Overview of Assemblies: Rigid and Articulating Joints

24-370 - Spring 2011
Professor Steve Collins

Reminders and Announcements

- Rev 2 and Addendum due now...
 - Please bring up your plastic boxes
 - Parts look much improved!
- Testing of Rev 2 parts Monday
- AutoDesk info session today 4:30 SH 224
 - Free pizza and drinks...
- HW4 assigned today: materials and assemblies
- Project 2 assigned today...

Project 2 Overview

- The Swinging Gripper!
 - Team project (groups online)
 - Sketch Description...
- Deadlines:
 - Rev 1 Prototype testing March 21st (5 weeks)
 - Rev 2 Prototype and Group Report due April 4th
 - No conflicts, to my knowledge

Assemblies, continued

- Review:
 - Allow movement, manufacturing, separability
 - Can add complexity, reduce strength and accuracy
 - Loading implications: keep attachment forces low
- Tolerances
- Constraints
- Overview of joint types
- Rigid joints
- Articulating elements

Assemblies and Tolerances

- What are tolerances?
 - From possible errors in parts
 - From uncertainty in connections
 - Other types of "slop"
- Stacking
- Geometry of attachments very important
 - Displacement errors affected by geometry, stacking
- Some examples and exercises
 - Mounting a shaft
 - A high-precision gear-box frame

Assemblies and Constraint

- Engineering materials are stiff
 - Small displacements can cause large forces
- Over-constraint can increase stress
 - Inducing bending
 - Less-desirable element taking stress
 - Unforeseen force multipliers
- Some examples and exercises
 - Billy-Bob's Miller sign, revisited
 - Perfectly-constrained cantilevered beam
 - Perfect constraint using indexing surfaces

Overview of Rigid Joints

- Common methods
 - Machine screws, bolts, nuts, setscrews, rivets, retaining rings, pins, keys, welds, adhesives
- Modes of connection
 - Normal (tensile or compressive) load transfer
 - Best, where possible
 - Shear load transfer
 - Usually to be avoided
 - Friction load transfer
 - Better than shear where normal impossible

Overview of Articulating Joints

- Common methods
 - Bearings, springs
- Degrees of freedom
 - One rotational d.o.f., i.e. hinge joint
 - Usually best, where possible
 - One linear d.o.f., e.g. linear slide
 - Usually to be avoided due to bulk
 - Multiple rotational d.o.f., e.g. ball joint
 - Usually to be avoided due to control difficulties
 - Multiple linear d.o.f., e.g. gantry... oh no!

Nuts and Bolts of Rigid Joints

- Threads
 - Pitch distance between adjacent threads (or inv.)
 - Major Diameter outer diameter
 - Tap or Die Diameter pre-threaded diameter
 - Typically single-threaded, right-handed
 - Standardized, e.g. UNS
- Common Choices
 - Socket cap screws (machine screws) with hex drive
 - Also, flat or button head
 - e.g. 4-40, 6-32, 8-32, 10-32, 1/4-20

Nuts vs. Threaded Holes

- Threaded holes usually better in robotics apps
 - Fewer parts
 - Better tolerances
 - Lower mass
- Nuts and bolts better in some applications
 - Cost
 - Manufacturing
 - Careful reusing nuts built to yield
- Rule of thumb for threaded holes:
 - 3 full threads min
 - 2 diameter's depth best for alignment

Socket Cap Screws

- Strength
 - Simple model of screw in tension?
 - $\sigma = F A^{-1}$, A = tensile stress area
 - Stress concentrations: fatigue; F.O.S.
 - See, e.g., Shigley pp. 419 for detailed estimates
- Tension and torque in screws
 - Think of as a vise or jack, model as a wedge
 - Relate torque to force using pitch and friction
 - See, e.g., Shigley pp. 437 for equations

Rigid Shaft Clamping

- Setscrews screw pushing on side of shaft
 - simple, but weak and self-loosening
- Pins radial hole and cylinder
 - more complex, small shear area
- Keyways slots and rectangular key
 - complex, hard to get good fit
- Split-hub clamps one-sided slot and screw
 - high-torque, low-slop, robust, but big
- Retaining ring springy ring in groove
 - axial only, adds complexity to shaft

Detail Design of Articulating Joints

- Rotational joints
 - Plain bearings
 - Low-friction, low-wear material, often polymer
 - Cheap, strong, small, light, and easy
 - Still, higher friction and less precision
 - Ball bearings
 - Small rolling balls between inner and outer race
 - Very low friction, high precision, high speed
 - Low load, high mass and size
 - Needle roller bearings
 - Like ball, but higher load, lower precision, mass and size

Detail Design of Articulating Joints

- Linear joints
 - Same types of elements
 - Plain, ball, needle roller
 - Also have rotationally-constraining tracks
 - Two rails
 - Square rails with features
 - Did I mention I don't like linear bearings?

Capturing Articulating Elements

- Don't want to interfere with desirable motion
- Securing, e.g., outer race
 - Press fit careful with induced stresses
 - Slip fit and glue careful with glue
- Securing, e.g., inner race
 - To be avoided, unless using angular contact bearing
- Securing against, e.g., axial shaft motion
 - Use normal contact and (thrust) washer
 - Commonly: retaining ring or gear face pushes against plain thrust bearing or needle bearing

Accompanying Readings

- Shigley Chapter 8 Fasteners
- Shigley 7-7 Shaft clamping

HW4

- Assigned today
- Due in class next Wednesday, February 23rd
- Covers:
 - Material selection
 - Assembly geometry, strength and tolerances
 - Common joining elements and constraints