
BiochemistryI-ThirdExam2003	SolutionKey	April28,20 03		
PartA:		pointsweregivenforb)sinceitisthenormalsecond		
1.d:Themoleculeshownisnotnormallyfoundin naturebecauseitcontainsetherlinkages,instead ofesters.Inaddition,ithasonacylchaintoo manyforaphospholipidandonephosphate grouptoomanyifitwereatriglyceride.		 messenger. 8.cThisisaketose,sothesecondcarbon(c)isthe anomeric.ThecarbonthatwasbearingtheC=O group <i>always</i>becomestheanomericcarbon. 9.dThetotalfreeenergyassociatedwitha 		
2.d		concentrationgradientis: $\Delta G = +RTln[X]_{IN}/[X]_{OUT} +$		
3.b		$ZF\Delta\psi$.Fructoseisnotcharged,sothesecondterm		
4.dRememberthat α meanstheanomeric groupispointingdown, β -meanstheap pointingup.		doesnotcontributetotheGibb'sfreeenergy. Therefore $\Delta G=(2.5)\ln(1000)=(2.5)(2.3)(3)=17.25$ kJ/mol.		
5.dActivationoffattyacids,tofromtheAcy occursinthecytoplasm,buttheoxidatio inthematrix.		ThisissufficienttodrivethesynthesisofG-6-P (ΔGforhydrolysis<17kJ/mol)butinsufficientto drivethesynthesisofATPwhichwouldrequire~30 kJ/mol.		
6.d		10.SincetheactivityincreasesF-2.6-Pisanallosteric		
7.dwasthebestanswer,sincebothcAMPan caffeinecanstimulateproteinkinaseA.		activatorofPFK.		
B1.				
<i>ChoiceA:</i> ThecorrectanswerisGly-Phe-C similarforbothresidues.Thedensityist <i>ChoiceB:</i>	oosmallforTrp	andtool argeforSer.		
i)Eithermolecularweight(gel-filtrationch	• • •)ordif ferenceincharge(ion-exchangechromatography)		
couldbeusetoseparatelysozymefromh ii)Hexosekinaseandhemoglobinhavethes chromatographycannotbeused.Thefo	amesizeandch llowingtwoopt	ionsexist:		
 ChangethepHandhopenchanges theseproteinsthismaynotwork.T Useaffinitychromatography.Hes ATP,ADP,etctothecolumnbeads hemoglobin,boththehemeandFe 	hereforeonly+3 kosekinasewou Itwouldbemore	lldbethebestenzymetotar gethere,attachinghexose,		
B2.	_			
<i>ChoiceA:</i> Themajorforcethatdrivesthese orderedwatermoleculesfromthenon-p entropyofthesystem.VanderWaalsfor assembly. Integralmembraneproteinspresentance	olaracylchains cesalsostabiliz	swhenthebilayerform sleadstoalargeincreasein ethebilay er,butdonotcontributegreatlytoself-		
hydrogenbonds, since there are nodono				
<i>ChoiceB:</i> CurveAislipid1curveBislipid2 thepackingoftheacylchains,leadingto broadensthetransitionsincethewidtho besimilarinpropertiestolipid1.	alossofvander	Waalsint eractions(Δ H).ThisreducesT _M andalso		
B3.				
ChoiceA: Bothhave $\alpha(1-4)$ and $\alpha(1-6)$ thus producing more ends in the polymerar arapidrate if it is necessary to flee adanged	r.Thisisanadva	englucose.Howeverglycogenismorehighlybranched, ntageforanimalsbe causeglucosecanbereleasedat		
ChoiceB: These are composed of polymers	sofalternatingN	NAM- $\beta(1-4)$ -NAG(n-acetylmuramic,N-acetyl-		

ChoiceB: These are composed of polymers of alternating NAM- $\beta(1-4)$ -NAG (n-acetylmuramic, N-acetylglucose) residues. The sugar polymers are crosslinked with peptide. L ysozymes pecifically recognizes the Nacetyl group and cleaves the β -(1-4) linkage. Although cellulose also has a $\beta(1-4)$ linkage, it does not contain an N-acetyl group and therefore is not as ubstrate for ly sozyme.

B4.

BiochemistryI-ThirdExam2003	SolutionKey	April28,20	03
<i>ChoiceB:</i> Feedbackinhibitionoccurswl feedbackinhibitorofPFKinglycolysi Productinhibitionoccurswhenthedire	S.		citrateisa dtheproduct,
e.g.hexosekinaseisinhibitedbyG-6-F B5.).		
i)Reductionofacarboxylicacidtoanal ii)Removalofaphosphategroup	dehyde NADH – P _i produc	→NAD ⁺ Dehydrogenase ced Phosphatase	:
iii)Additionofwatertodoublebond(n iv)AdditionofaphosphategrouptoSe	· •	hired Enolase/fumaras ADP ProteinKinase	se/hydratase
B6. <i>ChoiceA:</i> Electronsaretransferredinthet	followingpath:		
Succinate \rightarrow FADincomplexII \rightarrow C IV \rightarrow 4e ⁻ toO ₂ toproduce2H ₂ O.Pro complexesIIIandIV.	$oQ \rightarrow ComplexIII \rightarrow one elements$		
ChoiceB: ThekeyconceptwasthattheAT conformations,dependingontheposit bindsADP+P i tightly,andonethatbir causesarotationof γ,changingtheco ADP+Piload →ATPformed	tionofthe γsubunit:oneth adsATPtightly.Thepumping onformationofthe β-sub	of three protons across the membranit. The complete cycle is as follow	TP,onethat ane
ATPsynthesisoccurswhenthebound thusthelowerenergystateofATPresu		$\begin{array}{c} \beta \text{-subunitwhose conformation fa} \\ \text{romADP+P}_{i}. \end{array}$	avoursATP,
B7.			
<i>ChoiceA:</i> <i>i)</i> TheZF Δψgivesthecontributiono istransportedacrossthemembrane (protons)andamembranepotentia	e.ItisimportantinATPsynthe	esissi ncechargedparticles	nceof Δψasit saretransported
 ii)Therewillbenoflowof[X]sincethes [X]ischargedand Δψ≠0thenthe howeverthefreeenergyassociated electrostaticcontribution.Sonofle 	erewillbeadifferenceintheco withthisconcentrationdiffe	oncentrationof[X]acrosst renc ewillbe <i>exactly</i> balance	hemembrane,
ChoiceB: Thermodynamiccouplingisu butit'sstillspontaneous,thenthe Δ concentrationofBismuchlessthanthe	sedtoproduceBfromA.Ifthe Gmustbelessthanzero.Theo equilibriumamount.Consec	ΔG° for the A \rightarrow Breaction nlyway for this to occur is if the quently therea ction from H	onispositive, B →Cmusthave
alargenegative ΔG , such that any Bth B8.	atisproducedfromAisconve	ertedtoC,thuskeepingthe[B]low	
<i>ChoiceA:</i> Mostofourinitialenergyisderi glucosetobestoredaglycogenandthus		en.Ahighcarbohydr ateo vity.	dietwillcause
<i>ChoiceB:</i> Marathonrunnersrunataslowp storesearlyintherace(afterabout2hou oxidationoffatsvia β-oxidationan willalsobebrokendowntooxidizeam	ursbasedonthehomeworkproduced dtheTCAcycletogenerateen		•
B9.			
<i>ChoiceA:</i> Inallcasestheenergyderivedfr NADH.Theseelectronsarethenusedi atleastoneredoxreactionforeitherpat reactionsinglycolysis.	noxidativephosphorylation hway,howeverpartialcredit	toproduceATP .Itwasnec was givenforadiscussiono	essarytogive
RedoxReactioninglycolysis :		phosphoglycerate+NADH	_
RedoxReactionsinTCAcycle:	dehydrogenase, succinate	isocitratedehydrogenase, α-ke dehydrogenase,malatedehydrog	-
ChoiceB: Itwasnecessarytoshowthecon necessarytoshowtheactivationstep.7	Thenetyieldis2FADH	₂ and2NADH.	oAs.Itwasnot
NotethattheC2unitsareremovedfrom	the <i>carboxylicacid(th</i>	<i>ioester)end</i> , twoatatime.	
			2

03

B10:

ChoiceA:

Keyconcept:HighconcentrationsofATPandNADHindicatethatthecellhaslotsofenergy,thereforeyouwouldexpectglycolysisandtheTCAcycletobeoffundertheseconditions.Conversely,highconcentrationsofADP/AMPandNAD+wouldindicatelowenergyreservesandglycolysisandtheTCAcycleshouldbeturnedon.Thisisindeedthecase,asillustratedbelow.ThisregulationpreventsthecellfromwastingenergysynthesizingATPwhenithasplenty,andprovidesameansofgeneratingenergywhenitisrequired.NotetheATP/ADP/AMPregulateglycolysis/gluconeogenesiswhilebothATPandNADHregulatetheTCAcycle.cycle.cycle

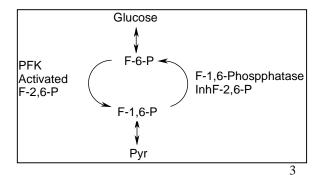
Glycolysis:PFK:ActivatedbyADP,AMP,inhibitedbyATP.

TCACycle:Pyruvatedehydrogenase,Citratesyn,isocitratedehydroge byATPandNADH.IsocitratedehydrogenaseisactivatedbyNAD nase, α -ketoglutarateareallinhibited ⁺andADP.

ChoiceB:

Keyconcept:HELP-HighE _nergy(glucose)meansL _owproteinP_hosphoryation. Unfortunately,thisisjustthe waynaturedesigneditsoyouhavetomemorizethis.Youshould(forthefinal)unders tandtherelationship betweenhormonalsignalingandlevelsofproteinphosphorylation.

The regulation can be derived from the above concept. Since high glucose levels ought to lead to storage of glycose in glycogen, glycogen synthase should be active when dephos phorylated and glycogen should be inactive under these conditions. There were should occur when glucose levels are


low. Low glucose levels imply high protein phosphorylation, hence glycogen synthase should be inactive when phosphorylated while glycogen phosphorylaseshouldbeactive. This is summarized in the cartoon to the right. This regulatory mechanism insure that excess glucose is stored in glycogen and provides a means to release glucose from glycogen when glucose is needed by the organism. Glycogen Phosphorylase E Inactive E Pi Active Glycogen Glycogen Synthase E Active Glucose F Pi Inactive

ChoiceC:

Keyconcept: F-2-6-Plevelsfollowglucoselevels.Again, thisisjustthewaynatureis,soyouhavetomemorizethis. Thisfact,whencombinedwithHELPallowsyourtoderive howF-2,6-Plevelsarecontrolledbyprotein phosophorylation(seeright).PFK-2mustbeactivewhen dephosphorylated(HELP),makingmoreF-2-6-P.

Withrespecttoglycolysis, highglucoselevelsturnon glycolysissothatenergy isobtained for biosyntheis. Low glucoselevelsprompt the liver to make glucose from pyruvate. Hence F-2, 6-P should activate glycolysis (PFK) and inhibit glucone ogenesis (F-1, 6-bisphosphatase), as indicated to the right

