Design for Manufacture and Cost Analysis

24-370 - Spring 2011
Professor Steve Collins

Reminders and Announcements

- HW7 due Today (or Friday)
- HW8 assigned today, due Wednesday
 - Optional bonus homework
- Project 3 due May 5th
 - Design II students may turn in on May 7th
- Faculty Course Evaluations now open
- Project 2 reports graded
 - Individual feedback by email
 - Grippers in B2 SH (except 10, 11, 15, 16)
 - Reimbursement forms

Manufacturing and Cost

- Review of Dieter and Schmidt
 - (Figures & Charts are from Ch. 13 & 16
- Exercise using IPD worksheet
- Exercise using custompart.net

Manufacturing

- What is manufacturing?
 - Converting design into product
- Manufacturing and design
 - Serial ordering is inefficient, interplay necessary
- Multilevel process
 - Process, tool, work, plant, administration
- Area of active improvement
 - Utilization: Small-lot 5%, Automated: 90%
 - Shrinking but vital portion of economy

Categorization of Man. Processes

- Primary
 - Form general shape
- Secondary
 - Modify and add features
- Finishing
 - Polish, coat or paint
- Assembly

Primary Manufacturing Processes

- Create general shape
- Casting processes
 - Molten liquid (metal) solidifies in mold cavity
- Polymer molding
 - Viscous polymer compressed/injected into mold
- Deformation processes
 - Material (metal) forged, rolled, extruded, bent
- Powder processing
 - Particles (metal, ceramic, polymer) sintered

Secondary Manufacturing Processes

- Modify shape to add features
- Material removal (machining)
 - Controlled fracture: turning, milling, grinding
- Joining processes
 - Welding, soldering, riveting, bonding
- Heat treatment
 - Material properties: hardening, carburizing

Manufacturing Systems

- Different styles:
 - Job shop: small quantities, ever-changing
 - Batch: intermittent runs of similar parts
 - Assembly line: creation of sets of parts
 - Continuous flow: very specialized
- Typically mechanized
 - Machines do primary work, not people
- Varying degrees of automation
 - Machines manage process, not people

Manufacturing Selection

- Steps in selecting a manufacturing process
 - Identify constraints
 - Identify objectives
 - Screen possibilities
 - Compare estimated costs
- Important factors:
 - Quantity
 - Complexity
 - Material
 - Quality requirements
 - Cost and timing constraints

Quantity and cost

- Two types of manufacturing costs
 - Fixed: overhead for entire process independent qty
 - Variable: per-part costs, dependent on qty
- Examples of fixed costs
 - Cost of making molds, purchasing machines
 - Renting warehouse space
- Examples of variable costs
 - Cost of material, electricity, renting machines
 - Labor costs
- Total cost = Fixed + Variable · Qty

Quantity and batch size

- Volume: number of pieces
- Economic batch size: min practical volume

Quantity and batch size

Process	Mold cost	Labor input/unit					
Injection molding	\$450,000	3 min = \$1					
Reaction injection molding	\$90,000	$6 \min = 2					
Compression molding	\$55,000	$6 \min = 2					
Contact molding	\$20,000	1 h = \$20					

Cost per part

Process q	1000 parts	10,000 parts	100,000 parts	1,000,000 parts			
Injection molding	\$451	\$46	\$5.50	\$1.45			
Reaction injection molding	\$92	\$11	\$2.90	\$2.09			
Compression molding	\$57	\$7.50	\$2.55	\$2.06			
Contact molding	\$40	\$22	\$20.20	\$20.02			

Shape and Feature Complexity

- What is complexity?
 - Information content
 - Number of dimensions, relative tolerances
 - Type of shape
- Implications for manufacturing?
 - Some processes incapable of forming some shapes
 - Some uneconomical for some complexities

Ability of Manufacturing Processes to Produce Shapes in Fig. 13.6						
Process	Capability for producing shapes					
Casting processes						
Sand casting	Can make all shapes					
Plaster casting	Can make all shapes					
Investment casting	Can make all shapes					
Permanent mold	Can make all shapes except T3, T5; F5; U1, U5, U7					
Die casting	Same as permanent mold casting					
Deformation processes						
Open-die forging	Best for R0 to R3; all B shapes; T1; F0; Sp6					
Hot impression die forging	Best for all R, B, and S shapes; T1, T2; Sp					
Hot extrusion	All 0 shapes					
Cold forging/ cold extrusion	Same as hot die forging or extrusion					
Shape drawing	All 0 shapes					
Shape rolling	All 0 shapes					
Sheet-metal working processes						
Blanking	F0 to F2; T7					
Bending	R3; B3; S0, S2, S7; T3; F3, F6,					
Stretching	F4; S7					
Deep drawing	T4; F4, F7					
Spinning	T1, T2, T4, T6; F4, F5					

Polymer processes	
Extrusion	All 0 shapes
Injection molding	Can make all shapes with proper coring
Compression molding	All shapes except T3, T5, T6, F5, U4
Sheet thermoforming	T4, F4, F7, S5
Powder metallurgy processes	
Cold press and sinter	All shapes except S3, T2, T3, T5, T6, F3, F5, all U shape
Hot isostatic pressing	All shapes except T5 and F5
Powder injection molding	All shapes except T5, F5, U1, U4
PM forging	Same shape restrictions as cold press and sinter
Machining processes	
Lathe turning	R0, R1, R2, R7; T0, T1, T2; Sp1, Sp6; U1, U2
Drilling	T0, T6
Milling	All B, S, SS shapes; F0 to F4; F6, F7, U7
Grinding	Same as turning and milling
Honing, lapping	R0 to R2; B0 to B2; B7; T0 to T2, T4 to T7; F0 to F2; Sp

Size of parts

- What size aspects are important?
 - Overall envelope: workspace
 - Part area: pressure
 - Minimum thickness: material flow
 - Maximum thickness: cooling time
- Implications for manufacturing?
 - Some processes uneconomical for some sizes

Material

- Processes depend on material properties, e.g.
 - Viscosity: low for casting, high for blow molding
 - Melting point: mold limits
 - Thermal capacity: cooling time
 - Hardness, brittleness: minimum bending radius

Material vs. Manufacturing process																		
											60							
QUANTITY	IRONS	STEEL (carbon)	STEEL (tool, alloy)	STAINLESS STEEL	COPPER & ALLOYS	ALUMINIUM & ALLOYS	MAGNESIUM & ALLOYS	ZINC & ALLOYS	TIN & ALLOYS	LEAD & ALLOYS	NICKEL & ALLOYS	TITANIUM & ALLOYS	HERMOPLASTICS	HERMOSETS	COMPOSITES	CERAMICS	REFRACTORY METALS	PRECIOUS METALS
VERY LOW 1 TO 100	[1.5] [1.6] [1.7][4.M]	[1.6] [1.7] [3.10] [4.M] [5.1] [5.5] [5.6]	[1.1] [1.6] [1.7] (3.10] [4.M] [5.1] [5.6] [5.6] [5.7]	[1.6] [1.7] [3.7] [3.10] [4.M] [6.1] [5.5] [5.6]	[1.6] [1.7] [3.6] [4.M] [5.1]	[1.5] [1.7] [3.7] [3.10] [4.M] [5.5]	[1.6] [1.7] [3.10] [4.M] [5.1][5.5]	[1.1][1.7] [3.10][4.M] [6.8]	[1.1] [1.7] [3.10] [4.M] [5.5]	[1,1] [3,10] [4,M] [5,6]	[1.5] [1.7] [3.10] [4.M] [5.1] [5.6]	[1.1] [1.6] [3.7] [3.10] [4.M] [5.1] [5.5] [5.6] [5.7]	[2.5] [2.7]	[2.5] [3.7]	(2.2) (2.6) (5.7)	(1.5) (5.1) (5.5) (5.6) (5.7)	(1.1) (5.7)	[5.5]
LOW 100 TO 1,000	[1.2] [1.5] [1.6] [1.7] [4.M] [5.3] [5.4]	[1.2] [1.6] [1.7] [1.10] [4.M] [5.1] [5.3] [5.4] [5.5]	[1.1] [1.2] [1.7] [4.M] [5.1] [5.3] [6.4] [5.5] [5.6] [5.7]	[1.2] [1.7] [3.7] [3.10] [4.M] [6.1] [5.3] [5.4] [5.5]	[1,2] [1,3] [1,5] [1,7] [1,8] [3,3] [3,6] [4,M] [5,1] [6,3] [5,4]	[1.2] [1.5] [1.7] [1.6] [3.7] [3.10] [4.6] [5.3] [5.4] [5.5]	[1,6] [1,7] [1,6] [3,10] [4,M] (6,6]	[1.1][1.7] [1.6] [3.10] [4.M][6.6]	[1.1] [1.7] [1.6] [3.10] [4.M] [5.5]	[1.1] [1.8] [3.10] [4.M] [5.5]	[1.2] [1.6] [1.7] [3.10] [4.M] [6.1] [6.0] [6.4] [6.6] [6.6]	[1,1][1,6][3,7] [3,10][4,M][5,1] [6,3][6,4][6,6] [6,6][6,7]	[2.3] [2.5] [2.7]	[2.2] [2.3]	[2.2] [2.3] [2.6] [5.7]	[5.1] (5.3) (5.5) (5.6) (5.7)	[5.7]	[5.5]
LOW TO MEDIUM 1,000 TO 10,000	[1.5][1.6]	[1.2] [1.3] [1.5] [1.7] [3.1] [3.3] [3.10] [3.11] [4.4] [6.2] [6.3] [6.4] [6.6]	[1.2] [1.5] [1.7] [3.1] [3.4] [3.11] [4.4] [5.2] [5.3] [5.4] [5.5]	[1:2][1:5][1:7] [3:1][3:2][3:7] [3:10][3:11] [4:A][5:2][5:3] [5:4][6:0]	[1.2] [1.3] [1.5] [1.6] [3.1] [3.2] [3.10] [3.11] [4.4] [5.2] [5.3] [5.4]	[1.2] [1.3] [1.4] [1.5] [3.1] [3.3] [3.7] [3.10] [3.11] [4.4] [5.3] [5.4] [5.5]	[1.3] [1.6] [1.8] [3.1] [3.3] [3.4] [3.10] [4.A] [5.5]	[1,3][1,8] [3,3] [3,10] [4,4] [5,5]	(1:3) (1:5) [3:2] [3:10]	(1.3) (1.5) [3.3] [3.10]	[1,2][1,3][1,5] [1,7][3,1][3,2] [3,11][4,4][5,1] [5,3][5,4][5,5] [3,10]	[3.1] [3.7] [3.10] [3.11] [4.A] [5.2] [5.3] [5.4] [5.5]	[2.3] [2.5] [2.6] [2.7]	[2.2] [2.3] [2.4]	[2.1] [2.2] [2.5]	(5.2) (5.3) (5.4) (5.5)		[5.5]
MEDIUM TO HIGH 10,000 TO 100,000	[1.2][1.3] [3.11][4.4]	[1.0] [2.1] [3.3] [3.4] [3.6]	[3.1] [3.4] [3.5] [3.11] [3.12] [4.A] [5.2]	[1.0] [3.1] [3.3] [3.4] [3.6] [3.11] [3.12] [4.4]	[1,2] [1,4] [1,8] [3,1] [3,3] [3,4] [3,5] [3,11] [3,12] [4,4]	[12][13][14] [18][3.1][33] [34][35][3.11] [3.12][44][5.5]	[1.3] [1.4] [3.1] [3.3] [3.4] [3.5] [3.12] 4.4]	[1,3][1,4] [3,3][3,4] [3,6][3,12] [4,4]	[1:3] [1:4] [3:3] [3:4] [3:12]	[1.5] [1.4] [3.5] [3.4] [3.6] [3.12] [4.A]	[3.1] [3.5] [3.6] [3.4] [3.11] [3.12] [4.A] [5.2] [5.5]	[3.1] [3.4] [3.11] [3.12] [4.4] [5.2] [5.5]	[2.1] [2.3] [2.6] [2.7] [2.8]	[2.1] [2.5] [2.9]	[2:1] [2:3]	[3.11]	[9.12]	[3.5]
HIGH 100,000+	[1.2] [1.9] [3.11] [4.A]	[1.9] [3.1] [3.2] [3.3] [3.4] [3.5] [3.12] [4.A]	[4.A]	(1.9) [3.2] [3.5] [4.4]	[1:2] [1:M] [3:1] [3:2] [3:3] [3:4] [3:5] [3:7] [3:6] [3:11] [3:12] [4:A]	[1.2] [1.3] [1.4] [1.6] [3.1] [3.2] [3.3] [3.4] [3.5] [3.6] [3.12] [4.A]	[1:3][1:4] [3:1][3:3][3:4] [3:8][3:12][4:A]	[1.4] 3.2] [3.5] 3.4] [3.5] 4.A]	[1.4] [3.3] [3.4] [4.A]	[1.4] [3.2] [3.3] [3.4] [4.4]	[3.2] [3.3] [4.A]	[4.4]	[2.1] [2.6] [2.8]	(2.1) [2.3] [2.4] [2.9]		[3.7] [3.11]		[3.5]
ALL QUANTITIES	[1.1]	[1.1] [1.5] [3.0] [3.0] [3.0]	[1.6] [3.6]	[1.1] [1.6] [3.6] [3.6] [3.9]	[1.1][1.6] [3.6][3.8] [3.9] 6.6]	[1,1] [1,6] [3,4] [3,5] [3,6]	[1.1] [3.6] [3.6] [3.8]	[27a] [37e] [37e]		[3.5]	[1.1][1.6] [3.4][3.5] [3.8]	[3.6] [3.9]				[5.5]	[1.5]	[1.6]
KEY TO MANUFACTURING PROCESS PRIMA SELECTION MATRIX: CASTING PROCESSES PLASTIC & COMPOSITE PROCESSING [1.2] SHELL MOULDING [1.3] GRAVITY DE CASTING [1.4] PRESSURE DIE CASTING [1.4] PRESSURE DIE CASTING [1.5] CENTRIVALA CASTING [1.6] INVESTIVENT CASTING [1.6] INVESTIVENT CASTING [1.6] INVESTIVENT CASTING [1.7] CERAMO MOULD CASTING [1.8] PLASTER MOULD CASTING [1.8] PLASTER MOULD CASTING [2.8] COMPANAL MOULDING [2.9] CONTACT MOULDING [2.9] CONTACT MOULDING [2.9] CONTINUOUS EXTRUSION (PLASTICS)				[3.1] CLOS [3.2] ROLL [3.3] DRAV [3.4] COLD [3.6] SWAC [3.7] SUPE [3.8] SHEE [3.10] SPINT [3.11] POW					MACHIBHO PROCESSES [4A] AUTOMATIC MACHIBHO [5] I. ELECTROCHEMICA. MACHIBHO (ECM) [5] I. ELECTROCHEMICA. MACHIBHO (ECM) [6] SEDITION BEAM MACHIBHO (EDM) [6] CONTROL TECHNOLOGY FOR [6] CHEMICAL MACHIBHO (EM) [6] CHEMICAL MACHIBHO (EM) [7] ABRASIVE JET MACHIBHO (AM) [7] ABRASIVE JET MACHIBHO (AM)									

Design for Manufacture (DFM) Guidelines

- Minimize number of parts
- Standardize components
- Commonize components
- Standardize features
- Keep functional and simple
- Multifunctional parts
- Ease of fabrication (near net shape, fixturing)
- Loose tolerances
- Minimize secondary operations
- Utilize process characteristics (Judo)

Design for Assembly (DFA) Guidelines

- Minimize number of parts
 - Unique: motion, material, assembly, maintenance
- Minimize assembly surfaces
- Sub-assemblies
- Mistake-proofing
- Handling: Avoid fasteners, Minimize handling
- Insertion: Minimize direction, Provide access

Manufacturing, Cost and Environment

- Cost can be primary constraint
 - Design to cost, Should-cost
- Environmental impact also important
 - Life Cycle Analysis next week
- How to develop manufacturing cost intuition?
 - Exercises :D
 - Two tools: worksheet and online estimator

Example 1: Shaft

- What type of material and manufacturing?
 - Steel
 - Bulk: extrusion
 - Secondary: perhaps machining or grinding
- Modifications to design?
- Worksheet cost model
 - Extrusion costs
 - Cutoff costs
 - Grinding costs

Example 2: Motor cap

- See SW model, explanation
- What type of material and manufacturing?
 - Plastic
 - Primary: injection molding
- Modifications to the design?
- Worksheet cost model
 - Tooling costs
 - Variable costs
- Compare to online cost estimate

Example 3: Bearing cap

- See SW model, explanation
- What type of material and manufacturing?
 - Aluminum
 - Primary: sand casting, die casting
- Modifications to the design?
- Worksheet cost model
 - Tooling costs
 - Variable costs
- Compare to online cost estimate