Catalog Component Selection

24-370 - Spring 2011
Professor Steve Collins

Reminders and Announcements

- Project 2 component orders due in 2 weeks
 - Budget of \$250 per team, details today
 - Reversal: Output shaft will have flat...
- HW5 due in class Wednesday
- Graded HWs and reports in personal folders
- Mid-Semester Feedback Form

Catalog Component Selection

- Why purchase parts from a catalog?
 - Can be cheaper, easier than custom design
- When purchase parts from a catalog?
 - Complex commodities, e.g. fasteners, bearings, gears
 - Complex stock, e.g. wire rope, tubing, shafting
- Why not purchase parts from a catalog?
 - Might not be exactly what you want
- When not purchase parts from a catalog?
 - Specialized parts, e.g. manifolds
 - High-performance commodity items

Catalog Component Selection

- Another way of thinking about it:
 - Catalog parts do most of the tricky tasks
 - Custom parts hold everything together nicely

Common components to purchase

- Materials
- Fasteners
- Shafts
- Bearings
- Gears
- Belts and Pulleys
- Cables and Capstans
- Springs
- Electromechanical items: motors, sensors (later)

Prominent catalog sources

- McMaster-Carr: www.mcmaster.com
 - Fasteners, bearings, shafts, wire rope, most things...
- Stock Drive Products: www.sdp-si.com
 - Gears, belts and pulleys
- Many others, such as:

MSC Industrial Supply: www.umscdirect.com, W. M. Berg: www.umscdirect.com, Quality transmission: www.qtcgears.com, Harmonic Drive: www.harmonicdrive.net, Gordon Composites: www.gordoncomposites.com, Carbon Fiber Tube Shop: www.airpot.com

General catalog source issues

- Lead time
 - Is the item in stock?
 - How long until it ships and arrives?
- Cost
 - Prices listed?
 - Part and shipping costs
- Minimum quantities
 - Price breaks?
- Reliability

Selecting catalog components

- Process overview
- Specific components:
 - Shafts
 - Bearings
 - Spur Gears
 - Belts and Pulleys
 - Wire Rope (and capstan design)
 - Springs
 - Fasteners

Selecting catalog components

- Generic selection process:
 - Identify important component properties
 - Perform simple analyses to determine requirements
 - Try to find desirable components
 - Iterate

Selecting Shafts

- What properties are important?
 - Strength: material, diameter
 - Interface: diameter
- Shaft-centric process:
 - Guess at material, e.g. 304 stainless steel
 - Simple model analysis to obtain min diameter
 - Step up to available/convenient value
- Bearing-centric process:
 - Do bearing analysis, pick shaft that fits
- Other-centric process: diameter(s) to fit parts

Selecting Bearings

- What properties are important?
 - Strength: maximum radial load, axial load
 - Size: inner and outer diameter, width
 - Speed: maximum angular velocity (sometimes)
- Design and selection process:
 - Simple model analysis to obtain loading (and speed)
 - Guess at good bearing type (plain, ball, etc.)
 - Go to catalog to find candidate parts

Selecting Spur Gears

- What parameters are important?
 - Diameter(s): gear ratio
 - Strength: material, tooth geometry, width
- Process: iterative guess and check
 - Simple model analysis using gear model...

Fo = 300 lbf => 600 lbf ZBEREINGS

FRICTUR: ?

SPEED: SLOW

SIZE: "

TOLERANCE: ?

$$F_n = \frac{l_e}{l_h} \cdot F_e \qquad F_e = F_e \left(1 + \frac{l_e}{l_h} \right)$$

MCMASTER CARR # 5905 K131

$$\frac{300 \text{ lb}}{\frac{3}{16} \cdot \frac{1}{4}} = 6,400 \frac{\text{lb}}{\text{ln}^2}$$

F.O.S= 2, PEAK FORCE (RADIM WAD) = 300 lbf

CASE 1: SIZE CRITICAL FRICTION OK

SPEED LOW => BUSHING. E.G. 60695K1

CASE 2: SIZE CRITICAL SPEED MEDIUM FRICTION CRITICAL

=> NEEDLE ROLLER E.G. 5905 K21

SPEED HIGH CASE 3: FRICTION CRITICAL TOLERANCES CRITICAL

>> BALL BEARING E.G. 57155 K302

Simple gear model

- Gear tooth as beam in bending
- $\sigma_m = W^t P F^{-1} Y^{-1}$
 - Wt is transmission load
 - P is diametral pitch
 - F is face width
 - Y is form factor (14-2)
- Diametral pitch (teeth/inch)pitch diameter (inch)

Selecting Spur Gears

- What parameters are important?
 - Diameter(s): gear ratio
 - Strength: material, tooth geometry, width
- Simple model: gear tooth as beam in bending
 - $-\sigma_{m}$ = W^t P F⁻¹ Y⁻¹, where W^t is transmission load, P is diametral pitch, F is face width, Y is form factor (14-2)
 - Diametral pitch (teeth/inch) ≠ pitch diameter (inch)
- Process: Iterative guess and check
 - Start with low P, check available sizes, verify strength
- Detailed analysis, see Shigley Ch. 14 (more later)

Selecting Timing Belts and Pulleys

- What parameters are important?
 - Diameter(s): gear ratio
 - Strength: belt style, width
- Process:
 - Simple model analysis
 - Include pre-tension
 - Iterative guess and check
 - Select small pulley diameter
 - Use manufacturer specifications to determine width

Selecting Wire Rope

- What parameters are important?
 - Strength: breaking strength (diameter, material)
 - Breaking strength ≠ operating load!
 - Flexibility: construction
- Process:
 - Simple model analysis
 - Gearing force analysis
 - Min. drum/capstan diameter ≈ 20 x cable diameter
 - Iterative guess and check
 - Start with low rope and capstan diameter, work up to meet load requirements

Selecting Springs

- What parameters are important?
 - Strength: maximum load
 - Stiffness
 - Size: resting length, diameter
- Process:
 - Simple model analysis
 - Find required stiffness, strength
 - Get idea of tolerable size
 - Iterative guess and check
 - Usually hard to find small springs that take load

Selecting Fasteners

- What parameters are important?
 - Strength: tensile cross-sectional area
 - Size: nominal diameter
 - Pitch: something standard
 - Durability: material, finish, head type
- Process:
 - Simple model analysis
 - Find required A → nominal diameter
 - Or, guess and check when intuition is good
 - Find desired part in catalog