Semester in Review

24-370 - Spring 2011
Professor Steve Collins

Reminders and Announcements

• Project 3 Reports due May 5th at midnight
• HW 9... cancelled
• Course Evaluations
 – How administration makes course decisions
 • Consider the value (learning/work)
 – The only way my teaching is evaluated
 – Additional written feedback greatly appreciated
 • Include anything you like, regardless of questions
What you have learned

- **Technical basis**
 - Analytical and numerical analyses
 - Basic optimization techniques
- **Practical knowledge**
 - Useful parts, materials, sources, and tools
 - Design processes and techniques (iteration)
- **Intuition for machine and robot design**
 - Hands-on experience
 - Useful creativity

What you have learned

- **Sketching**
 - Quick concept generation
 - Detailed spatial communication
- **Simple models**
 - Simplest abstraction that captures phenomena
- **Check yourself:**
 - What is the simplest model of a wrench?
What you have learned

• CAD modeling (SolidWorks)
 – Creating parts and features
 – Assembling components

• Creating engineering drawings (SolidWorks)
 – Orthographic and isometric projections
 – Dimensioning

• CAD analysis (SolidWorks)
 – Stress analysis in components
 – Stress analysis in assemblies, e.g. contact
 – (thermal analysis...)

What you have learned

• Failure analysis
 – Simple stresses
 – Bending stresses
 – Contact stresses
 – Buckling
 – Fatigue
 – Ductile vs. brittle failure

• Check yourself:
 – Fatigue analysis?
 – Improved designs?
What you have learned

Material selection
- Key mechanical properties
 - E.g. ultimate & yield strength, density, elasticity
- Available materials
 - E.g. 7075 Aluminum, 440C Stainless Steel
- Where to find these
 - Selection charts, Matweb

Check yourself:
- Material for small, complex, high-strength part?
- Material for large, simple, high-stiffness part?

What you have learned

Principles for assembly
- Joints only where necessary for motion, assembly
- Tolerances and stacking
- Perfectly constrained solutions

Types of assembly elements
- Rigid joints: fasteners, welds, clamps
- Articulating joints: plain, ball and roller bearings

Check yourself:
- Rigid joint: Normal, friction or shear loading?
- Articulation: Linear or rotational joint?
What you have learned

• Kinematics of assemblies
 – Spatial position through geometry

• Kinetics of assemblies
 – Gearing and torque, velocity

• Dynamics of assemblies
 – Forces for acceleration
 – Forces for rotational acceleration (centripetal)

• Check yourself:
 – Dynamic loading on a cam shaft?
 – Output torque vs. gear ratio R?

What you have learned

• Catalog component selection
 – Motivations
 – Components available and prominent sources
 – Key properties and methods of analysis

• Check yourself:
 – Gear analysis: property most influences strength?
 – Wire rope: minimum drum diameter estimate?
 – What properties are important in encoders?
What you have learned

- **Electric motor analysis**
 - Key properties
 - Underlying dynamical models
 - Simple steady-state methods
 - Numerical simulation in Matlab

- **Check yourself:**
 - What are key properties for: Powering tasks? Torque-production tasks?
 - How do induction and rotor dynamics differ?
 - Why does back-EMF matter?

What you have learned

- **Design for manufacture**
 - Common processes and their properties
 - Selection process

- **Cost analysis**
 - Simple models of manufacturing cost
 - Tools for estimation

- **Check yourself:**
 - When might you use injection molding?
 - When should you use sand casting?
 - How would you estimate the cost of a seam?
What you have learned

• Design for environment
 – Manufacturing impacts
 – Life Cycle Analysis tools

• Ethics in engineering
 – General principles for ethical behaviour
 – ASME ethics code

• Check yourself:
 – How could ethanol use cause toxic waste?
 – Can you currently consult on biomedical projects?
What you have learned

What you have learned
What you have learned

• Photos of project 2 testing: we had a lot of fun learning it :D

What you have learned

• Technical basis
 – Analytical and numerical analyses
 – Basic optimization techniques
• Practical knowledge
 – Useful parts, materials, sources, and tools
 – Design processes and techniques (iteration)
• Intuition for machine and robot design
 – Hands-on experience
 – Useful creativity
What you have learned

What you will learn next: EDII

• Product design research
 – Market research
 – Evaluating customer needs
• Design theories and principles
 – Design process
 – Project planning
 – Concept generation
 – Design optimization
• Open-ended problem solving
• Communication of product design
What I have learned

• My first undergraduate course
 – Many unexpected things...
 – Hands-on, exercise, apply, repeat
 – Goodness, teaching is hard!
• You have helped make this course stronger
• I’m impressed with your designs, and progress
• I’m proud of you
• Thank you