Overview of Assemblies:
Rigid and Articulating Joints

24-370 - Spring 2011
Professor Steve Collins

Reminders and Announcements

• Rev 2 and Addendum due now...
 – Please bring up your plastic boxes
 – Parts look much improved!
• Testing of Rev 2 parts Monday
• AutoDesk info session today 4:30 SH 224
 – Free pizza and drinks...
• HW4 assigned today: materials and assemblies
• Project 2 assigned today...
Project 2 Overview

• The Swinging Gripper!
 – Team project (groups online)
 – Sketch Description...

• Deadlines:
 – Rev 1 Prototype testing March 21st (5 weeks)
 – Rev 2 Prototype and Group Report due April 4th
 – No conflicts, to my knowledge

Assemblies, continued

• Review:
 – Allow movement, manufacturing, separability
 – Can add complexity, reduce strength and accuracy
 – Loading implications: keep attachment forces low

• Tolerances
• Constraints
• Overview of joint types
• Rigid joints
• Articulating elements
Assemblies and Tolerances

- **What are tolerances?**
 - From possible errors in parts
 - From uncertainty in connections
 - Other types of “slop”
- **Stacking**
- **Geometry of attachments very important**
 - Displacement errors affected by geometry, stacking
- **Some examples and exercises**
 - Mounting a shaft
 - A high-precision gear-box frame

Assemblies and Constraint

- **Engineering materials are stiff**
 - Small displacements can cause large forces
- **Over-constraint can increase stress**
 - Inducing bending
 - Less-desirable element taking stress
 - Unforeseen force multipliers
- **Some examples and exercises**
 - Billy-Bob’s Miller sign, revisited
 - Perfectly-constrained cantilevered beam
 - Perfect constraint using indexing surfaces
Overview of Rigid Joints

- **Common methods**
 - Machine screws, bolts, nuts, setscrews, rivets, retaining rings, pins, keys, welds, adhesives

- **Modes of connection**
 - Normal (tensile or compressive) load transfer
 - Best, where possible
 - Shear load transfer
 - Usually to be avoided
 - Friction load transfer
 - Better than shear where normal impossible

Overview of Articulating Joints

- **Common methods**
 - Bearings, springs

- **Degrees of freedom**
 - One rotational d.o.f., i.e. hinge joint
 - Usually best, where possible
 - One linear d.o.f., e.g. linear slide
 - Usually to be avoided due to bulk
 - Multiple rotational d.o.f., e.g. ball joint
 - Usually to be avoided due to control difficulties
 - Multiple linear d.o.f., e.g. gantry... oh no!
Nuts and Bolts of Rigid Joints

- **Threads**
 - Pitch - distance between adjacent threads (or inv.)
 - Major Diameter - outer diameter
 - Tap or Die Diameter - pre-threaded diameter
 - Typically single-threaded, right-handed
 - Standardized, e.g. UNS

- **Common Choices**
 - Socket cap screws (machine screws) with hex drive
 - Also, flat or button head
 - e.g. 4-40, 6-32, 8-32, 10-32, ¼-20

Nuts vs. Threaded Holes

- **Threaded holes usually better in robotics apps**
 - Fewer parts
 - Better tolerances
 - Lower mass

- **Nuts and bolts better in some applications**
 - Cost
 - Manufacturing
 - Careful reusing nuts - built to yield

- **Rule of thumb for threaded holes:**
 - 3 full threads - min
 - 2 diameter’s depth - best for alignment
Socket Cap Screws

- Strength
 - Simple model of screw in tension?
 - \(\sigma = F \frac{1}{A} \), \(A \) = tensile stress area
 - Stress concentrations: fatigue; F.O.S.
 - See, e.g., Shigley pp. 419 for detailed estimates
- Tension and torque in screws
 - Think of as a vise or jack, model as a wedge
 - Relate torque to force using pitch and friction
 - See, e.g., Shigley pp. 437 for equations

Rigid Shaft Clamping

- Setscrews - screw pushing on side of shaft
 - simple, but weak and self-loosening
- Pins - radial hole and cylinder
 - more complex, small shear area
- Keyways - slots and rectangular key
 - complex, hard to get good fit
- Split-hub clamps - one-sided slot and screw
 - high-torque, low-slop, robust, but big
- Retaining ring - springy ring in groove
 - axial only, adds complexity to shaft
Detail Design of Articulating Joints

• Rotational joints
 – Plain bearings
 • Low-friction, low-wear material, often polymer
 • Cheap, strong, small, light, and easy
 • Still, higher friction and less precision
 – Ball bearings
 • Small rolling balls between inner and outer race
 • Very low friction, high precision, high speed
 • Low load, high mass and size
 – Needle roller bearings
 • Like ball, but higher load, lower precision, mass and size

Detail Design of Articulating Joints

• Linear joints
 – Same types of elements
 • Plain, ball, needle roller
 – Also have rotationally-constraining tracks
 • Two rails
 • Square rails with features
 – Did I mention I don’t like linear bearings?
Capturing Articulating Elements

- Don’t want to interfere with desirable motion
- Securing, e.g., outer race
 - Press fit - careful with induced stresses
 - Slip fit and glue - careful with glue
- Securing, e.g., inner race
 - To be avoided, unless using angular contact bearing
- Securing against, e.g., axial shaft motion
 - Use normal contact and (thrust) washer
 - Commonly: retaining ring or gear face pushes against plain thrust bearing or needle bearing

Accompanying Readings

- Shigley Chapter 8 - Fasteners
- Shigley 7-7 - Shaft clamping
HW4

• Assigned today
• Due in class next Wednesday, February 23rd
• Covers:
 – Material selection
 – Assembly geometry, strength and tolerances
 – Common joining elements and constraints