Electromechanical Part Selection and Manufacturing and Cost Analysis

24-370 - Spring 2011 Professor Steve Collins

Reminders and Announcements

- HW7 due Wednesday
- Project 3 due May 5th
- Today's lecture
 - Final note on motors
 - Other electromechanical parts
 - Manufacturing and Cost Analysis
- Project 2 Results:
 - Minimum Mass: Team 10
 - Lowest Prototype Cost: Team 11
 - Other fun data will be online soon...

Motor and gearbox selection

- What are the properties of interest?
 - Potentially all motor properties we have discussed
- Design by selection
 - Discrete number of available devices
 - Strong limitations due to electromagnetics, not salient to the consumer

Prominent Sources

- Small, high-performance robotics applications
 - Maxon: www.maxonmotor.com
 - Micromo: www.micromo.com
- Larger scale machine applications
 - Quick: through catalog distributors, such as:
 - Grainger: www.grainger.com
 - McMaster-Carr: www.mcmaster.com
 - Performance: from manufacturers, such as:
 - Allen Bradley: www.ab.com
 - Baldor: www.baldor.com
- Selection example: Maxon

Common Electromechanical Actuators

- Motors:
 - Most common, best developed drive technology
 - P_{max} , τ_{max} , ω_{max} , J_{rot} , R_{gear} , R_{coil} , I_{coil} , etc.
- Solenoids:
 - Simple, fast, linear motion
 - But, small operating range, low efficiency
 - $-V_{nom}$, i_{max} , F_{max} , push/pull
- Exotic:
 - SMAs, EAPs, small, high potential
 - But, not fully commercialized

Other Common Transmission Elements

- Fluid Power:
 - Pressure, area, transmission, power source
- Hydraulics
 - High force, high power, high bandwidth, density
 - High friction, low speed, worse on small scales
 - E.g. Grainger, Caterpillar: cat.com
- Pneumatics:
 - Relatively high force, power, speed, density
 - Low bandwidth, high friction, worse on small scales
 - E.g. Grainger, Numatics Inc.: numatics.com

Common Electromechanical Sensors

- Digital vs. Analog:
 - noise, resolution, integration
- Optical encoders (digital): resolution, f_{sample}
- Hall-effect sensors (analog): linearity, $\Delta\theta_{max}$
- Potentiometers (analog): R, friction, $\Delta\theta_{\text{max}}$
- Load cells (analog): F_{max}, resolution, f_{sample}
- Switches (digital): displacement, force, bounce
- Inertial Measurement Units (IMUs): res., drift
- Proximity, sound, temperature, light, etc.

Common Control Components

- Microcontrollers:
 - Fairly low cost, energy use, performance varies
 - Wide range of specializations
 - Quadrature decoding
 - PWM motor control
 - Numerically-intensive calculation
 - Analog ins/outs
 - Some common suppliers:
 - sparkfun.com, gumstix.com, tern.com
- Professional control systems:
 - Higher performance, cost, difficultly of use
 - For example: DSpace, PC104, motor controllers

Manufacturing and Cost Analysis

- Complex dependence on many factors:
 - Manufacturing methods
 - Materials
 - Tolerances
 - Quality and expected failure rate
 - Quantity of parts to be made
 - Fixed and variable costs
- Entire domain in Mechanical Engineering
 - Design for Manufacture (DFM)
 - Engineering Design II
 - Integrated Product Development (IPD)

Manufacturing and Cost Analysis

- Not my area of specialization...
 - First year teaching this course, etc.
 - Others have said it better...
- Required reading:
 - Dieter & Schmidt Ch. 13 Design for Manufacturing
 - Dieter & Schmidt Ch. 16 Cost Analysis
 - Available on course website
- Wednesday:
 - Manufacturing and cost highlights
 - Tabular and online tools for cost analysis