Design with Electric Motors: Analysis and Selection

24-370 - Spring 2011
Professor Steve Collins

Reminders and Announcements

- Project 2 testing Monday
 - Silly hat competition... continues :D
 - Robotic arm and wrist available in ME Shop
 - Saturday ME shop hours: 9:00 3:00
 - Reimbursement forms now online (Item 6)
 - Quick Project 2 questions?

What are Electric Motors?

- Electromechanical devices that transform between electrical and mechanical domains
 - For instance, from current to torque
 - Based on electromagnetism, i.e. magnetic fields

Types of Electric Motors

- DC motors
 - Commonly used in robotics applications
 - Variable speed and torque
 - Permanent magnets (usually)
 - Variants: brushless (electronic commutation), coreless (lighter rotor),
- AC motors
 - Commonly used for high power applications
 - Constant (high) speed, poor low-speed pos control
 - Magnetic field typically induced in rotor (induction)

Other mech power sources vs. motors

- Gasoline engines
 - Higher fuel energy density (5·10⁷ vs. 5·10⁵ J·kg⁻¹)
 - Lower efficiency (~25% vs. ~75%)
 - More noise, local pollution, minimum (stall) speed
- Gas turbines and jet engines
 - Similar to gasoline engines, but efficiency ~40%
- Nuclear reactors
 - Very high fuel energy density (3·10¹² J·kg⁻¹)
 - Lower efficiency: ~40%
 - Generally steam-based, radiation issues

Other mech power sources vs. motors

- Mammalian muscle tissue
 - Higher fuel energy density (4·10⁷ vs. 5·10⁵ J·kg⁻¹)
 - Lower efficiency (~25% vs. ~75%)
 - Equally quiet, low pollution, low speeds
 - Self-healing vs. gradually deteriorating

Design with Electric Motors

- Selection, rather than continuum design
 - Discrete set of options available by catalog
- Highly dependent on mechanical usage
 - Torque, speed, power
 - Efficiency
- Simultaneously choose gear box
- Many types available
 - We will primarily consider DC motors (brushed)

Mechanical uses of electric motors

- Provide mechanical input to system
- Open-loop drives:
 - Self-regulated by electrical or mechanical reactions
 - e.g. Project 2 drive shaft
- Closed-loop control of current:
 - Regulation of voltage to achieve desired current
 - e.g. electric car
- Closed-loop control of mechanical output:
 - Automatic control of current
 - Feedback control of output torque, velocity, or position
 - e.g. robotics applications

Simple models of motor function

- Isolated torque production
 - Neglect speed and inertial effects
- Maximum drive speed
 - Neglect external loads
- Maximum power production
 - Best combination of speed and torque
- Maximum control bandwidth
 - Account for speed, torque, and inertial effects

Key properties of electric gear motors

- Peak torque
 - Peak current, i_{max} , motor torque constant, K_{τ}
- Maximum speed
 - Rated voltage, V, motor voltage constant, K,
- Maximum power
 - Optimal combination of torque and speed (rated)
- Dynamic response (time constant, bandwidth)
 - Torque, speed, inertia, and load
- Efficiency
 - Gearbox, backdrivability
- Mass

General mathematical motor model

- Derive from basic familiar equations:
 - Newton's second law: $\Sigma \tau = J \cdot \alpha$
 - Ohm & Faraday: $V = i \cdot R + L \cdot di/dt$
- And two new ones:
 - Motor torque equation: $\tau_m = K_{\tau} \cdot i$
 - Back EMF equation: $V_{BEMF} = K_v \cdot \omega$
- Coupled equations for motor dynamics:
 - $-V = i \cdot R + L \cdot di/dt + K_v \cdot \omega$
 - $-K_{\tau} \cdot i \tau_a b \cdot \omega = J \cdot \alpha$

Simplified torque analysis

- Simplifying assumptions:
 - Velocity is zero → no back EMF, no damping
 - No inductance, or steady state current
- Implications:
 - -i = V/R = maximum (stall) current
 - $-\tau_{\rm m} = K_{\tau} \cdot V/R = \tau_{\rm stall}$ maximum (stall) torque
- How might we apply to the design process?
 - Max applied torque, τ_a , implies min τ_{stall}
- Gearbox torque losses
 - Gearbox inefficiency presents as friction torque loss

Simplified velocity analysis

- Simplifying assumptions
 - Applied torque is zero → no external resistance
 - Steady-state current → no inductance effects
 - Neglect damping
- Implications
 - $-\omega$ increases until reaching V/K_v, driving i to 0
 - No current, no torque $(K_{\tau} \cdot i)$, so acceleration is 0
 - $-\omega \approx V/K_v \approx$ maximum (no-load) motor speed
- Application to design process?
 - Max output speed must be less than no-load speed

Simplified power analysis

- Relate max power, torque, and speed?
 - Not the product of max torque and max speed
- Simplifying assumptions
 - Constant current or no inductance
 - Constant optimal (nominal) speed and torque
 - Power = torque times velocity, or $P_{\text{max}} \approx \tau_{\text{m_nom}} \cdot \omega_{\text{nom}}$
- Implications for design
 - Constraint on minimum motor power
 - Optimal gear ratio for motor and application
 - Include losses in gearbox

Efficiency analysis

- Efficiency, η = energy out / energy in, $0 \le \eta \le 1$
- Typically applied to a single conversion
 - Electromechanical: work / electrical energy
 - Mechanical: work out / work in
- For typical DC motors, $\eta \approx 0.9$
 - Additional gearbox term of 0.4-0.8 (from torque)
 - Where does energy go?
- Gross efficiency might also include:
 - Battery efficiency: operational energy / charge
 - Power plant efficiency: electrical / chemical

Dynamic analysis

- Dynamic response → full equations of motion
- Implications:
 - Basic properties (R, L, K_{τ} , K_{ν}) all contribute
 - Partially captured by mechanical time constant
 - External loads, i.e. V_a , τ_a , contribute
- Implications for mechanical design
 - Dynamic motor evaluation needed
- Matlab example
 - See next lecture notes (ran out of time)