Design with Electric Motors: Analysis and Selection

24-370 - Spring 2011
Professor Steve Collins

Reminders and Announcements

• Project 2 testing Monday
 – Silly hat competition... continues :D
 – Robotic arm and wrist available in ME Shop
 – Saturday ME shop hours: 9:00 - 3:00
 – Reimbursement forms now online (Item 6)
 – Quick Project 2 questions?
What are Electric Motors?

• Electromechanical devices that transform between electrical and mechanical domains
 – For instance, from current to torque
 – Based on electromagnetism, i.e. magnetic fields
Types of Electric Motors

- DC motors
 - Commonly used in robotics applications
 - Variable speed and torque
 - Permanent magnets (usually)
 - Variants: brushless (electronic commutation), coreless (lighter rotor),

- AC motors
 - Commonly used for high power applications
 - Constant (high) speed, poor low-speed pos control
 - Magnetic field typically induced in rotor (induction)

Other mech power sources vs. motors

- Gasoline engines
 - Higher fuel energy density (5×10^7 vs. 5×10^5 J·kg$^{-1}$)
 - Lower efficiency (~25% vs. ~75%)
 - More noise, local pollution, minimum (stall) speed

- Gas turbines and jet engines
 - Similar to gasoline engines, but efficiency ~40%

- Nuclear reactors
 - Very high fuel energy density (3×10^{12} J·kg$^{-1}$)
 - Lower efficiency: ~40%
 - Generally steam-based, radiation issues
Other mech power sources vs. motors

- Mammalian muscle tissue
 - Higher fuel energy density (4×10^7 vs. 5×10^5 J·kg$^{-1}$)
 - Lower efficiency (~25% vs. ~75%)
 - Equally quiet, low pollution, low speeds
 - Self-healing vs. gradually deteriorating

Design with Electric Motors

- Selection, rather than continuum design
 - Discrete set of options available by catalog
- Highly dependent on mechanical usage
 - Torque, speed, power
 - Efficiency
- Simultaneously choose gear box
- Many types available
 - We will primarily consider DC motors (brushed)
Mechanical uses of electric motors

- Provide mechanical input to system
- Open-loop drives:
 - Self-regulated by electrical or mechanical reactions
 - e.g. Project 2 drive shaft
- Closed-loop control of current:
 - Regulation of voltage to achieve desired current
 - e.g. electric car
- Closed-loop control of mechanical output:
 - Automatic control of current
 - Feedback control of output torque, velocity, or position
 - e.g. robotics applications

Simple models of motor function

- Isolated torque production
 - Neglect speed and inertial effects
- Maximum drive speed
 - Neglect external loads
- Maximum power production
 - Best combination of speed and torque
- Maximum control bandwidth
 - Account for speed, torque, and inertial effects
Key properties of electric gear motors

- **Peak torque**
 - Peak current, i_{max}, motor torque constant, K_t
- **Maximum speed**
 - Rated voltage, V, motor voltage constant, K_v
- **Maximum power**
 - Optimal combination of torque and speed (rated)
- **Dynamic response (time constant, bandwidth)**
 - Torque, speed, inertia, and load
- **Efficiency**
 - Gearbox, backdrivability
- **Mass**

General mathematical motor model

- **Derive from basic familiar equations:**
 - Newton’s second law: $\Sigma \tau = J \cdot \alpha$
 - Ohm & Faraday: $V = i \cdot R + L \cdot \frac{di}{dt}$
- **And two new ones:**
 - Motor torque equation: $\tau_m = K_t \cdot i$
 - Back EMF equation: $V_{\text{BEMF}} = K_v \cdot \omega$
- **Coupled equations for motor dynamics:**
 - $V = i \cdot R + L \cdot \frac{di}{dt} + K_v \cdot \frac{\omega}{J}$
 - $K_t \cdot i - \tau_a - b \cdot \omega = J \cdot \alpha$
Simplified torque analysis

- **Simplifying assumptions:**
 - Velocity is zero \Rightarrow no back EMF, no damping
 - No inductance, or steady state current
- **Implications:**
 - $i = V/R = \text{maximum (stall) current}$
 - $\tau_m = K_c \cdot V/R = \tau_{\text{stall}} \text{ maximum (stall) torque}$
- **How might we apply to the design process?**
 - Max applied torque, τ_a, implies $\min \tau_{\text{stall}}$
- **Gearbox torque losses**
 - Gearbox inefficiency presents as friction torque loss

Simplified velocity analysis

- **Simplifying assumptions**
 - Applied torque is zero \Rightarrow no external resistance
 - Steady-state current \Rightarrow no inductance effects
 - Neglect damping
- **Implications**
 - ω increases until reaching V/K_v, driving i to 0
 - No current, no torque ($K_v \cdot i$), so acceleration is 0
 - $\omega \approx V/K_v \approx \text{maximum (no-load) motor speed}$
- **Application to design process?**
 - Max output speed must be less than no-load speed
Simplified power analysis

- Relate max power, torque, and speed?
 - Not the product of max torque and max speed
- Simplifying assumptions
 - Constant current or no inductance
 - Constant optimal (nominal) speed and torque
 - Power = torque times velocity, or \(P_{\text{max}} \approx \tau_{\text{m,nom}} \cdot \omega_{\text{nom}} \)
- Implications for design
 - Constraint on minimum motor power
 - Optimal gear ratio for motor and application
 - Include losses in gearbox

Efficiency analysis

- Efficiency, \(\eta = \frac{\text{energy out}}{\text{energy in}} \), \(0 \leq \eta \leq 1 \)
- Typically applied to a single conversion
 - Electromechanical: work / electrical energy
 - Mechanical: work out / work in
- For typical DC motors, \(\eta \approx 0.9 \)
 - Additional gearbox term of 0.4-0.8 (from torque)
 - Where does energy go?
- Gross efficiency might also include:
 - Battery efficiency: operational energy / charge
 - Power plant efficiency: electrical / chemical
Dynamic analysis

- Dynamic response \rightarrow full equations of motion
- Implications:
 - Basic properties (R, L, K_v, K_p) all contribute
 - Partially captured by mechanical time constant
 - External loads, i.e. V_a, τ_a, contribute
- Implications for mechanical design
 - Dynamic motor evaluation needed
- Matlab example
 - See next lecture notes (ran out of time)