Simple and Detailed Stress Analysis

24-370 - Spring 2011 Professor Steve Collins

Announcements

- HW1:
 - Class average grade: 92%
 - Wednesday last chance...
 - Good practice for project
- Project 1:
 - Simple models in manner of today's lecture
 - Questions?

Suggested Reading

- Shigley Chapter 3: Load & Stress Analysis
 - Basics for the uninitiated
 - Details for the expert
 - Includes formulae from lecture
 - Accompaniment to homework

Simple vs. Detailed

- When should we use simple analyses?
- What are advantages of simple analysis?
 - Quicker answers
 - Separate combined stress effects
 - Formal connection between variables
- When should we use detailed analyses?
- What are advantages?
 - Accounts for greater complexity
 - Improved accuracy

Example: This Old I-Beam

Given geometry, load & material, what is F.O.S.?

Example: I-Beam Geometry

- I-beam cross-section
 - Area moment of inertia I
 - 10 in tall, 5 in wide, 0.5 in thick
 - 100 in long
- Big holes along center
 - 5 in ID
- Smaller holes along top
 - -0.5 in ID
- · Let's sketch this...

Example: I-Beam Load & Material

- Cantilever loading
 - Rigidly supported on one end
 - Load applied at other end
 - Expected load = 5,000 lbf (at 100 inches)
- Material: Alloy Steel
 - ASTM A36
 - Yield stress: 36 ksi tension
 - Ductile (20% elongation at failure)

Example: I-Beam Stress Analysis

- What is the simplest model of interest?
 - Beam in bending
 - Beam in shear?
- What other simple models could we use?
 - Stress concentration factor from holes
- Where will stress be greatest
 - Simplest: upper and lower faces
 - 1st order: upper and lower hole edges
- Where will beam fail?
 - Near cantilever, near hole

Example: I-Beam Simple Analysis

- Sketch simple models
 - Free Body Diagram
 - Cross-section and bending stress
- What is/are governing equation(s)?
- Substitute until only free parameters are left
- Can we now solve for the factor of safety?
- Other relationships of interest?
 - Mass as function of h, t, & b for pre-defined F.O.S.?

Example: I-Beam Detailed Analysis

- Model part in SolidWorks
- Perform stress analysis using Simulation
- What is peak stress?
- What is Factor of Safety?

Homework Assignment

- By email this evening
- Analyze stress in two parts, two ways:
 - Simple models with analytical stress analysis
 - Detailed model with FEA stress analysis
- If you don't recall governing equations...
 - Try Shigley, Chapter 3
 - Or go through old course notes

$$I_{RECT} = \frac{1}{12}bh^{3} + d^{2} \cdot A \qquad (e.s. shibtey)$$

$$\therefore I_{TOTM} = 2 \cdot \left(\frac{1}{12}b \cdot t^{3} + \left(\frac{h}{2} + \frac{t}{2}\right) \cdot b \cdot t\right) + \frac{1}{12}t(h-2t)$$

$$\approx \frac{1}{6}bt^{3} + \frac{1}{2}bth^{2} - bt^{2}h + \frac{1}{2}bt$$

$$I \approx \frac{1}{2}bth^{2} \qquad (2)$$

$$O_{m} \approx \frac{My}{I}$$
 (e.s. shiotey (h.3)
 $M = F \cdot l$ $y = \frac{1}{2}h$ $I \approx \frac{1}{2}b + h^{2}$

$$: G_{m} \approx \frac{F \cdot l \cdot \cancel{z} h}{\cancel{z} b + h} = \frac{F l}{b + h}$$

SHEAR:
$$C_{AVe} = \frac{F}{A}$$

$$A = 2 \cdot b \cdot t + t \left(h - 2t\right)$$

$$= 2bt + bt - 2t^{2}$$

$$= 2bt + bt - 2t^{2}$$

$$\therefore C_{AVE} \approx \frac{F}{t(2b+b)} = 500 \text{ psI}$$

$$C_{\text{max}} = \frac{F}{A_{\text{NES}}} \approx \frac{F}{+.h} = 1000 \text{ PSI}$$

F.O.S. =
$$\frac{Gy}{G_m}$$

 $G_m \approx 20,000 \frac{16}{10^2}$ (BR 20 KSi)
 $G_y \approx 36 \text{ KSI}$ (36,000 PSI)
 $F.O.S \approx 1.8$

STRESS CONCENTRATIONS:

HOLE IN PLATE (e.s. SHIGGEY3-29) $K_{+} \approx 2.5$ $\infty \approx 20 \, \text{KS}_{1} \cdot 2.5 = 50 \, \text{KS}_{1}$ $\infty \approx 20 \, \text{KS}_{1} \cdot 2.5 = 50 \, \text{KS}_{1}$ $\infty \approx 20 \, \text{KS}_{1} \cdot 2.5 = 50 \, \text{KS}_{1}$ But, ductile material...

MASS:
$$m = \rho \cdot l \cdot (2b+++(h-2+))$$

$$\approx \rho \cdot l \cdot + \cdot (2b+h)$$

$$2 \Rightarrow + \approx \frac{Fl}{\sigma_m bh}$$

$$m^* \approx \frac{\rho F l^2}{\sigma_m} \cdot \frac{(2b+h)}{bh}$$

$$\star For + = f(b,h) \stackrel{?}{:} f, l, \sigma_m \text{ GIVEN}.$$