Lecture 27 – Infections Disease II
F. Evasion Mechanisms by Viruses:

Antigenic Drift:
- HIV
- Flu (seasonal)

Antigenic Shift: Flu Virus:
- A/Fujian/411/2002 (H3N2)
- Neuraminidase → Viral release
- Hemagglutinin → Viral entry

Latency state:
- Herpes simplex (cold sores)
- Herpes zoster (chicken pox → shingles)

HIV
- Integrates into host cell DNA (Mφ, Th)

Reduction in Antigen Presentation:

MHC II: Measles, HIV
- Inhibits MHC Peptide Presentation
- Occurs at multiple steps (depends on the virus)

MHC I:
- HSV = herpes simplex virus, EBV = Epstein Barr virus (mono), HCMV = Human cytomegalovirus, HHV8 = Kaposi’s sarcoma-associated human herpesvirus 8
Dengue Virus:
1. Infection via infected mosquitoes.
2. Four different serotypes of virus, each with a distinct genome and geographical location.
3. Distinct Ab are easily raised against each serotype, and these are effective against the particular serotype.
4. They cross-react with other serotypes, but don't neutralize the virus.

Dengue Fever:
Subsequent infection—different serotype
1. Antibodies that recognize one serotype of the virus bind, but do not completely inactivate another serotype.
2. Antibody-virus complex brought into macrophages/dendritic cells via F_C receptor.
3. Cell is now infected and activates T_C and T_H-cells via MHC-viral peptides.
4. INF-γ, secreted by T_H cells recruits more macrophages and activates them. The newly arriving macrophages become infected.
5. TNF-α secreted by macrophages, causes severe local inflammation.
T-cell Subsets & T-cell Based Response to Pathogens:

T_{H1} – cellular immune response:
- IL-2: Activation of T_{CTL}
- INFγ:
 - Activation of macrophages
 - Production of IgG3 Ab
- TNFβ (=TNFα) - inflammation

T_{H2} – antibody based immune response:
- IL-5 & IL-4: Activation of B-cells
- IL-4: Class switch to IgE or IgG1

Cross-regulation by cytokines:

Intracellular Pathogens - Leprosy: Mycobacterium leprae

Which T-cell response is more effective against leprosy? Why?

Disease caused by over-reaction of T-cell

Immune Response to Bacterial components (exotoxins). Staphylococcal
Food poisoning & Toxic Shock Syndrome:

Exotoxins produced by bacteria act as "superantigens" that non-specifically activate large numbers of T cells. Toxic shock syndrome occurs with contaminated surgical dressing and long-term use of certain types of feminine hygiene products (tampons).
Chronic debilitating disease transmitted by the bite of the tsetse fly. Caused by a flagellated single celled protozoan parasite e.g. *Trypanosoma brucei*. (medical-dictionary.thefreedictionary.com)

Disease:
In the systemic phase, the parasite differentiates in the bloodstream and divides every 4-6 hours. In the neurologic phase, the parasite infects the central nervous system (CNS) causing meningoencephalitis and eventually loss of consciousness and then death.

Immune response:
During the systemic phase, antibodies are made against a protein on the surface of the parasite - variant surface glycoprotein (VSG). Antibodies eliminate the parasite by complement-mediated lysis or opsonization followed by phagocytosis.

Genetics of evasion of immune response:
1. Each trypanosome carries a large repertoire of VSG genes, each encoding a different VSG primary sequence. A trypanosome expresses only one VSG at a time.
2. Activation of a VSG gene involves duplication of the VSG gene and transposition to a transcriptionally active expression site; the previous gene is displaced.

Evasion of immune response:
1. Most of the parasites are cleared by antibody mediated mechanisms. 1% of the parasites escape killing because they bear an antigenically different VSG. These parasites proliferate and cause another wave of parasitemia.
2. In the course of a single infection, each new wave of parasitemia is able to evade the immune response to the preceding variant.

![Image of trypanosome lifecycle and immune response](image-url)
Response to Multi-cellular Parasites – e.g. Schistosomes

TH2 response:
- Sensitization results in the production of IgE antibodies, via TH2 dominated response due to IL-4 secretion from basophils.
- Activation – crosslinking of IgE on Mast Cells
- Response – degranulation of mast cell, activation of eosinophils.

Key Cell Types:
1. Basophils: Initiate response by promoting IgE synthesis.
2. Mast Cells: Immediate response for IgE-Fc-receptor activation.

Mast cells: Found in mucosal and epithelial tissues
- Have constitutively expressed high affinity Fc receptors on surface.
- Anti-parasite IgE antibodies bind to surface of mast cell.
- Crosslinking of IgE/Fc receptor complex activates mast cell, releasing:
 i) Proteolytic enzymes:
 ii) Histamine, heparin:
 iii) TNFα:
 & long-term inflammatory mediators.

Histamine binds to histamine receptors causing:
- Increase in permeability of blood vessel, allowing fluid and other immune cells to enter tissue.
- Smooth muscle contractions
- Increase of mucus flow from epithelium
- Fluid flow across epithelium

Result is fluid/mucus flow outside the body + coughing, sneezing, vomiting, diarrhea.

Eosinophils: Similar to mast cells in response.
- Fc receptors up-regulated in response to inflammation.
- IgE-antigen interactions cause release of:
 i) Collagenase, ii) Peroxidase, iii) Proteins that are neutrotoxic to parasites.

TH1 Response – Can be more effective than TH2 response.
- INFγ production activates macrophages that are effective at killing parasites.
- Evasion - Schistosomes may induce TH2 cells to produce cytokine that suppresses TH1 formation.