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It is shown that, in the Bondi-Sachs gauge that fixes the speed of incoming light rays to the value 1, the
Einstein equations coupled to a scalar field in spherical symmetry are cast into a symmetric-hyperbolic
system of equations for the scalar field, lapse and shift as fundamental variables. In this system of
equations, the lapse and shift are incoming characteristic fields, and the scalar field has three components:
incoming, outgoing and static. A constraint-preserving boundary condition is prescribed by imposing the
projection of the Einstein equation normal to the boundary at the outer value of the radial coordinate. The
boundary condition specifies one of the two incoming metric fields. The remaining incoming metric field
and the incoming scalar field component need to be specified arbitrarily. Numerical simulations of the
scattering of the scalar field by a black hole in the nonlinear regime are presented that illustrate interesting
facts about black-hole physics and the behavior of the characteristic variables of the problem.
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I. INTRODUCTION

The importance of the choice of gauge to the initial
value problem of the Einstein equations has always been
recognized, but has only recently been receiving increasing
attention in view of the significant progress achieved in the
last few years in numerical simulations of binary-black-
hole collisions.

We report here on the properties of a newly introduced
gauge for the spherically symmetric ADM problem [1].
The gauge is motivated by the Bondi-Sachs formalism [2],
which is a characteristic representation (as opposed to a
Cauchy representation) of the Einstein equations that has
been used for accurate and stable numerical simulations of
black-hole spacetimes [3,4]. In essence, the gauge is de-
fined by the ability to control one set of characteristics of
the Einstein equations, and has a considerable built-in
freedom in the speed of the characteristics. For the pur-
poses of the present work, among all possible members of
the family of Bondi-Sachs gauges [1], we pick the one that
makes the incoming speed of light take the value 1, for the
reason that this makes the resulting ADM equations take
probably their simplest form.

Additionally, in this work we allow for the presence of
matter sources—again in their simplest form, namely, that
of a scalar field—with the aim of demonstrating the nu-
merical properties of the gauge in the case of a dynamical
black-hole spacetime. The resulting coupled initial-value
problem is shown to be well posed (which is not entirely
surprising given the restriction of spherical symmetry)
and the boundary value problem leads to a constraint-
preserving boundary condition. We complement the analy-

sis by presenting illustrative and enlightening results of a
straightforward numerical implementation of the initial-
boundary-value problem for the particular situation of the
scattering of a scalar field by a black hole.

As opposed to other first-order hyperbolic renditions of
the Einstein equations in spherical symmetry (see, for
instance, [5]), our presentation is entirely framed within
the ADM formalism and is, thus, in principle, amenable to
a generalization to the general three-dimensional case with
no symmetry assumptions.

II. THE BONDI-SACHS GAUGE

Given the line element in terms of the standard 3� 1
notation [6]:
 

ds2 � ��2dt2 � �rr�dr� �
rdt�2

� r2�T�d�2 � sin2�d�2�; (1)

the (advanced) Bondi-Sachs gauge [1] with unit light speed
is achieved by the specification:

 �T � 1; (2)

 �rr �
�2

�1� �r�2
: (3)

This choice of gauge casts the line element into the form
 

ds2 � �
�2�1� 2�r�

�1� �r�2
�dt� dr�2

�
2�2

1� �r
�dt� dr�dr� r2�d�2 � sin2�d�2�: (4)

Clearly, a new coordinate defined as

 v � t� r (5)
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is such that its level surfaces are null (since there is no term
proportional to dr2). Thus, the incoming light speed has the
value 1. Formally changing coordinates �t; r� ! �v; r̂� with
r̂ � r and adopting what is standard notation for line
elements using a null coordinate we have

 ds2 � �
V
r̂
e2�dv2 � 2e2�dvdr̂� r̂2�d�2 � sin2�d�2�:

(6)

Here

 e2� �
�2

1� �r
(7)

defines �, one of the standard (original) variables of the
Bondi-Sachs approach to gravitational radiation [2], which
should not be confused with the shift �r (also standard
notation in the ADM approach [6] to the initial value
problem in general relativity!). This assumes that 1�
�r > 0. Additionally, we have

 

V
r
�

1� 2�r

1� �r
(8)

which defines the other relevant Bondi-Sachs variable. The
(advanced) Bondi-Sachs (unit) gauge is thus defined by the
requirement that the incoming light rays have speed equal
to 1. (The general Bondi-Sachs gauge in advanced (re-
tarded) form prescribes the incoming (outgoing) light
speed in an arbitrary manner as a function of r [1].) The
gauge is specified irrespective of coordinates, so we will
make use of either the time slicing �t; r� or the null slicing
�v; r̂� depending on convenience. Our final results will be
expressed in the time slicing.

III. THE EINSTEIN EQUATIONS IN THE
BONDI-SACHS GAUGE

We will be interested ultimately in the coupled problem
of a scalar field� and the gravitational field in terms of the
metric gab. This will require that we write the Einstein
equations with sources for the metric, and the standard
wave equation on curved spacetime for the scalar field. In
this Section we derive the explicit form of the Einstein
equations in the Bondi-Sachs gauge in the presence of the
stress-energy tensor Tab of a scalar field.

The stress-energy tensor is given by

 Tab � ra�rb��
1

2
gabrc�rc�: (9)

As has been shown previously [1], the Einstein equa-
tions in the Bondi-Sachs gauge in a time slicing (that is, in
3� 1 form) are much more easily written by starting with
the equations in the null slicing (the Bondi-Sachs equa-
tions) and transforming to the time slicing afterward. Thus
we start with the metric element (6). As there is a one-to-
one correspondence between the ADM variables ��;�r�
and the Bondi-Sachs variables ��;V�, the translation from

the Bondi-Sachs equations to the 3� 1 equations is almost
immediate. We follow the procedure in [1] with the only
addition of a matter source.

We start with the Bondi-Sachs equations. These are

 Gr̂ r̂ � 8�Tr̂ r̂ (10)

for �, and

 gr̂ r̂Gr̂ r̂ � 2gvr̂Gvr̂ � 8��gr̂ r̂Tr̂ r̂ � 2gvr̂Tvr̂� (11)

for V. Explicitly they read, respectively,
 

�;r̂ � 2�r̂�;r̂�;r̂ (12a)

V;r̂ � e2�: (12b)

These are evolution equations for � and V along null
geodesics on the slice of fixed value of v. Data for these
equations consists of the values of � and V at a surface of
fixed value of r̂. The data are not free, however, as there is
one constraint arising from the component

 Gr̂
v � 8�Tr̂v (13)

of the Einstein equations, which is preserved by the evo-
lution Eqs. (12). This has the explicit form:

 2V�;v � V;v � 8�r̂2

�
�;v�;v �

V
r̂
�;v�;r̂

�
: (14)

The constraint thus takes the form of an evolution equation
restricted to the starting data surface. In practice, one may
prescribe freely the value of V, for instance, all along the
surface of fixed value of r̂, and then use this constraint to
calculate the values of � on this surface, of which only the
value at v � 0 is needed.

In order to obtain an initial value problem in a time
slicing, we now transform the coordinates from �v; r̂� into
�t; r� and the variables from ��;V� to ��;�r� by means of
(7) and (8). The result is
 

_�� �;r � ��
�
�2 � 1� 2�r

2r
� 2�r� _���;r�

2

�
(15a)

_�r � �r;r �
1� �r

r
��2 � 1� 2�r�: (15b)

These are first-order time-dependent evolution equations
for the lapse and shift requiring data at t � 0. The principal
terms of the equations are decoupled for the lapse and shift.
This means that the problem is well posed and that the
lapse and shift themselves are characteristic fields [7].
From the equations themselves one can read the value of
the characteristic speeds. Both the lapse and shift propa-
gate inwardly at speed of value 1 (the incoming light
speed). The problem is, trivially, symmetric hyperbolic [7].

The data at t � 0 are not free, but they must satisfy a
constraint that arises from translating Eq. (14) into the
ADM language and coordinates. This is
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0 � C � �r;r �
1� 2�r

�
�;r �

��2 � 1� 2�r�
2r

� 2�r� _�2 � �1� 2�r��;r
2�: (16)

This is a first-order differential constraint on the lapse and
shift. As a consequence of the Bianchi identities and the
conservation of the stress-energy tensor one has ra�Gab �
8�Tab� � 0 which implies a propagation equation of the
form

 

_C� C;r � . . . (17)

for the constraint, where . . . represent undifferentiated
terms in the constraint itself, and terms proportional to
the evolution equations (15) or their derivatives. As a
result, the constraint propagates inwardly at the speed of
light whenever the evolution equations (15) are satisfied.
Thus, the constraint need only be imposed on the initial
values of the lapse and shift.

IV. THE WAVE EQUATION IN THE BONDI-SACHS
GAUGE

In this Section we derive the explicit form of the wave
equation in curved spacetime in the Bondi-Sachs gauge. As
the wave equation is a scalar equation, it is convenient to
use the null slicing �v; r̂� at first, as the metric and connec-
tion coefficients are much simpler in null coordinates, and
eventually transform to the time slicing.

The wave equation has the form

 gabrarb� � 0: (18)

Explicitly, using the line element (6), this reads

 2�;vr̂ �
V
r̂
�;r̂ r̂ �

�
V;r̂
r̂
�
V

r̂2

�
�;r̂ �

2

r̂
�;v � 0: (19)

By virtue of the Einstein equations in the null slicing,
Eqs. (12), the quantity V;r̂ can be substituted in terms of
undifferentiated terms:

 2�;vr̂ �
V
r̂
�;r̂ r̂ �

�
e2�

r̂
�
V

r̂2

�
�;r̂ �

2

r̂
�;v � 0: (20)

Now we transform coordinates from �v; r̂� into �t; r�:

 

�

�
2�

V
r

�
��� 2

�
1�

V
r

�
_�;r �

V
r
�;rr �

2

r
_�

�

�
e2�

r
�
V

r2

�
��;r � _�� � 0: (21)

Finally, we express the Bondi-Sachs variables ��;V� in
terms of the ADM variables ��;�r� via Eqs. (7) and (8),
obtaining:

 0 � ��� 2�r _�;r � �1� 2�r��;rr �
2

r
�1� �r� _�

�
�2 � 1� 2�r

r
��;r � _��: (22)

V. THE WAVE EQUATION COUPLED TO THE
EINSTEIN EQUATIONS IN THE BONDI-SACHS

GAUGE

As the combined problem stands, Eqs. (15) and (22), it
makes sense as a hyperbolic Cauchy problem for the metric
variables and the scalar field �. We can reduce the differ-
ential order of the problem without affecting its principal
part, simply by defining the derivatives of the field � as
new variables:
 

P � _�; (23a)

Q � �;r: (23b)

Substituting everywhere into (15) and (22), we find
 

_� � �;r � �
�
�2 � 1� 2�r

2r
� 2�r�P�Q�2

�
(24a)

_�r � �r;r �
1� �r

r
��2 � 1� 2�r� (24b)

_P � 2�rP;r � �1� 2�r�Q;r

�
�2 � 1� 2�r

r
�Q� P� �

2

r
�1� �r�P (24c)

_Q � P;r (24d)
_� � P: (24e)

The coupled system of equations has a block-diagonal
principal part:
 

_� � �;r (25a)
_�r � �r;r (25b)
_P � 2�rP;r � �1� 2�r�Q;r (25c)
_Q � P;r (25d)
_� � 0 (25e)

which implies that the characteristic speeds and fields of
the metric equations are decoupled from those of the scalar
field problem. Thus, the eigenvalue problem of each block
can be solved separately. We already know that the first two
equations in this set have incoming characteristic speed of
1 with � and �r as the characteristic fields. The last three
equations, corresponding to the scalar field problem, have
the following characteristic speeds and eigenvectors, ex-
pressed in the form ��;P;Q�t:

(i) Speed of 0, with eigenvector �1; 0; 0�t and corre-
sponding characteristic field

 Û 0 � �: (26)
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(ii) Incoming speed of 1 (light speed), with eigenvector
�0; 1; 1�t and corresponding incoming characteristic
field

 Û � � P� �1� 2�r�Q: (27)

(iii) Speed of 1� 2�r (light speed), with eigenvector
�0;�1� 2�r; 1�t and corresponding characteristic
field

 Û � � P�Q: (28)

This field will be outgoing for values of r such that
1� 2�r > 0, static wherever 1� 2�r � 0, and
incoming for values of r such that 1� 2�r < 0.

There are two constraints to be imposed on the initial
data:
 

0 � �r;r �
1� 2�r

�
�;r �

��2 � 1� 2�r�
2r

� 2�r�P2 � �1� 2�r�Q2� (29)

 0 � �;r �Q: (30)

The coupled problem is, thus, strongly hyperbolic and,
therefore, well posed. This may seem unexpected, as
spherically symmetric renditions of the ADM equations
have been widely used by now, especially for numerical
applications. Most applications have used versions of the
reduced problem in which the ADM sector of the equations
are ordinary radial equations (as in [8], for instance). In
cases when time-dependent versions of the equations have
been used, their well-posed character has not been recog-
nized. In particular, the work of [9] has a very close
relationship with the present work. In [9], the authors
examine the ADM problem related to the ingoing Bondi-
Sachs problem within the context of Cauchy-characteristic
matching, in which a 3� 1 scheme is used to integrate the
Einstein equations in a finite region, and characteristic
approaches are used outside the outer radius and within
the inner radius. As opposed to our present work, in the
‘‘Cauchy region’’ the authors use �rr and a component of
the extrinsic curvature K�

� as fundamental variables for the
ADM equations. As the transformation from these fields to
lapse and shift is one-to-one, the ADM equations for these
variables (numbered (4.4) and (4.5) in [9]) are equivalent to
(24a) and (24b). In contrast with our choice, the resulting
characteristic speeds are not constant and the equations
have a significantly more complicated appearance.

VI. BOUNDARY CONDITIONS

One of the main applications of the coupled system of
Eqs. (24) would be for numerical simulations of black-hole
spacetimes. Such simulations usually implement a numeri-
cal code in a finite spatial region, extending from an inner

radius rin out to an outer radius rout, and require appropriate
handling of boundary values. As the system is well posed
and all the characteristic fields are known, appropriate
boundary conditions can be found in this case.

A. Outer boundary

All the incoming fields (traveling towards decreasing
values of r) require the prescription of values at the outer
radius rout [7]. In this case, this includes the variables �, �r

and U�. The boundary values of the incoming variables at
the outer radius are not completely arbitrary, however, due
to the presence of the constraint C which itself propagates
inwardly. The presence of an incoming constraint implies
the existence of one constraint-preserving boundary con-
dition at the outer radius [10]. In this case, the constraint-
preserving boundary condition is readily spotted, as it must
be the same as the constraint (14) of the Bondi-Sachs form
of the Einstein equations. Changing coordinates from �v; r̂�
into �t; r� and transforming the Bondi-Sachs metric varia-
bles into ADM metric variables via (7) and (8) we have

 

_� r �
�1� 2�r�

�
_� � 4�rP��rP� �1� 2�r�Q� (31)

This boundary condition is exactly the component Gr̂
v �

8�Tr̂v of the Einstein equations in coordinates �v; r̂�, which
is equal to the component Gr

t � 8�Trt in coordinates �t; r�.
So one can see that the constraint-preserving boundary
condition is the projection of the Einstein equation perpen-
dicularly to the boundary of fixed value of r, as could be
expected [11]. Equivalently [11], this boundary condition
can also be found by substituting, in C, all the radial
derivatives in terms of time derivatives by means of the
evolution equations (24). This procedure for finding the
boundary condition provides a basis for interpreting the
boundary condition as the vanishing of the constraint on
the boundary.

The boundary condition prescribes the time derivative of
one (or a combination) of the two metric incoming fields,
and is interpreted as an evolution equation along the outer
boundary for either one of the two incoming metric fields.
The remaining metric field, as well as the incoming scalar
field Û�, are arbitrary, but their values must be prescribed
in order for there to exist a unique solution. The outgoing
field Û� and the static field � cannot be prescribed arbi-
trarily, as their boundary values at the outer radius are
determined by their own values on the initial slice [7].

As per inspection of Eq. (31), an outer boundary condi-
tion linking the values of the lapse and shift remains even
in the vacuum case, namely, when� � 0 throughout in the
region of interest. Of course, as per well-known theorems,
there is no gravitational radiation in the spherically sym-
metric vacuum case, and the only solution of the Einstein
equations is the Schwarzschild metric, up to coordinate
transformations. So the question arises as to what role the
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boundary condition plays in the vacuum case. The answer
lies in the fact that in this (as in any) initial-boundary value
problem, the solution is not entirely determined by the
initial data, but depends on incoming boundary values as
well. Any prescription of initial data consistent with the
constraint (16) in vacuum corresponds to a slice of
Schwarzschild spacetime in a particular choice of radial
and time coordinates. However, the choice of coordinates
is not completely specified by the data on one slice (a
freedom of one function of a real variable remains). If in
addition one were to prescribe boundary values for the
lapse and shift that were not consistent with the boundary
condition (31), there would be no global coordinate trans-
formation of the radial and time coordinates (with the
appropriate smoothness) that would take the resulting so-
lution into the standard form of the Schwarzschild metric.
The boundary condition (31) plays as leading a role as the
initial constraint in guaranteeing that there exists a coor-
dinate transformation that takes the solution of the initial-
boundary value problem into the standard form of the
Schwarzschild metric.

B. Inner boundary

At the inner boundary, values must be prescribed for all
outgoing fields (traveling towards increasing values of r) in
order to completely specify the solution [7]. There is only
one outgoing field in this problem and it is a scalar field
component, Û�. The boundary values of the scalar field
components are not determined by the Einstein equations;
in fact, Eq. (31) must be an identity when applied at the
inner boundary rin. Thus the value of Û� � P�Q can be
specified arbitrarily, in generic situations where its charac-
teristic speed remains ‘‘outgoing’’, i.e., so long as 1�
2�r > 0 for all values of r in the interval �rin; rout�.

This does not apply to black-hole situations, where light
rays are all incoming in the black-hole region. A black-
hole situation results in our scheme when the outgoing
characteristic speed 1� 2�r changes sign in the interval
rin < r< rout, as it would if the underlying spacetime was,
for instance, Schwarzschild. In a black-hole situation, the
characteristic speed of the field Û� � P�Q turns from
outgoing, to zero, to incoming as the value of r decreases
within an interval containing the radius of the apparent
horizon [12], as illustrated in Fig. 1. Thus, if the inner
radius rin is smaller than the radius of the apparent horizon,
the inner boundary values of all the fields in the problem
are determined by their initial data and cannot be assigned
arbitrarily. In practice, this means that the boundary values
must be calculated in a manner consistent with the initial
data, otherwise the solution-generating mechanism will be
unstable. One way to obtain consistent inner boundary
values is explained in Sec. VII.

Because no characteristic fields propagate towards in-
creasing values of r at the inner boundary in a black-hole
situation, the advanced Bondi-Sachs gauge belongs to the

type of horizon-penetrating gauges of widespread use in
numerical simulations [13].

VII. NUMERICAL APPLICATION

To illustrate the suitability of the problem to numerical
simulations, we apply the system of equations derived in
Sec. V to the problem of the scattering of a scalar field by a
black hole, starting with Eqs. (24) but written in terms of
g � r� and the associated characteristic fields U� �
g;t � g;r, U� � g;t � �1� 2�r�g;r. In terms of these var-
iables the equations read

 

_�2 � �2
;r � �

2

�
�2 � 1� 2�r

r
�

4�
r

�
U� �

g
r

�
2
�

(32a)

_�r � �r;r �
1� �r

r
��2 � 1� 2�r� (32b)

_U� � ��1� 2�r�U�;r (32c)

�
�2 � 1� 2�r

r

�
U� �

g
r

�
(32d)

_U� � U�;r �
�2 � 1� 2�r

r

�
U� �

g
r

�
(32e)

_g �
U� � �1� 2�r�Û�

2�1� �r�
(32f)

with two initial constraints

 

ri r r
H o

FIG. 1. Propagation of the characteristic field U� in a black-
hole situation. The apparent horizon is at r � rH. The character-
istic speed 1� 2�r is positive for r > rH , zero at r � rH and
negative for r < rH . The field travels towards increasing values
of r outside of the horizon, and towards decreasing values of r
within the horizon.
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0 � �1� 2�r��2
;r � 2�2�r;r �

�2

r
��2 � 1� 2�r�

�
4��2

r

�
� _g�2 � �1� 2�r�

�
g;r �

g
r

�
2
�

(33a)

g;r �
U� �U�

2�1� �r�
; (33b)

and one constraint-preserving outer boundary condition
 

0 � �1� 2�r� _�2 � 2�2 _�r

�
8�
r
�2 _g

�
�r _g� �1� 2�r�

�
g;r �

g
r

��
: (34)

In the right-hand side of Eqs. (33a) and (34), the occur-
rences of _g and g;r are to be read only as a short-hand for
the right-hand sides of Eqs. (32f) and (33b), respectively.
In Eqs. (32) and for the remainder of this work, we use the
notation _�2 � @��2�=@t.

A. Initial data

We construct initial data that satisfy the constraints by
setting �r to the form corresponding to a Schwarzschild
black hole of mass M,

 �r �
2M

r� 2M
: (35)

For all the simulations that follow, the value of M is set to
1. The ansatz for the initial profile for g0 is a compact pulse
of the form

 g0 � A
��r� r1��r� r2��

4

�12 �r2 � r1��
8

; (36)

at t � 0, for rin < r1 < r< r2 < rout, and g � 0 else-
where. We pick values for U� and U� that make _g � 0
on the initial slice. In practice, we evaluate the radial
derivative g;r numerically from the ansatz g0, which gives
us the left-hand side of Eq. (33b), and set _g � 0 in the left-
hand side of Eq. (32f). With the given values of �r as
above, the initial values ofU� andU� are then determined
from the two resulting linear equations.

B. Integration scheme

Our integration scheme is guided by the following per-
haps nontrivial observation pertaining to a Schwarzschild
simulation. In the absence of a scalar field, namely, for a
Schwarzschild black hole, the lapse � and the shift �r are
related by �2 � 1� �r. Using X � �2, the evolution
equations for � and �r are thus equivalent to the single
PDE

 

_X � X;r �
X�1� X�

r
; (37)

and the solution is X � r=�r� 2M�. This has the form of a
compactified radial coordinate frequently used in charac-

teristic evolution [14]. By expressing the radial derivatives
as @r � X;r@X, it is very straightforward to construct an
algorithm that will automatically satisfy _�2 � _�r � 0 for
Schwarzschild, regardless of what discretization stencil we
choose for the radial derivatives, or of what particular time-
integration method we implement. The use of this com-
pactified coordinate allows us to implement an integration
scheme that, when turning off the matter sources, simulates
a Schwarzschild black hole to an extreme accuracy for any
length of time.

In our implementation, we use a grid based on the
compactified coordinate X with M � 1. The radial grid
points are given by Xi � Xin � �i� 1��X, for i � 1 . . .N,
where �X � �Xout � Xin�=�N � 1�. We solve the coupled
system, Eqs. (32) by writing, e.g.

 U�;r ji � U�;XX;rji: (38)

The Jacobian X;r at the point Xi is computed analytically,
and the derivative U�;X is approximated by upwind second-
order finite differences. We compute the derivative of U�,
which changes its direction of propagation at the horizon,
by choosing between left-sided (D�U�) and right-sided
(D�U�) finite differences according to the sign of the
characteristic speed v � 1� 2�r,

 vU;Xji � H�v�vD�Ui �H��v�vD�Ui (39)

Only right-sided derivatives are needed for the fields �, �r

and U�. We integrate the resulting ODEs in time with an
explicit fourth-order Runge-Kutta method [15]. Since the
time-integration method is explicit, the time-step is limited
by the Courant condition, which, by inspection of the
principal part of Eq. (32), is �t 	 �r. In our simulations
we have kept the time-step constant throughout the simu-
lation, and given by �t � ��r0, where �r0 is the grid
spacing at the left edge of the grid (the smallest value of
�r). We set � � 1

4 , within the stable range for the scheme
used.

The use of the compactified radial coordinate X leads to
increased resolution near the black hole. On the down side,
grid points are spread further apart towards the outer edge.
This could pose a potential problem if we were to extend
the radial grid sufficiently far out, in sharp contrast with the
characteristic formulation, where the outer boundary can
be put at null infinity. In our simulations, the outer edge of
the grid is at r � 20, not far enough to encounter any
problems, i.e.: the fields are well resolved in the entire
grid (refer to Subsection VII F for details).

C. Inner boundary

We set the inner boundary inside the horizon (rin < 2M)
of the initial black hole, typically at rin �

3
2M. Since at the

inner boundary all fields are either ingoing or have zero
characteristic speed, it is consistent to approximate the
radial derivatives in Eqs. (32) with upwind (one-sided)
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finite difference stencils using grid points at, and to the
right of, the boundary.

D. Outer boundary

At the outer boundary, which we take to be at rout �
20M, we enforce the constraint-preserving boundary con-
dition by solving (34) for �, given �r, U� and U�.
Because the field U� is outgoing, it is consistent to use
an upwind discretization at the boundary of the corre-
sponding evolution equation, i.e. involving points at, and
to the left of, the boundary. The values of the incoming
fields �r and U� can be specified freely. Currently, little if
anything is known about how boundary values relate to
specific physically motivated solutions of the Einstein
equations with given initial data. For actual simulations,
thus, some reasonable assumption must be made, whose
validity can only be verified after the fact. In practice we
achieve a stable evolution, with no significant reflections at
the outer boundary, by calculating the boundary values of
the incoming variables using the evolution equations (32b)
and (32e) with the radial derivatives entering in the evolu-
tion equations approximated at the last grid point with left-
sided stencils (as opposed to right-sided stencils, which are
used in the interior points). Physically, this corresponds
loosely to the condition of an ‘‘open’’ boundary (like the
open end of a pipe in the case of sound waves).

E. Tests of convergence

To calibrate the accuracy of the numerical implementa-
tion, given initial data, we perform simulations at increas-
ing resolution and compare the results. The initial data in
these tests are given by a pulse (36) with amplitude A �
5
 10�2, and support between r1 � 4 and r2 � 8. We
carry out simulations on 200, 400, 800 and 1600 grid
points, up to a fixed time tf � 4:0 (for a total of 17 400
time-steps on the finest grid). For each resolution but the
finest, we estimate the error by subtracting the field values
at tf on the finest grid. The dominant source of error is the
(second-order) spatial discretization of the radial deriva-
tives, rather than the (fourth-order) time-integration
scheme. Each time we refine the grid by a factor of 2, we
expect the error to decrease by a factor of 4. Figure 2 shows
that this is the case, as the various errors (the difference
between the numerical solution at time tf for each grid,
minus the values on the same set of points on the reference
run at 1600 points), when scaled up by the appropriate
factor (1,4, and 16, respectively), overlap. We illustrate
here the convergence of the algorithm only with the char-
acteristic field � because it is the most intuitive, but we
have verified the convergence rate of all fields. Performing
runs at successively finer resolutions serves not only to
validate the convergence of the numerical algorithm; it also
allows us to put error bars in the results. In all subsequent
graphs in this article a grid of 3000 points is used.

F. Evolution of the characteristic fields in the nonlinear
regime

Using the same initial radial profile for g as in the
previous subsection, we track the evolution of the charac-
teristic fields �, U�, U�, � and �r.

Figure 3 shows� as a function of r and t, with the initial
value at the bottom right edge of the figure (time running
towards the upper left corner). One can see that the initial
pulse splits into an incoming and an outgoing secondary
pulses, with the incoming secondary pulse reaching the
inner boundary of the grid at about t � 7, and the outgoing
pulse leaving the numerical grid by t � 25. The reason
why a characteristic field with zero speed like � shows
secondary traveling behavior is to be found in the coupling
of � to traveling characteristic fields through undifferen-
tiated terms in the right-hand side of Eq. (32f). The mathe-
matics of this phenomenon are similar to the effects of
driving forces in the simple harmonic oscillator.

This traveling behavior in � has an added benefit to
simulations based on a compactified radial coordinate, as it
helps offset the loss of resolution that would otherwise
result at the outer edge of the grid. The behavior of the
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FIG. 2 (color online). Error in � at t � 4:0, for initial data
consisting of a pulse (36) with amplitude A � 5
 10�2, and
support between r1 � 4 and r2 � 8. We plot the difference
between values obtained on grids with N � 200, 400, 800 points,
and a reference simulation with N � 1600 points. The error
values for 400 and 800 points have been scaled by a factor of 4
and 16, respectively. The agreement shows the code is second-
order convergent, as dictated by the order of discretization of the
radial derivatives.
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outgoing component of � is driven entirely by the propa-
gation of U�, from the right–hand side of Eq. (32f). The
characteristic speed of U� increases with r, from zero at
the apparent horizon to roughly 0.8 at the outer edge. This
coordinate dependence of the propagation speed causes the
outgoing pulse to expand. By the time the outer edge of the
outgoing pulse reaches r � 20M, at approximately t � 18,
the pulse spans approximately 35 grid points in a grid of
N � 400 points, thus it is always well resolved, in spite of
the fact that the grid points spread farther apart towards the
outer edge.

For the same initial data, Fig. 4 shows the behavior of
U� in time, from the initial profile (lower right edge of the
figure) as the pulse moves towards the outer boundary
(time runs up along the lower left edge of the figure). At
t � 25, the pulse has crossed the outer boundary and left
the grid. The behavior is consistent with an outgoing field
in the presence of very weak lower-order coupling to a
zero-speed field (see Eq. (32d)). Clearly visible in Fig. 4 is
the change in propagation speed, as per Eq. (32d), which
increases as the field propagates out towards decreasing �r

values. This behavior is also visible in Fig. 3, with the
outgoing component of � consisting mainly of the contri-
bution from U�.

Figure 5 shows the behavior of U� in time, from the
initial profile at t � 0 along the lower right edge of the
figure, as the pulse moves towards the left boundary, until
t � 25. By t � 5, the pulse has crossed the inner boundary
and left the grid. This behavior is consistent with an
incoming field in the presence of very weak lower-order
coupling to a zero-speed field (see Eq. (32e)). It is clear

from the graph that the incoming field U� travels at
constant velocity �1.

In all cases, there is no observable reflection of either of
the fields �, U� or U� from the inner or the outer
boundary.

 

FIG. 4 (color online). Evolution of U�, scaled by a factor of
10, from t � 0 until t � 25, by which time the pulse has crossed
the outer grid boundary.

 

FIG. 5 (color online). Evolution of U�, scaled by a factor of
10, from t � 0 until t � 25. Note that by t � 5 the ingoing pulse
has crossed the inner boundary of the grid.

 

FIG. 3 (color online). Evolution of �, scaled by a factor of
100, from t � 0 until t � 25, by which time the outgoing
component of the pulse has crossed the outer grid boundary.
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Figure 6 shows the behavior of �2 in time, from the
initial distorted black-hole configuration at the lower right
edge of the figure to a time where the black hole relaxes to
the final configuration. The initialization process solves the

constraint (33a) for � while keeping �r at Schwarzschild
values, hence all the distortion is in the metric function �.
As the scalar field propagates through the grid, some of it
falling into the black hole and the rest being radiated away,
the distortion transfers back and forth from � to �r, until
the metric settles down into the configuration correspond-
ing to a black hole with larger mass. In this figure the
effects of the coupling of the lapse to the outgoing fieldU�

through driving (undifferentiated) terms are very promi-
nent. The lapse is formally classified as an incoming field,
yet it does develop a significant outgoing component which
can be seen traveling out and leaving the grid at about t �
20.

The behavior of �r as a function of time from the initial
slice until the final time tf � 25 is shown in Fig. 7. By far,
the most interesting information to be gathered from the
shift’s behavior is the location of the horizon. This is
explained in the next subsection.

G. Tracking the horizon in a nonlinear dynamical
situation

In the Bondi-Sachs gauge, the horizon is located where
the shift �r takes the value 1

2 . Initially, the horizon is
located at r � 2. As part of the energy of the scalar field

 

FIG. 7 (color online). Evolution of �r, scaled by a factor of 10,
from t � 0 until t � 25, by which time the initial pulse in � has
either fallen into the black hole or it has crossed the outer grid
boundary.
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FIG. 8. The apparent horizon rH , as determined by solving
�r�rH� �

1
2 during the evolution. Note the jumps in the horizon

value as the leading and trailing edge of the pulse fall into the
black hole, thus increasing its mass.

 

FIG. 6 (color online). Evolution of �2, scaled by a factor of 10,
from t � 0 until t � 25, by which time the initial pulse in � has
either fallen into the black hole or it has crossed the outer grid
boundary.
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falls into the black hole, the horizon increases in area, and
this increase can be tracked as a function of time.

This behavior is clearly seen in Fig. 8. We show here
only the early part of the evolution. Note the ‘‘steps‘‘
clearly visible in the profile, corresponding to the leading
and trailing edge of the pulse (where the energy is con-
tained) falling into the black hole. After the last time shown
here, the profile remains essentially constant, except for
small increments in the black-hole mass that register when
reflections off the outer boundary (due to numerical noise)
reach the apparent horizon. (Such reflections converge
away with increasing resolution.)

Figure 9 illustrates the change in area, for the same
initial data discussed in previous subsections. The graph
shows the shift �r at t � 0 (solid line) and at t � 25
(dotted line). At the later time, the horizon is at rH �
2:3706. Identifying the later configuration with a
Schwarzshild black hole leads us to a mass M � rH=2 �
1:1853. The shift of an M � 1:1853 Schwarzshild black
hole is in excellent agreement with the profile at the later
time.

Figure 10 shows a similar plot for the lapse function �,
displaying the change in the square of the lapse, �2,

between the initial and final configuration for the same
initial data. The initial configuration, the solution of the
initial constraint, deviates significantly from the profile
expected from a Schwarzschild black hole, which is clear
evidence of the nonlinearity of the situation considered. At
the last time shown, where most of the energy of the field
has either fallen into the black hole or has been radiated out
of the grid, the lapse approaches the profile corresponding
to a black hole of mass Mf � 1:1853, in agreement with
the value of Mf obtained from the shift �r. Note however
that, because there is still a small amount of scalar field left
outside the horizon, we do not expect to see perfect agree-
ment between the evolved profiles for � and �r and the
corresponding metric functions for a Schwarzschild black
hole of mass Mf � 1:1853.

H. Conservation of the constraints

The constraint (33a) is not enforced during the numeri-
cal simulation, but is preserved by the evolution scheme. It
should then converge to zero to the order of the discretiza-
tion used. To verify convergence of the constraint to second
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FIG. 9 (color online). The shift �r, showing the change in the
location of the horizon, �r � 1

2 , from r � 2 initially (t � 0,
solid line), to r � 2:3706 � 2Mf at t � 25:0 (circular markers).
The final profile is overlaid with the shift for a Schwarzschild
black hole of mass M � 1:1853 (dashed line), showing excellent
agreement.
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FIG. 10 (color online). Change in the lapse � for a pulse of the
form (36) with amplitude A � 5
 10�2, and support between
r1 � 4 and r2 � 8. The initial (solid line) and final profile
(circular markers) are shown. The final profile is in good
agreement with the lapse for a Schwarzschild black hole of
mass Mf � 1:1853 (dashed line), corresponding to black-hole
mass read from the condition �r � 1

2 at t � 25.

SIMONETTA FRITTELLI AND ROBERTO GÓMEZ PHYSICAL REVIEW D 75, 044021 (2007)

044021-10



order (which is the order of the spatial discretization), we
plot in Fig. 11 the constraint (33a) for the same four grid
sizes used in Fig. 2 at time 3.0, i.e., at a time where the
fieldsU� andU� have not yet left the grid, and most of the
constraint violation is located near the black-hole horizon.
We plot, as a function of the radial coordinate r, the
difference of the constraints between consecutive finer
grids, e.g. C200 � C400, scaled by the square of the grid
refinement ratio with respect to the coarsest grid (200
points). The profiles for the three different curves (shown
as dashed, dotted and solid lines in the graph) are scaled by
factors of 1, 4 and 16, respectively. The scaled profiles
overlap as expected, confirming that the constraint is in-
deed preserved and converges to second order.

Figure 12 shows the constraint C, monitored during the
evolution of the same pulse. It is clear from the graph that
the constraints propagates inward, with speed �1, as in-
dicated in (17). The constraint on the initial time (not
shown) is zero, since Eq. (33a) has been used to solve for
the initial lapse �2. Its profile at subsequent times is con-
sistent with the location of the pulse, and propagates
inwards towards the left grid boundary, without any visible
reflections. At later times, i.e. t � 25, there is a visible
contribution arising on the outermost grid boundary, which

eventually propagates inwards. Readers with a lay back-
ground in numerical techniques should not regard these
‘‘constraint violations’’ as actual violations of the con-
straint in the evolution of the continuous equations, since,
by our convergence analysis of the previous paragraph,
these apparent constraint violations converge to zero in
the order of the discretization. Still, they are useful in
illustrating the propagation of real constraint violations
(larger than the order of the discretization), should one
choose to implement them.

Strictly speaking, Fig. 11 shows that the constraint con-
verges to some value, but not necessarily to zero. We argue
that convergence to a value other than zero can not happen
if the discretization of the system of equations is consis-
tent. To show that the constraint does in fact converge to
zero, we need simply look at the constraint values as a
function of grid size, and to verify that the constraint
effectively decreases with increasing resolution. We would
expect the constraint to converge to the same order as the
discretization of the evolution equations, provided that not
just the fields, but also the derivatives (which enter in the
constraint) are also in the convergence regime.

In addition, Fig. 11 shows the constraint (rather, their
relative differences) at a time when the pulse has not yet
left the grid, and it does not address the question of whether
the boundary condition has any effect on convergence of
the constraint at later times. This can be decided by looking
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FIG. 11 (color online). Convergence of the constraint (33a),
illustrated at t � 3:0. The four grid sizes used in Fig. 2, 200, 400,
800 and 1600 points, are used. We plot the difference between
consecutive grids, scaled by the appropriate factor. The differ-
ences overlap, confirming second-order convergence of the
constraint.

 

FIG. 12 (color online). The constraint, Eq. (33a), scaled by a
factor of 104, monitored during the evolution, shows the proper
propagation speed of �1, as per Eq. (17). There is an outgoing,
component essentially determined by the fieldU�. The incoming
feature seen at later times arises from the interaction of this
component and the outer boundary condition.
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at the maximum absolute value of the constraint over the
grid as a function of time for various grid sizes (N � 1000,
2000 and 4000 points), as displayed in Fig. 13. The graph
shows that the constraint is in fact bounded during the
evolution and that it decreases with increasing resolution,
as expected, even during and after the pulse goes through
the outer boundary.

In Fig. 14 we show the constraint at various grid sizes
(N � 400, 800 and 1600 points), at t � 30, a time at which
any effect introduced by the boundary condition would be
manifest. The constraint over the grid clearly decreases
with increasing resolution, even after the outgoing part of
the scalar pulse has crossed the boundary and the boundary
condition has clearly been used. The boundary condition
can be said, in this respect, to be constraint preserving.

We show also in Fig. 15 the profiles of the constraint at
t � 30 for three different resolutions: Nc � 2000 (circles),
Nm � 2500 (squares) and Nf � 3000 (continuous line).
The lines in the plot have been appropriately scaled, i.e.
multiplied by a factor of ��Ni � 1�=�Nf � 1��2, recall that
the grid spacing is inversely proportional to N � 1, and
thus we would expect the profiles for the three resolutions
to agree after this rescaling, if the constraint converges to
zero to second order, as in fact we see in Fig. 15.

Further insight on the nature of the solution at later times
can be gleaned from Fig. 16, which shows the scalar field at
t � 30 at three resolutions: Nc � 400, Nm � 800 and
Nf � 1600. The lowest resolution shows clearly visible
oscillations in the range 4< r < 9. However, the ampli-
tude of these oscillations decrease rapidly with increasing
resolution, so they can be seen to be discretization errors
which converge to zero. Furthermore, when we track these
oscillations back in time, we see that they originate at the
front and tail end of the initial pulse.

It is clear that errors in the computation of the fields lead
in turn to constraint violations, but provided these errors
are also convergent, this is not a problem, and should in
fact be expected. The error for a given resolution, to a good
approximation, can be estimated as the difference between
the profile at that grid size and that of a reference run with
N � 3000 points. Figure 17 shows the estimated errors on
the scalar field for the same grid sizes of Fig. 16, appro-
priately scaled to demonstrate proper second-order con-
vergence. Similar behavior can be seen for the remaining
fields (�2, �r, U�, U�), not shown here. The relation
between the second-order convergent error of the scalar
field (and of the remaining fields) and that of the second-
order convergent constraint is naturally obscured by the
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FIG. 13 (color online). The maximum absolute value of the
constraint over the grid, jCj1 as a function of time, for the
resolutions N � 1000, 2000 and 4000. The graph shows that the
constraint violation decreases with increasing resolution during
the entire evolution, even after the outgoing part of the pulse has
crossed the outer boundary.
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FIG. 14 (color online). The constraint, Eq. (33a), shown here
at t � 30 on various grids sizes. The graph shows that the
constraint violation decreases with increasing resolution, at a
time when the outgoing part of the pulse has crossed the outer
boundary.
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differential nature of the constraint. Nevertheless, we hope
the present discussion makes it clear that they are indeed
related, that is, for a well-posed initial-boundary value
problem with boundary conditions which preserve the
constraints, any constraint violation which results from
discretization errors will converge to zero as the simulation
becomes better resolved. We stress that we do not claim to
have presented a boundary condition that is a perfect
absorber (so that no field is reflected at the boundary).
Any constraint violation present at the discretization level
may ‘‘bounce‘‘ off the boundary. In fact, there is a clearly
visible incoming constraint violation in Fig. 12, which
appears to originate at the boundary. This, we believe, is
a product of the interaction of the discretization error in the
outgoing scalar field component (see Fig. 3) with the
boundary. We have shown however that the constraint
violation converges to zero with increasing resolution.

VIII. REMARKS AND OUTLOOK

The assumption of spherical symmetry has always been
valuable as a tool to understand diverse aspects of the
Einstein equations. And in spite of its frequent recurrence,
it still has not exhausted its power to illuminate new
applications, as it keeps up with the general progress in
the field. Our current presentation of the properties of the
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FIG. 16 (color online). The scalar field � at t � 30 at three
resolutions: Nc � 400, Nm � 800 and Nf � 1600. The oscilla-
tions seen in the lower resolution run clearly decrease with
increasing resolution.
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FIG. 17 (color online). Error in the scalar field � at t � 30 at
the three resolutions of Fig. 16, measured as the difference
between the profile at that resolution and that of a reference
run with N � 3000 points. The errors have been rescaled (multi-
plied) by 1 (Nc), 4 (Nm) and 16 (Nf).
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FIG. 15 (color online). The constraint, Eq. (33a), at t � 30 on
three grid sizes, Nc � 2000 (circles), Nm � 2500 (squares) and
Nf � 3000 (continuous line), scaled by a factor of ��Ni �
1�=�Nf � 1��2, for Ni � Nc, Nm. The three profiles (appropri-
ately scaled) overlap, confirming that the constraint converges to
second order on the discretization over the entire grid.
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Bondi-Sachs gauge, for instance, allows us to extract a rich
structure which passed unnoticed in rare earlier presenta-
tions, such as that of [9].

At the most fundamental level, we have essentially
demonstrated how to bridge a conventional divide between
two formalisms in current use for numerical simulations of
black-hole spacetimes: the Bondi-Sachs (or characteristic)
approach and the ADM (or 3� 1) approach. On the one
hand, for practitioners of the Bondi-Sachs approach this
entails a deeper understanding of the mechanisms of char-
acteristic evolution and may potentially provide insights
into the nature of the required data. On the other hand,
clearly, it is the ADM approach that benefits the most from
this exercise by acquiring a well-posed hyperbolic form.
Emphasis should be placed on the fact that nothing at all
has been done to modify the standard ADM equations or
variables in order to accomplish this; we have merely
imposed a certain gauge choice on the standard scheme
(the Bondi-Sachs gauge). It is worthwhile pointing out that,
as the Bondi-Sachs gauge has a dynamical shift—that is,
prescribed by evolution equations coupled to the other
fields—this work goes beyond basic studies of
constraint-preserving boundary conditions, where the shift
is prescribed arbitrarily (and, most commonly, vanishing)
[10,11,16–19].

We have also demonstrated that the resulting form of the
ADM problem is very well suited for numerical simula-
tions of dynamical black-hole spacetimes. A novel feature
of our work—not present in other well-posed renditions of
spherically symmetric 3� 1 problems for the Einstein
equations such as [11] or [16]—is the successful numeri-
cal implementation of an exact constraint-preserving
boundary condition in the case of a dynamical black-hole
spacetime, that is, where both the metric and the matter
fields are allowed to interact and evolve.

Admittedly the simplifications brought about by the
assumption of spherical symmetry may have a large role
to play in both the analytic and numerical properties of the
resulting system of evolution equations. But the ultimate
goal of this project is to remove the restriction of spherical
symmetry and examine the ADM problem in the Bondi-

Sachs gauge in full generality. We think that there are
reasonable indications that the three-dimensional problem
will inherit some of the most characteristic properties of
the spherically symmetric rendition, such as a significantly
reduced number of fundamental variables and the ability to
identify at least a subset of characteristic fields. As for
nontransferable traits, most likely, the three-dimensional
ADM equations in the Bondi-Sachs gauge will not be
automatically of first order even in the time and radial
space, so a reduction to first-order will need to be imple-
mented for all variables other than the lapse and the radial
component of the shift. The reason for this is that none of
the Bondi-Sachs equations other than those for V and � are
of first-order in the radial and time coordinates (see, for
instance, [20]).

As a stand-alone problem, nevertheless, the ADM for-
malism coupled to a scalar field in spherical symmetry
turns out to be a valuable resource for the study of black-
hole physics and of the mathematics of partial differential
equations. As we demonstrate with our numerical simula-
tions, interesting behavior related to the dynamics of ap-
parent horizons can easily be illustrated, as well as the
behavior of characteristic fields of nonlinear symmetric-
hyperbolic inhomogeneous systems of partial differential
equations, all without the need for any special handling of
the numerical code beyond the most standard techniques.
For this reason, we think that even in its restrictive sim-
plicity, this problem is naturally endowed with significant
intrinsic value.
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[14] R. Gómez, R. Isaacson, and J. Winicour, J. Comp. Phys.
98, 11 (1992).

[15] W. H. Press, S. A. Teukolski, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in Fortran (Cambride
University Press, Cambridge, England, 1992), 2nd ed..

[16] G. Calabrese, L. Lehner, and M. Tiglio, Phys. Rev. D 65,
104031 (2002).

[17] S. Frittelli and R. Gómez, Phys. Rev. D 68, 044014 (2003).
[18] G. Calabrese, J. Pullin, O. Reula, O. Sarbach, and M.

Tiglio, Commun. Math. Phys. 240, 377 (2003).
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