Catalog Component Selection

24-370 - Spring 2011
Professor Steve Collins

Reminders and Announcements

• Project 2 component orders due in 2 weeks
 – Budget of $250 per team, details today
 – Reversal: Output shaft will have flat...
• HW5 due in class Wednesday
• Graded HWs and reports in personal folders
• Mid-Semester Feedback Form
Catalog Component Selection

• Why purchase parts from a catalog?
 – Can be cheaper, easier than custom design
• When purchase parts from a catalog?
 – Complex commodities, e.g. fasteners, bearings, gears
 – Complex stock, e.g. wire rope, tubing, shafting
• Why not purchase parts from a catalog?
 – Might not be exactly what you want
• When not purchase parts from a catalog?
 – Specialized parts, e.g. manifolds
 – High-performance commodity items

Catalog Component Selection

• Another way of thinking about it:
 – Catalog parts do most of the tricky tasks
 – Custom parts hold everything together nicely
Common components to purchase

- Materials
- Fasteners
- Shafts
- Bearings
- Gears
- Belts and Pulleys
- Cables and Capstans
- Springs
- Electromechanical items: motors, sensors (later)

Prominent catalog sources

- McMaster-Carr: www.mcmaster.com
 - Fasteners, bearings, shafts, wire rope, most things...
- Stock Drive Products: www.sdp-si.com
 - Gears, belts and pulleys
- Many others, such as:
 - MSC Industrial Supply: www1.mscdirect.com, W. M. Berg: www.wmberg.com
 - Quality transmission: www.qtcgears.com
 - Harmonic Drive: www.harmonicdrive.net, Gordon Composites: www.gordoncomposites.com
 - Carbon Fiber Tube Shop: www.carbonfibertubeshop.com, Airpot: www.airpot.com
General catalog source issues

• Lead time
 – Is the item in stock?
 – How long until it ships and arrives?

• Cost
 – Prices listed?
 – Part and shipping costs

• Minimum quantities
 – Price breaks?

• Reliability

Selecting catalog components

• Process overview
• Specific components:
 – Shafts
 – Bearings
 – Spur Gears
 – Belts and Pulleys
 – Wire Rope (and capstan design)
 – Springs
 – Fasteners
Selecting catalog components

- Generic selection process:
 - Identify important component properties
 - Perform simple analyses to determine requirements
 - Try to find desirable components
 - Iterate

Selecting Shafts

- What properties are important?
 - Strength: material, diameter
 - Interface: diameter

- Shaft-centric process:
 - Guess at material, e.g. 304 stainless steel
 - Simple model analysis to obtain min diameter
 - Step up to available/convenient value

- Bearing-centric process:
 - Do bearing analysis, pick shaft that fits

- Other-centric process: diameter(s) to fit parts
Selecting Bearings

- **What properties are important?**
 - Strength: maximum radial load, axial load
 - Size: inner and outer diameter, width
 - Speed: maximum angular velocity (sometimes)

- **Design and selection process:**
 - Simple model analysis to obtain loading (and speed)
 - Guess at good bearing type (plain, ball, etc.)
 - Go to catalog to find candidate parts

Selecting Spur Gears

- **What parameters are important?**
 - Diameter(s): gear ratio
 - Strength: material, tooth geometry, width

- **Process: iterative guess and check**
 - Simple model analysis using gear model...
\[\sum M = 0 \quad \sum F = 0 \]

\[F_n = \frac{l_n}{l_h} F_L \quad F_R = F_L + F_n = F_L \left(1 + \frac{l_n}{l_h}\right) \]

\[F_L = 50 \text{ lb}, \quad l_L = 5 \text{ in}, \quad l_h = 1 \text{ in}. \]

McMaster Carr
5905K131
F.O.S. = 2
Speed = 5 rad/s

\[F_R = 300 \text{ lbf} \quad \Rightarrow 600 \text{ lbf} \quad \text{2 Bearings} \]

Friction: ?
Speed: Slow
Size: ?
Tolerance: ?

\[\frac{300 \text{ lb}}{3 \times \frac{1}{16} \times \frac{1}{4}} = 6,400 \text{ lb/ft}^2 \]

F.O.S. = 2, Peak force (radial load) = 300 lbf

Case 1: Size critical
- Speed low
- Friction OK
\[\Rightarrow \text{Bushing, E6.60695K1} \]

Case 2: Size critical
- Speed medium
- Friction critical
\[\Rightarrow \text{Needle roller, E6.5905K21} \]

Case 3: Speed high
- Friction critical
- Tolerances critical
\[\Rightarrow \text{Ball bearing, E6.57155K302} \]
Simple gear model

• Gear tooth as beam in bending
• \(\sigma_m = W^t \cdot P \cdot F^{-1} \cdot Y^{-1} \)
 – \(W^t \) is transmission load
 – \(P \) is diametral pitch
 – \(F \) is face width
 – \(Y \) is form factor (14-2)
• Diametral pitch (teeth/inch) ≠ pitch diameter (inch)

<table>
<thead>
<tr>
<th>Number of Teeth</th>
<th>Y</th>
<th>Number of Teeth</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0.245</td>
<td>28</td>
<td>0.353</td>
</tr>
<tr>
<td>13</td>
<td>0.261</td>
<td>30</td>
<td>0.359</td>
</tr>
<tr>
<td>14</td>
<td>0.271</td>
<td>38</td>
<td>0.364</td>
</tr>
<tr>
<td>15</td>
<td>0.290</td>
<td>45</td>
<td>0.397</td>
</tr>
<tr>
<td>16</td>
<td>0.303</td>
<td>50</td>
<td>0.409</td>
</tr>
<tr>
<td>17</td>
<td>0.309</td>
<td>60</td>
<td>0.422</td>
</tr>
<tr>
<td>18</td>
<td>0.314</td>
<td>75</td>
<td>0.435</td>
</tr>
<tr>
<td>19</td>
<td>0.322</td>
<td>100</td>
<td>0.447</td>
</tr>
<tr>
<td>20</td>
<td>0.328</td>
<td>150</td>
<td>0.460</td>
</tr>
<tr>
<td>21</td>
<td>0.331</td>
<td>300</td>
<td>0.472</td>
</tr>
<tr>
<td>22</td>
<td>0.337</td>
<td></td>
<td>0.480</td>
</tr>
<tr>
<td>24</td>
<td>0.346</td>
<td></td>
<td>0.485</td>
</tr>
</tbody>
</table>

Selecting Spur Gears

• What parameters are important?
 – Diameter(s): gear ratio
 – Strength: material, tooth geometry, width
• Simple model: gear tooth as beam in bending
 – \(\sigma_m = W^t \cdot P \cdot F^{-1} \cdot Y^{-1} \), where \(W^t \) is transmission load, \(P \) is diametral pitch, \(F \) is face width, \(Y \) is form factor (14-2)
 – Diametral pitch (teeth/inch) ≠ pitch diameter (inch)
• Process: Iterative guess and check
 – Start with low \(P \), check available sizes, verify strength
• Detailed analysis, see Shigley Ch. 14 (more later)
Selecting Timing Belts and Pulleys

• What parameters are important?
 – Diameter(s): gear ratio
 – Strength: belt style, width

• Process:
 – Simple model analysis
 • Include pre-tension
 – Iterative guess and check
 • Select small pulley diameter
 • Use manufacturer specifications to determine width

Selecting Wire Rope

• What parameters are important?
 – Strength: breaking strength (diameter, material)
 • Breaking strength ≠ operating load!
 – Flexibility: construction

• Process:
 – Simple model analysis
 • Gearing force analysis
 • Min. drum/capstan diameter ≈ 20 x cable diameter
 – Iterative guess and check
 • Start with low rope and capstan diameter, work up to meet load requirements
Selecting Springs

- **What parameters are important?**
 - Strength: maximum load
 - Stiffness
 - Size: resting length, diameter
- **Process:**
 - Simple model analysis
 - Find required stiffness, strength
 - Get idea of tolerable size
 - Iterative guess and check
 - Usually hard to find small springs that take load

Selecting Fasteners

- **What parameters are important?**
 - Strength: tensile cross-sectional area
 - Size: nominal diameter
 - Pitch: something standard
 - Durability: material, finish, head type
- **Process:**
 - Simple model analysis
 - Find required $A \rightarrow$ nominal diameter
 - Or, guess and check when intuition is good
 - Find desired part in catalog