Motors continued and Prototyping and empirical methods

24-370 - Spring 2011
Professor Steve Collins

Reminders and Announcements

- Syllabus for remainder of semester:
 - Today: Prototyping, Project 3, Motors
 - Commercial manufacturing processes
 - Cost analysis
 - Environmental (Life Cycle) Analysis
 - Ethics for mechanical engineers
- HWs: motors, cost & environment, and ethics
- Individual project encompassing course

Prototyping in the Design Process

- When test physical prototypes?
 - Complex or novel phenomena (hard to model)
 - Performance-critical applications
 - Always used, eventually
- Lessons from Projects 1&2
 - First prototypes failed, second passed
 - Areas for refinement identified, addressed
- Broader applicability
 - Design of a synthetic seat cushion
 - Design of a shell for a consumer electronic device

Project 3 Announcement

- Individual project
- Designing an electromechanical assembly
 - Concept and detail design
 - Motor selection and simulation
 - Manufacturing, Cost, Environment, and Ethics
- See project description: Rescue Ranger Reel
- Due May 5th

Motors: review of mathematical model

- Derive from basic familiar equations:
 - Newton's second law: $\Sigma \tau = J \cdot \alpha$
 - Ohm, Faraday: $V = i \cdot R + L \cdot di/dt$
- And two new ones:
 - Motor torque equation: $\tau_m = K_{\tau} \cdot i$
 - Back EMF equation: $V_{BEMF} = K_v \cdot \omega$
- Coupled equations for motor dynamics:
 - $-V = i \cdot R + L \cdot di/dt + K_{v} \cdot \omega$
 - $-K_{\tau} \cdot i \tau_a b \cdot \omega = J \cdot \alpha$

Matlab exercise

- Download (broken) example code
- Walk through the code
 - See what each part does
 - Fix any broken parts
- Try simulating different situations
 - Constant voltages and applied torques
 - Position control
 - Simulated surface contact
- Interpret trends in current, speed, and power

Motor and gearbox selection

- What are the properties of interest?
 - Potentially all motor properties we have discussed
- Design by selection
 - Discrete number of available devices
 - Strong limitations due to electromagnetics, not salient to the consumer

Prominent Sources

- Small, high-performance robotics applications
 - Maxon: www.maxonmotor.com
 - Micromo: www.micromo.com
- Larger scale machine applications
 - Quick: through catalog distributors, such as:
 - Grainger: www.grainger.com
 - McMaster-Carr: www.mcmaster.com
 - Performance: from manufacturers, such as:
 - Allen Bradley: www.ab.com
 - Baldor: www.baldor.com
- Selection example: Maxon

HW7

- Available today
- Covers motor analysis and selection
- Due Wednesday April 20