Component Failure

24-370 - Spring 2011
Professor Steve Collins

Announcements

• HW2 assigned, due next Wednesday
 – Homeworks guide projects
• Project 1 Questions?
• Where we are in the course...
 – Tools: sketching, SolidWorks
 – Analyses: stress, failure (today)
 – Next up: Design!
 – First loop: geometry, mass, and factor of safety
• But first... Failure!

Failure in Mechanical Engineering

• What is failure?
 – Compromisation or degradation of any kind
 – Commonly: breaking or permanently bending
 – Also: bending too much, wear, dynamic failure
• Today: custom component failure
 – Common & most-easily estimated modes
 – Later: catalog component failure

Failed Mechanical Parts

Avoiding Failure

• Reality can be a tricky place to operate...
 – Failure is very difficult to estimate accurately
 – Models: simple, generalizable, but miss details
 – Empirical data: accurate, but case specific
 – Prototyping: best data, but expensive
• What does a Mechanical Design Engineer do?
 – Use models or empirical data first
 – Use appropriate Factors of Safety
 – Prototype and test
Common Failure Modes

- **Static loading**
 - Primarily related to stress
 - Ultimate stress exceeded → breakage
 - Yield stress exceeded → plastic deformation
 - Impermissible deflection
 - Buckling → breakage
- **Cyclic loading: fatigue**
 - Similar stress analysis, very different behaviour
 - Fatigue life (# cycles) exceeded → breakage

Failure due to static loading

- Related to development of excessive stress
 - Exceeding yield stress is often unacceptable
 - Which maximum stress to use?
 - Many models, depending on material & risks
 - Typically, von Mises equivalent (distortion-energy)
 \[\sigma^2 = \frac{1}{2} \left((\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right) \]
 \[S_y = 0.58 S_t \]
 - Pure normal stress equivalents

Models of Failure due to Static Loading

Failure due to static loading

- Related to development of excessive stress
 - Exceeding yield stress is often unacceptable
 - Which maximum stress to use?
 - Many models, depending on material & risks
 - Typically, von Mises equivalent (distortion-energy)
 - Stress concentrations?
 - In Ductile materials, usually not
 - Stress distributing, strain hardening
 - In Brittle materials, definitely yes
 - (later: also fatigue)
 - And... stress concentrators are everywhere!

Ductile vs Brittle Failure

- Ductile materials strain a lot, then fail
- Brittle materials just fail
 - Typically, \(\varepsilon_f \leq 0.05 \)
 - Often, only \(\sigma_f \) reported

Fracture Mechanics

- Failure usually occurs along cracks
- Cracks are everywhere!
- Brittle materials particularly susceptible
- Research on crack propagation ongoing
Static Failure Analysis Summary

- Use empirical data to determine yield strength
 - Or ultimate strength for brittle materials
- Determine maximum stress in design
 - Simple models (last week)
 • Stress concentrations for conservative or brittle cases
 - FEA analysis (last week)
- Compare to obtain factor of safety
- Design: \(\sigma_m \leq S_Y \text{ FOS}^{-1} \)
 - Obtaining this relationship... that’s the fun part!

Special Case: Contact Stress

- Strong analytical models for some types, e.g. cylindrical:
- I’ve typically used FEA
- SolidWorks example
 - Pin in hole

SolidWorks contact example

Deflection

- Possible failure mode: excessive displacement
- Compression or tension: \(\delta = F L A^{-1} E^{-1} \)
 - Load, length, area, and material stiffness
- Torsion: \(\Theta = T L J^{-1} G^{-1} \)
 - Rotational equivalents
- Bending: depends upon loading
 - Many approaches: see Shigley, others
 - Cantilever: \(\delta_w = \frac{3}{2} F L^3 E^{-1} I^{-1} \)
- Stiffness: rearrange terms

Buckling

- Special deflection
- Long, thin elements in compression
 - Unstable
 - Small deformations increase leverage
- Simple model
 - \(F_{cr} = \frac{C \pi^2 E I}{L^2} \)
- FEA: SolidWorks

SolidWorks Buckling Example
Failure due to Fatigue

- Everyone knows: push hard and things break
- But lots of little pushes breaking something?
 - Crazy, but true. This is fatigue
- Fatigue occurs below (apparent) yield stresses
 - Same stresses, different effects
- After a number of cycles, the part fails
- Predicting fatigue failure:
 - Difficult to model, but empirical data useful
 - Insight into mechanisms helpful too...

Stages of Fatigue Failure

- Stages:
 - A - Crack initiation
 - At concentrator
 - Or... at crack
 - B - Propogation
 - Often hidden
 - C - Final failure
 - Often brittle

Patterns tell a story

Fatigue Life and Strength

- Need to account for # cycles as well as load
 - Peak sustainable stress, S
 - Number of cycles, N
- Diagrams of S vs. N
 - Material-specific
 - Detailed fatigue data
 - Idealized conditions
- Scalar fatigue strength
 - Peak stress S that may be fully reversed N times

Fatigue Life: Steel S-N Diagram

Endurance Limit for Steels
Interpreting S-N Diagrams

- Steel has infinite fatigue life region
 - Fatigue strength corresponds to infinite life
- Aluminum (and most other materials) do not
 - Fatigue strength typically means $N = 10^8$
- S-N diagrams useful for sub-limit performance
- Often, we just want $\sigma(N=10^8)$
- Careful: this data is for specific conditions

Fatigue Life Analysis

- Stress-life method
 - Simplest, most data, $N \geq 10^3$, but least accurate
 - Other methods: strain life (low N), fracture (crack)
- Obtain material-specific fatigue strength
 - Generally, use empirical data
 - Steel endurance limit: $S_e' = 0.5 S_{ut}$
- Apply strength-reducing factors
 - Due to surface, size, load, temp, freq, etc.
- Compare to peak stress in component
 - Use fatigue stress concentration factors

Fatigue Analysis Example

- Material: Alum 7075-T6, $S_f' = 23$ ksi, $S_{ut} = 83$ ksi
- Fatigue strength modification factors:
 - Loading: bending $\Rightarrow k_l = 1$
 - Surface: ground
 - $k_s = a S_e^b$, $a = 1.34$, $b = -0.085 \Rightarrow k_s = 0.92$
 - Size: diameter $D = 1''$
 - $K_b = 0.879 D^{-0.107} \Rightarrow k_b = 0.88$
- Part stress
 - Peak bending stress $\sigma_{max} = 9$ ksi (no concentrators)
- Synthesis: $S_f = k_s k_b k_l S_f' = 18$ ksi $\Rightarrow FOS_f = 2$

Final Caveats

- Failure is stochastic
 - In many ways
 - e.g. actual yield stress
 - In design:
 - Modeling useful
 - Empirical data useful
 - Prototyping crucial
 - Iteration is reality

Suggested Reading

- Shigley Chapters 4, 5 & 6
 - Basics for the uninitiated
 - Details for the expert
 - Includes formulae from lecture
 - Accompaniment to HW3 (next week)