On the Existence of Detailed Analytical Models for Machine Design

24-370 - Spring 2011
Professor Steve Collins

Reminders and Announcements

- Pick up graded HW6 today
- Carnival week: Wednesday lecture a must
 - Project 2 results announced
 - Project 3 announced
 - Motor analysis lecture
 - Homework assigned
- Initial Project 2 reports graded...

Reminders and Announcements

- Project 2:
 - Catalog orders due tonight (from same \$250)
 - Testing in 1 week
 - Must attend entire period: group shout-outs
 - If having trouble with design or analysis, think:
 - Reductionist approach: Simple models and FBDs
 - Complex interactions (set screw, contact): SolidWorks Sim
 - Project reports due at beginning of testing period
 - Review of project report requirements
 - Graded initial reports available now

Analytical component models

- Our approach thus far has primarily been:
 - Reduce components into simplified models
 - Simple shapes and FBDs
 - Analyze using small set of techniques
 - Stress as load over area, bending beam stress
 - Use finite element methods for details (SolidWorks)
 - Use manufacturer specifications for complex parts
 - For example, bearings or springs
 - Some limitations and inefficiencies
 - Can't analytically resolve irreducible elements
 - What if we wish to *design* those complex catalog parts?

Detailed analyses presented in Shigley:

- Shafts and shaft components
- Screws, fasteners, and nonpermanent joints
- Welding, bonding, and permanent joints
- Mechanical springs
- Rolling-contact bearings
- Lubrication and journal bearings
- Spur, helical, bevel and worm gears
- Clutches, brakes, couplings, and flywheels
- Belts, chain, wire rope, and flexible elements

Here, we flipped through Shigley

 You might need to use some of these techniques for your Project 2 reports :D

How to use these analyses in design

- Analysis gives us insight into an existing design
 - But in design, we bring things into existence...
- How do we use these methods for design?
 - Inverse analytical approach: solve for parameters
 - Intuition development: see what parameters matter
 - Iterative approach: redesign and check
- How to balance approach for complex elements?
 - Place less emphasis on analytical results
 - Use higher factors of safety
 - Tests performance empirically

Bonus Assignment

- For extra credit towards your HW grade
 - Especially those who are missing HW(s)
- Apply an analysis from Shigley Part 3
 - For example, analysis of a roller bearing
- More detailed and accurate, more bonus
 - Up to one full homework of credit
- Turn in any time before May 5th