Lecture 33: Electron transport, ATP synthesis

Electron Transport:

- Glucose The energy captured in Fatty acids ← → triglycerides Glucose glycolysis, TCA **Fatty Acid** Glycolysis **NADH** cycle, and fatty activation Pyruvate Acyl-CoA acid oxidation on Pyruvate NADH and FADH₂ is converted to a Electron proton gradient Transport Acyl-CoA across the inner CO2 Oxidative mitochondrial NADH -Phosphorylation membrane. Acetyl-CoA Fatty Acid Oxidation The energy stored **NADH** in this gradient is used to produce Citric Acid ATP by ATP **NADH** Cycle synthase. FADH₂ CO₂ NADH In most
 - organisms the electrons from NADH and FADH₂ are deposited on oxygen, reducing it to water, oxygen serves as a final acceptor of electrons in this process.
- In many organisms other compounds besides oxygen can serve as electron sinks, allowing these organisms to perform 'oxidative' phosphorylation in the absence of O₂.

Pathway	NAD+/NADH	FAD/FADH₂	
Glycolysis	Glyceraldehyde 3- phosphate dehydrogenase		
TCA cycle	Pyruvate dehydrogenase Isocitrate dehydrogenase α-ketoglutarate dehydrogenase		
	Malate dehydrogenase	Succinate dehydrogenase	
Fatty Acid Ox,	hydroxyacyl-CoA dehydrogenase	Acyl-CoA dehydrogenase	
Within above pathways	COHN ₂ H COHN ₂ H H H NAD+ (Oxidized) NADH (Reduced)	FAD (Oxidized) H O H N FADH ₂ (Reduced)	
Electron Transport	COHN ₂ H COHN ₂ H H NADH (Reduced) NAD (Oxidized)	H N N N N N N N N N N N N N N N N N N N	

The oxidation of NADH releases a lot of energy:

Oxidation of NADH	NADH \rightarrow NAD ⁺ + 2 e ⁻ + 2H ⁺	$\Delta G = -60 \text{ kJ/m}.$
Reduction of oxygen	$2e^{-} + 2H^{+} + (1/2) O_{2} \rightarrow H_{2}O$	ΔG= - 156 kJ/m.
Tot. Reaction	NADH + (1/2) $O_2 \rightarrow H_2O + NAD^+$	-200KJ/mol

1. Inorganic carriers of electrons

a) Key Components in Electron
Transfer: Iron-sulfur centers (e.g.

b) Fe in heme – e.g. cytochrome C

2. Organic Carriers of electrons:

Coenzyme Q is a non-polar electron carrier that diffuses freely in the *fluid* mitochondrial membrane. R group is non-polar.

 Can participate in one or two electron redox transactions, two electron reduction shown on the right

Electron Transport: Gibbs Energy & Flow – As with all pathways, ΔG < 0 for each step **NADH Oxidation:** - Electrons from NADH through complexes I,Q,III, IV involved. A total of ~10 H⁺ are moved across the membrane.

FADH₂ Oxidation: Complex II, Q, III, CytoC, IV. A total of $^{\sim}6$ H $^{+}$ are moved across the membrane. FADH₂ is produced at two sites:

- i) Succinate dehydrogenase in the TCA cycle.
- ii) acyl-CoA dehydrogenase, the first oxidation in $\beta\text{-}oxidation$ of fatty acids.

Complexes in Electron Transport: Complex I: NADH-CoQ oxidoreductase

- Multi-enzyme complex, contains FAD and Fe-S centers. Electrons are transferred from NADH to FAD, then to FeS, then to Q.
- Four protons/NADH are pumped from the inside (matrix) to the intermembrane space.
 Complex II: Succinate-CoQ oxidoreductase
 - Succinate dehydrogenase of the citric acid cycle is part of this complex.
 - Two electrons from FADH₂ are transferred to CoQ via Fe-S clusters, generating CoQH₂.
 - Does not pump any protons.

Complex III: CoQH2-cytochrome c oxidoreductase

- Transfers electrons from CoQH₂ to cytochrome c one electron at a time.
- Four protons are pumped/NADH or FADH₂ Cytochrome C: Shuttles one electron from III to IV. Complex IV: Cytochrome c oxidase
 - Accepts 4 e^- , one at at a time from cytochrome c.
 - Donates a total of four electrons/O₂.
 - Site of oxygen reduction to water.
 - i) Produces 2 water molecules/O2 molecule.
 - ii) Pumps an additional two protons/NADH or FADH₂.

4 H+/2e

Energy Stored in the Proton Gradient

The energy 'stored' in a concentration gradient can be considered to consist of two parts: $\Delta G_{TOTAL} = \Delta G_{CONC} + \Delta G_{ELEC}$

i) The Gibbs energy due to a concentration difference across a NADH sealed membrane. Defining the reaction direction from intermembrane space (out) to the matrix (in):

 $\Delta G = \Delta G^0 + RT \ln \frac{[X_{IN}]}{[X_{out}]} = (\mu_{IN}^0 - \mu_{OUT}^0) + RT \ln \frac{[X_{IN}]}{[X_{out}]} = RT \ln \frac{[X_{IN}]}{[X_{Out}]}$ and chamical patents to the first section of the section

4 H+/2e

The standard chemical potential (μ_0) for the species ([X]) is the same on both the inside and the outside of the membrane, so ΔG° =0. This is the amount of energy that is released when the concentration gradient moves towards equilibrium.

ii) Movement of a charged particle through a voltage difference. The free energy associated with moving a particle of charge Z, through a voltage difference $\Delta \Psi (=\Delta V)$, is:

 $\Delta G_{ELEC} = ZF\Delta \Psi$ $\Delta \psi = \Delta V$

- Z = the charge on the transported ion (+1 in the case of the proton)
- F is Faraday's constant, 96,494 C/mol. C=coulomb
- $\Delta\Psi$ is the voltage difference across the membrane, in volts. This difference is often referred to as the membrane potential: $\Delta\Psi = V_{\text{IN}} V_{\text{OUT}}$.

The total Gibbs free energy is the sum of these two terms:

 $\Delta G_{TOTAL} = RT \ln \frac{[H^+]_{IN}}{[H^+]_{OUT}} + ZF\Delta \Psi$

Example Calculation: Typical values across the inner mitochondrial membrane are:

[H⁺]_{IN}/[H⁺]_{out} = 0.1 (pH=6.5 outside, 7.5 inside), voltage difference -0.15 V, inside negative. $\Delta G = (8.31)(300) \ln(0.1) + (+1)(96,000)(-0.150)$

= -5.7kJ/mol - 14.4kJ/mol

=-20kJ/mol - ATP Synthisis

3 H+ are used to make one. ATP (due to Mechanism)

HA

W W +

ATP Synthesis Phosphorylation):

(Oxidative

ATP synthesis is attained by coupling the free energy of a proton gradient to the chemical synthesis of ATP. The enzyme that accomplishes this coupling is called **ATP-synthase** (also known as F_oF_1 ATPase)

9 H⁺ transported = 3 ATP synthesized Structural Features:

- 1. The Fo Complex
- Membrane-spanning, multi-protein complex.
- Responsible for coupling the movement of three protons to 120° rotations of the γ-subunit.
- 2. The F₁ Complex
- Attached to F_o, it protrudes into the mitochondrial matrix.
- Composed of five different subunits: $\alpha_3 \beta_3 \gamma \delta \epsilon$
- The γ subunit is the shaft at the center of the $\alpha_3\beta_3$ disk. γ rotates 120° every time 3 protons pass through the complex.
- The β subunits are asymmetric due to their interactions with the γ-subunit.
 - 1. One conformation of the β subunit has very **low affinity** for both ADP and ATP. Everything is released.
 - 2. One conformation of the β subunit has high affinity for ADP and P_i .
 - 3. One conformation of the β subunit makes ATP lower in energy than ADP+Pi.

How the motor works:

- Every time three proton move through the complex, the γ subunit rotates 120°.
- The rotation of γ subunit changes the conformation of the β -subunits such that the Gibbs energy of the bound ADP + P_i becomes higher than the energy of ATP, thus ATP forms spontaneously from the bound ADP and P_i.
- The newly-formed ATP is released with the transport of three additional protons.
- The actual synthesis, or formation of the bond between ADP and P_I, is catalyzed by conformational changes of the β-subunit that occur as a consequence of the rotation.
- Since all three β subunits are functioning at the same time, the transport of 9 protons in a complete cycle produces 3 ATP (on average).
 NADH ~10 protons pumped ~ 3 ATP

N	NADH ~10 protons pumped		~ 3 ATP
F	ADH₂	~6 protons pumped	~2 ATP

Low Affinity

Anaerobic Metabolism and Inter-tissue Cooperation:

Anaerobic metabolism produces 2 ATP and 2 lactate/glucose molecule, much less than when oxygen is used as an electron acceptor.

Cooperation between muscle and liver during exercise (Cori cycle).

- a) During intense exercise muscle tissue cannot get sufficient O_2 for electron transport, it can only do glycolysis.
- b) Pyruvate is reduced to lactate, to regenerate NAD+ for glycolysis.
- c) The lactate travels to the liver, where it is oxidized to pyruvate and then used to make more glucose, which travels back to the muscle for glycolysis.

