in particular, also interacted
with the torque control performance. Investigation of inter-
actions between series elasticity, torque controller, high-level
controller, and assisted tasks should be part of future work.

V. CONCLUSIONS

A systematic comparison of exoskeleton torque controller
under walking condition was conducted in this study, which

showed that proportional control with damping injection com-
pensated by iterative learning had better torque tracking per-
formance than any other methods tested or previously demon-
strated. Implementation of this proportional-learning-damping
controller was straightforward, requiring sequential tuning of
four parameters. Our results support the application of this
approach on any torque-controlled exoskeleton used during
locomotion. There remains a rich area for future research on
complex interactions between exoskeleton hardware, torque
control, assistance control, task goals and human behavior.
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APPENDIX A
DEMONSTRATION OF TORQUE TRACKING PERFORMANCE

OF PD+LRN FOR HIGHER TORQUE AND MULTIPLE
DEVICES

Later tests of PD+LRN for Angle-based high level con-
troller showed that the proportional-learning-damping control
method performs well with higher torques multiple devices
(Fig. 7). The average-step peak desired torques and RMS error
values are shown in Table III.
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Fig. 7: Torque Tracking Performance of Proportional Control with Damping
Injection Compensated by Iterative Learning on higher torque and multiple
devices with angle-based high-level controllers. Device A is the one used by
the all the comparison experiments, while Device B is another version of the
device with similar design concept but leaf spring instead of coil and flexible
structure.

TABLE III: Result values of PD+LRN with Angle-based
desired torque on higher torque and multiple devices.

Device A Device B

Peak Desired Torque 86.9 ± 8.5 N·m 81.2 ± 7.7 N·m
RMSE 2.15 ± 0.55 N·m 1.7 ± 0.57 N·m
RMSE % max(τdes) 2.5% 2.12%
RMSE AVG 0.28 N·m 0.24 N·m
RMSE AVG % max(τdes) 0.32% 0.3%

As seen, the performance of PD+LRN with Angle-based
desired torque on high torque demonstrated in Table III is
very similar to that of low torque as shown in the third row
of Table II.

APPENDIX B
DEMONSTRATION OF TORQUE TRACKING PERFORMANCE

OF PD+LRN IN REAL TIME

To demonstrate the torque tracking performance of Propor-
tional Control with Damping Injection Compensated by Iter-
ative Learning (PD+LRN) in real-time, four-step examples of
the torque control methods on different high-level controllers
are given in Fig. 8.
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Fig. 8: Real-time Torque Tracking Performance of Proportional Control with Damping Injection Compensated by Iterative Learning. Trajectories of desired
and measured torque for four consecutive steady state steps (Steps 151-154) were displayed for all four high-level controllers. Step-to-step variations of step
duration and desired torque profile in Angle, NMM and EMG-based high level controllers are due to changes in human gait.
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