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Characteristic initial data for a star orbiting a black hole
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We take further steps in the development of the characteristic approach to enable handling the physical
problem of a compact self-gravitating object, such as a neutron star, in close orbit around a black hole. We
examine different options for setting the initial data for this problem and, in order to shed light on their
physical relevance, we carry out short time evolution of this data. To this end we express the matter part of
the characteristic gravity code so that the hydrodynamics are in conservation form. The resulting gravity
plus matter relativity code provides a starting point for more refined future efforts at longer term evolution.
In the present work we find that, independently of the details of the initial gravitational data, the system
quickly flushes out spurious gravitational radiation and relaxes to a quasiequilibrium state with an
approximate helical symmetry corresponding to the circular orbit of the star.
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I. INTRODUCTION

The problem of computing the evolution of a self-
gravitating object, such as a neutron star, in close orbit
about a black hole is of clear astrophysical importance,
both to understand systems thought to drive such spectacu-
lar phenomena as gamma-ray bursts (see, for instance, [1])
and to predict the details of the gravitational radiation
which could be observed by the new generation of gravi-
tational wave detectors (see, for instance, [2]).
Furthermore, the dynamics of the system could be quite
rich. For instance, the tidal interaction between the black
hole and the star could be strong enough to tidally disrupt
the star with a consequent drastic change in the emitted
waves [3]. Alternatively, as has recently been suggested
[4], only a portion of the star’s mass might be transferred to
the black hole and angular momentum transfer might boost
what remains of the star into a wider orbit. The system
would then undergo another inspiral phase and this process
might repeat itself. Consequently, the expected gravita-
tional waves would display a very rich structure of several
‘‘chirp-phases.’’

A better understanding of these possibilities requires, as
basic building blocks, solving Einstein equations coupled
to an appropriate matter field without restrictive assump-
tions. To this end, long-term well-behaved numerical simu-
lations must be available. Some of the recent work
modeling a neutron star(s) in full general relativity in-
cludes [5–8]. Several numerical relativity codes for treat-
ing the problem of a neutron star near a black hole are
either being developed or planned [9–12], as the know-
how for simulating Einstein equations becomes more ma-
ture. Although most of these efforts concentrate on the
Cauchy approach to Einstein equations, there are alterna-
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tive approaches which have been successful for specific
problems. In particular, the characteristic formulation of
general relativity has shown remarkable robustness to deal
with single black hole space-times. Stable axisymmetric
studies of Einstein equations coupled to perfect fluids have
been achieved [13,14]; and our previous work has pro-
duced stable three-dimensional characteristic numerical
relativity codes for vacuum space-times [15] and for fluid
space-times with very small pressure [16].

This paper develops further methodology necessary for
the evolution of a self-gravitating star or other object in
orbit near a Schwarzschild black hole. As discussed in
Sec. III, the case of a star in orbit around a spinning black
hole can also be considered with the appropriate choice of
inner boundary data. In this work however, we concentrate
on the nonspinning case. Towards the final goal of studying
a binary system composed of a black hole and a self-
gravitating star, we examine the issue of setting initial
data. In either the characteristic or Cauchy approaches to
this problem, a serious source of physical ambiguity is the
presence of spurious gravitational radiation in the initial
gravitational data. Because the characteristic approach is
based upon a retarded time foliation, the resulting spurious
outgoing waves can be computed by carrying out a short
time evolution. We carry out such a study in the present
work. We find that, independently of the details of the
initial gravitational data, such spurious waves quickly
radiate away, and that the system relaxes to a quasiequili-
brium state with an approximate helical symmetry corre-
sponding to the circular orbit of the star. This result
provides important physical justification of recent ap-
proaches for initializing the Cauchy problem which are
based on imposing an initial helical symmetry [17–21].
-1  2005 The American Physical Society
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We also examine two useful tools which can be applied
to long-term simulations as well as to the initial data
problem: (i) a tool to monitor the development of a singu-
larity in the null coordinates and (ii) a tool to use corotating
coordinates so that an orbiting star remains approximately
at a fixed coordinate position.

A crucial ingredient of any hydrodynamical simulation
is the proper handling of shocks and discontinuities; as
well as the proper conservation of baryonic mass, and the
appropriate balance, at different times, between the energy
and angular momentum, and their radiated counterparts.
Robust numerical techniques for handling the hydrody-
namic equations, and to deal with some of these issues,
are available, which express the system in a conservation
form designed for handling discontinuities in the fluid [22].
In particular, high resolution shock capturing schemes
utilize the fluid’s characteristic propagation speeds to cap-
ture the discontinuities in an accurate way. In the present
work, we follow the formalism presented in [23], where the
general relativistic hydrodynamic equations are presented
in a conservation form adapted to both the Cauchy and the
characteristic formulations. High resolution shock captur-
ing schemes have been successfully incorporated in the
characteristic approach in the case of axisymmetric space-
times [13,14]. Although this is the ideal approach to the
hydrodynamic problem, here we implement a less time-
consuming algorithm due to Davis [24]. This approach has
limitations in dealing with shock formation but is sufficient
for our present purpose to study the initial data problem.
For long-term evolutions however, high resolution shock
capturing methods will be crucial.

The initial data problem for the characteristic formula-
tion of relativity [15] has received little attention in com-
parison with that for the Cauchy problem. This is partly
because the data for the characteristic formulation is un-
constrained, whereas the data for the Cauchy formulation
has to satisfy an elliptic system of constraints. Even so, in
both formulations, care must be taken to set matter data
that represents the intended physical problem. In particu-
lar, it is not trivial to set gravitational data free of spurious
gravitational radiation. A method for initializing character-
istic data based upon a correspondence with Newtonian
theory [25,26] guarantees that the resulting gravitational
radiation obeys the Einstein quadrupole formula in the
Newtonian regime [27,28]. However, as discussed in
[25], the domain of applicability of the method is limited
to when (i) the Newtonian potential � of the star satisfies
� � 1 and (ii) relative velocities are much slower than the
speed of light. The second issue could be easily dealt with
by making the orbital radius a of the star large compared to
the black hole mass M. However, the following practical
reasons make it desirable to initialize the star in a close
orbit with a � 10M (for which v � c=3):
(i) S
ince the orbital period of the star around the black
hole scales as a3=2, a simulation starting from large
024002-2
a would require very time-consuming runs in a
regime that could be described approximately by
less expensive perturbative treatments.
(ii) W
hen using spherical coordinates, the resolution at
large a worsens when using a uniform grid.
Computer resources limit the number of angular
grid points that can be used. Thus, adequate reso-
lution of the star requires that a be small.
(iii) T
he most interesting physics, intractable by other
means, occurs when the compact object is at small
a.
Construction of mathematically consistent initial data is
much simpler than construction of physically meaningful
data. While the former involves the solution of constraint
equations (if any), the latter is less mathematically explicit.
Not only does one want matter data describing an orbiting
star but also gravitational data with minimal spurious
radiation. Success must be gauged through actual evolution
of the data and analysis of the resulting space-time [29].

There are basically no constraint equations for the gravi-
tational initial data in the characteristic formulation so that
mathematically consistent data is trivial to prescribe. In
order to investigate the physical problem we proceed by
investigating gravitational data based upon two completely
different underlying assumptions:
(i) G
ravitational initial data obtained by means of the
Newtonian correspondence method,
(ii) S
pherically symmetric gravitational data corre-
sponding to a shear-free initial null hypersurface.
The first method applies only to a quasi-Newtonian
regime. The second method ignores the focusing effect of
the star which introduces shear in its nearby null rays.
Nevertheless, in both cases the gravitational field relaxes
to a state of approximate helical symmetry after about a
light-crossing time for the system. These results support
the view that the details of the initial gravitational data may
not be important as long as they are reasonable and some
time is evolved in which the spurious radiation flushes out.

The plan of the paper is as follows: in Sec. II with
present a summary of previous work on the characteristic
formulation of numerical relativity and on conservative
hydrodynamics. The construction of initial matter and
gravitational data is covered in Sec. III in both stationary
and corotating frames. In Sec. IV we discuss the conditions
under which coordinate singularities might develop. Some
details of the numerical implementation are presented in
Sec. V. Computational tests and results are given in
Sec. VI.

II. SUMMARY OF PREVIOUS RESULTS
AND NOTATION

A. Characteristic formulation of Einstein equations

The formalism for the numerical evolution of Einstein
equations, in null cone coordinates, is well known
[15,31,32] (see also [32–34]), and is based upon the ana-
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lytic treatments of [35–37]. For the sake of completeness,
we give here a summary of the formalism, including some
of the necessary equations. The version of the gravity code
being used here is fully described in [38,39]. It has most
recently been applied in [40].

We use coordinates based upon a family of outgoing null
hypersurfaces. We let u label these hypersurfaces, xA (A �
2; 3) label the null rays, and r be a surface area coordinate.
In the resulting x� � �u; r; xA� coordinates, the metric
takes the Bondi-Sachs form [35,36]

ds2 � �

�
e2�

�
1 �

W
r

�
� r2hABU

AUB
�
du2 � 2e2�dudr

� 2r2hABU
BdudxA � r2hABdx

AdxB; (1)

where hABhBC � �A
C and det�hAB� � det�qAB�, with qAB a

unit sphere metric. We work in stereographic coordinates
xA � �q; p� for which the unit sphere metric is

qABdxAdxB �
4

F2 �dq
2 � dp2�;

where F � 1 � q2 � p2:
(2)

Our previous work used P � 1 � q2 � p2; here we change
notation to F because we will use P to represent pressure.
We also introduce a complex dyad qA � F

2 �1; i� with i ��������
�1

p
. For an arbitrary Bondi-Sachs metric, hAB can then be

represented by its dyad component

J � hABqAqB=2; (3)

with the spherically symmetric case characterized by J �
0. We introduce the (complex differential) eth operators ð
and 
ð [41], as well as a number of auxiliary variables K �
hABqA 
qB=2, U � UAqA, QA � r2e�2�hABUB

;r, Q � QAqA,
B � ð�, � � 
ðJ, and k � ðK.

The Einstein equations Gab � 0 decompose into hyper-
surface equations, evolution equations, and conservation
laws. Here we note that the hypersurface equations form a
hierarchical set for �;r, k;r, �;r, B;r, Q;r, U;r, and W;r, and
the evolution equation is an expression for �rJ�;ur. The
explicit form of the equations is given in [38] in the
vacuum case and in [16] for the matter terms. Note the
following correction to the matter source term in Eq. (31)
of Ref. [16],

2�rJ�;ur ���1� r�1W��rJ�;r�;r

��r�1�r2ðU�;r � 2r�1e�ð2e� ��r�1W�;rJ�NJ

�
4e2�$�%�P�

r
��J 
Vang �KVang�

2 �V2
ang�; (4)

where Vang � vAqA [16] (with v� the velocity) and NJ are
defined in [15,38]. The remaining Einstein equations are
the conservation conditions which are satisfied here be-
cause of the simple choice of boundary data.

The null cone problem is normally formulated in the
region of space-time between a timelike or null world tube
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� and I�. We represent I� on a finite grid by using a
compactified radial coordinate x � r=�Rwt � r� where r �
Rwt denotes the location of the inner boundary; in all the
runs presented here, we use Rwt � 1. The numerical grid is
regular in �x; q; p�, and consists of two stereographic
patches covering the north and south hemispheres, each
containing nx 
 nq 
 np grid points. The x grid covers the
range �0:5; 1� (hence the radial grid covers the range
�Rwt;1�), and each angular grid patch extends at least
two grid points beyond the equator so that there is an
overlap region.

The mass of the Schwarzschild black hole is denoted as
M, and in all the computational tests we will take M � 1.
The star has mass m and radius R�.

Note that one could have adopted a foliation in terms of
incoming null hypersurfaces which emanate from a world
tube located sufficiently far from the event horizon. This
then allows for an efficient way to study the accretion
process as the hypersurfaces cross the event horizon. The
effectiveness of this approach has been demonstrated in
[23]; the only significant drawback of this strategy is the
need to prescribe correct boundary conditions in the world
tube which is in itself a delicate problem. This problem
however can be circumvented by employing characteristic-
characteristic matching of Cauchy-characteristic matching
strategies as described in [42,43]. In the present work we
limit ourselves to an outgoing foliation as our goal is to
study the behavior of different alternatives for setting the
initial data without spurious boundary influences.

B. Characteristic hydrodynamics in conservation form

The integration of the hydrodynamical equations is done
in a more accurate way if the system can be expressed in
conservation form. This allows for better handling of con-
served quantities and the capture of the correct propagation
speed of weak solutions, so that the characteristic structure
of the equations may be exploited to resolve shocks via
Godunov methods [22]. Here we use the formalism devel-
oped in [23], where the equations raJa � 0, raTab � are
expressed in conservation form as

@x0�
�������
�g

p
UA� � @xj�

�������
�g

p
FjA� � SA; (5)

where UA � �D; Si; E� are ‘‘conservative’’ variables de-
fined as

D � U0 � J0 � %u0; (6)

Si � Ui � T0i � %hu0ui � Pg0i; (7)

E � U4 � T00 � %hu0u0 � Pg00; (8)

and the fluxes and sources are

F j0 � Jj � %uj; Fji � Tji � %huiuj � Pgij;

Fj4 � Tj0 � %hu0uj � Pg0j;
(9)
-3



BISHOP, GÓMEZ, LEHNER, MAHARAJ, AND WINICOUR PHYSICAL REVIEW D 72, 024002 (2005)
S 0 � 0; Si � �
�������
�g

p
�i
34T

34;

S4 � �
�������
�g

p
�0
34T

34:
(10)

The state of the system is uniquely described in terms of
the geometry, the primitive matter variables �%; P; h; ua� or
the conservative variables, the fluid’s equation of state, and
the normalization condition uaua � �1. In the particular
case of a perfect fluid which we consider here, the relation
between primitive and conservative variables is straightfor-
ward and does not require expensive inversion methods
(see [23] for details).
III. INITIAL AND BOUNDARY DATA

There exist only rough physical guidelines for prescrib-
ing initial matter and gravitational field data in general
relativity for a star orbiting a black hole. Here we present
initial data which is at least mathematically consistent with
Einstein equations and has some underlying connection
with the Newtonian picture of a star in equilibrium, which
is orbiting a collapsing central object. The Newtonian
picture is not a good approximation to the relativistic
regime in which we run our simulations. Nevertheless,
the justification for this approach is that the evolutions,
presented in Sec. VI, relax on the order of a light-crossing
time to a more astrophysically realistic state, as extraneous
gravitational wave content in the initial data is radiated
away, and the gravitational field adapts to the approximate
symmetry of the matter distribution. This relaxed state is
remarkably independent of the initial gravitational data.

A. The initial matter data

We prescribe the initial matter data within a simple
Newtonian framework. We take the star to be a spherically
symmetric polytrope of index n � 1 [44] with

% �
m sinR$R�

4RR2
�

(11)

for R � R�, and % � 0 for R> R�, where % is the density
at radius R. Denoting the pressure by P, the equation of
state is

P �
2R2

�%2

$
: (12)

Note that the maximum value of P=% is m=2R�, so that
Newtonian theory gives a good approximation to an equi-
librium configuration provided the polytrope is not near its
Schwarzschild radius. We prescribe the initial matter ve-
locity to be uniform across the polytrope. In the evolutions
considered later the center of the polytrope will be placed
at �q � p � 0; r � a�, with the velocity set for a circular
orbit, so that Vr � Vp � 0 initially.

The assumption that the polytrope is spherically sym-
metric is always valid mathematically since the initial data
is freely specifiable, but the star remains in equilibrium
only if there is no tidal force. Of course, it is known how to
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compute the tidal distortion of a polytrope in equilibrium
within both Newtonian gravity and post-Newtonian gen-
eral relativity—see for example [45,46]. However, in the
simulations of a star orbiting a black hole presented in this
paper, the polytrope is not stable against tidal disruption,
i.e. the simple Roche indicator 6R � R�=a

��������������
2M=m3

p
� 1.

Thus, for the present work, there is no point in calculating
an equilibrium configuration for the tidal distortion.

In order to obtain physical characteristic initial data for
the problem we transform the above Newtonian initial data
into density, velocity, and gravitational fields within the
framework of a Bondi-Sachs metric in general relativity.
As discussed in Sec. I, this needs to be done in a relativistic
regime in which the Newtonian correspondence method
[25–27] is only roughly approximate.

The density and velocity matter fields are regarded as
being given in a Lorentzian frame in the Minkowski space-
time in which the center of mass of the polytrope is at rest.
Then a coordinate transformation is made from this local
Lorentz frame to the global Bondi-Sachs coordinates. This
approach is strictly valid only if space-time curvature can
be neglected in the vicinity of the star, which requires that
the radius of the star must be small and that its gravitational
source effect must be negligible. The approach has a proper
Newtonian correspondence in the limiting case of small
velocities, small m=R�, and large a.

1. The density and velocity fields

We prescribe initial data (%, V�) for the localized dis-
tribution of matter described in Sec. III A. The matter is
described in a (locally) inertial frame SI � �t; x; y; z� in
which the center of mass of the matter is instantaneously at
rest at the origin. Globally, we have Bondi-Sachs coordi-
nates centered about the black hole (with mass M). To the
extent that the self-gravitational effect of the matter can be
neglected, the geometry is spherically symmetric and can
be described in Eddington-Finkelstein coordinates SE �
�u; r; q; p�. The origin of SI is at u � 0, r � a, q � p � 0
and, for simplicity, we choose a central matter velocity of
the form �Vu; 0; Vq; 0� in SE. Except in the case M � 0, the
curvatures of SI and SE are different, and thus it is not
possible to construct a unique global transformation be-
tween SI and SE. However, we can construct a transforma-
tion that is valid near the origin of SI.

We proceed by constructing a locally inertial frame S0 �
�t0; x0; y0; z0� whose origin is at O � �u � 0; r � a; q �
0; p � 0� and with the S0 axes pointing in the �u; r; q; p�
directions. In general, SI is moving relative to S0. When the
black hole mass M � 0, the space-time is flat and there is
an unambiguous transformation from S0 to SE,

t0 � u� �r� a�; x0 �
2rq

1 � q2 � p2 ;

y0 �
2rp

1 � q2 � p2 ; z0 �
2r

1 � q2 � p2 � r� a:

(13)
-4
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When M � 0, the metric is Schwarzschild in the
Eddington-Finkelstein form,

ds2 � �

�
1 �

2M
r

�
du2 � 2dudr

�
4r2

�1 � q2 � p2�2
�dq2 � dp2�: (14)

An orthonormal tetrad aligned with S0 and defined in SE at
the point O is given by

Xa
�t� �

��
1 �

2M
a

�
�1=2

; 0; 0; 0
�
;

Xa
�x� �

�
0; 0;

1

2a
; 0
�
;

Xa
�y� �

�
0; 0; 0;

1

2a

�
;

Xa
�z� �

�
�

�
1 �

2M
a

�
�1=2

;
�
1 �

2M
a

�
1=2

; 0; 0
�
:

(15)

In a neighborhood of O, SE and S0 are related by the
transformation

u �

�
1 �

2M
a

�
�1=2

t0 �
�
1 �

2M
a

�
�1=2

z0;

r� a �

�
1 �

2M
a

�
1=2

z0; q �
x0

2a
; p �

y0

2a
;

(16)

from which we construct the inverse transformation

t0 �
�
1 �

2M
a

�
1=2

u�

�
1 �

2M
a

�
�1=2

�r� a�;

x0 � 2aq; y0 � 2ap;

z0 �
�
1 �

2M
a

�
�1=2

�r� a�:

(17)
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In the M � 0 case, the transformation is unambiguous and
global, but when M � 0 the transformation to a locally
inertial system can only be defined in a neighborhood of O.
Nevertheless we need a transformation that is valid in a
region around O, which we construct by combining (13)
and (17) to obtain
t0 �
�
1 �

2M
r

�
1=2

u�

�
1 �

2M
r

�
�1=2

�r� a�;

x0 �
2rq

1 � q2 � p2 ;

y0 �
2rp

1 � q2 � p2 ;

z0 �
�

2r

1 � q2 � p2 � r� a
��

1 �
2M
r

�
�1=2

:

(18)
The transformation (18) reduces to (13) when M � 0, and
to (17) near the point O.

It is most convenient to describe the matter in an inertial
frame in which it is at rest which, in general, is not the case
for S0. In order to achieve this we need to make a Lorentz
transformation to coordinates SI � �t; x; y; z�. In the case
that the matter velocity is entirely in the q direction, which
includes the case of a quasicircular orbit around the black
hole, the transformation between SE and SI is
t � <�t0 � vx0�; x � <�x0 � vt0�;

y � y0; z � z0;
(19)
where v is the velocity between SI and S0, and < is the
usual Lorentz factor, < � �1 � v2��1=2. Then combining
(17) and (19) we find
t � <
��

1 �
2M
r

�
1=2

u�

�
1 �

2M
r

�
�1=2

�r� a� �
2rqv

1 � q2 � p2

�
;

x � <
�

2rq

1 � q2 � p2 � v
�
1 �

2M
r

�
1=2

u� v
�
1 �

2M
r

�
�1=2

�r� a�
�
;

y �
2rp

1 � q2 � p2 ;

z �
�

2r

1 � q2 � p2 � r� a
��

1 �
2M
r

�
�1=2

:

(20)
The transformation (20) is sufficient for setting scalar initial matter data, such as the density. Given an SE grid at u � 0, we
find for each point the coordinates �x; y; z�. The density is then determined by its values in SI. We also need to set the initial
4-velocity. In SI the 4-velocity is V�I�

a � ��1; 0; 0; 0�. Thus in SE the covariant 4-velocity is
-5
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V�E�
a �

@x�I�b

@x�E�a
V�I�
b � �

@t

@x�E�a
� <

�
�

�
1 �

2M
r

�
1=2

;

2qv

1 � q2 � p2 �

�
1 �

2M
r

�
�1=2

�
�r� a�M

r2

�
1 �

2M
r

�
�3=2

;

2rv�1 � p2 � q2�

�1 � q2 � p2�2
;�

4vqpr

�1 � q2 � p2�2

�
: (21)

In order to set a value of v for a quasicircular orbit, we
need V�E�

a and V�E�a at O. We find

V�E�
a � <

�
�

�
1 �

2M
a

�
1=2

;�
�
1 �

2M
a

�
�1=2

; 2va; 0
�
(22)

V�E�a � <
��

1 �
2M
a

�
�1=2

; 0;
v
2a

; 0
�
: (23)

A circular orbit has zero radial acceleration. Thus, apply-
ing the geodesic equation, we find

v �

�����������������
M

a� 2M

s
; < �

�����������������
a� 2M
a� 3M

s
: (24)

As expected, a circular orbit can exist only if a > 3M.

B. Initial gravitational data

There is not a well-developed theory for initializing the
gravitational field of a star in close orbit about a black hole.
We consider two options here. The first is to simply set

J�u � 0; r; xA� � 0: (25)

In the absence of matter, this choice would eliminate all
spurious gravitational waves but in the presence of matter
it is physically unrealistic. It implies that the null rays
generating the initial null hypersurface are shear-free, i.e.
there is no bending of light by the star as would be expected
in a normal astrophysical scenario. This introduces spuri-
ous gravitational waves which superimpose with the gravi-
tational field of the star to cancel the bending effect. The
second choice of J is quasi-Newtonian gravitational data
[25–28] determined by a Newtonian correspondence
method which introduces the correct bending effect and
radiation content in the Newtonian limit.

This quasi-Newtonian data is astrophysically realistic
only when the Newtonian potential and the matter velocity
are small. These conditions are only very roughly satisfied
for the relativistic binary considered here. The Newtonian
potential approaches unity as r approaches 2M and the
velocity of the body approaches that of light. Nevertheless,
it is reasonably simple to compute quasi-Newtonian initial
data and it is interesting to compare the resulting evolu-
tions with those initialized by J � 0, e.g. to compare their
spurious radiation content and the quasiequilibrium states
to which they relax.
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The procedure for determining quasi-Newtonian data
involves solving a sequence of Poisson equations which,
in the Newtonian limit, lead to exact agreement with the
Einstein quadrupole formula for the initial gravitational
radiation emitted by the system. The limit is defined by an
expansion in 4 � 1=c (with c the velocity of light) intro-
duced by rewriting the metric (1) in the form

ds2 � �

�
e242�

�
1 �

42W
r

�
� 44r2hABUAUB

�
du2

� 24e242�dudr� 243r2hABU
BdudxA

� 42r2�qAB � 42<AB�dx
AdxB: (26)

The factors of 4 ensure that (26) induces Cartan’s geomet-
rical formulation of Newtonian gravitational theory as 4 !
0, with Newtonian absolute time corresponding to t � u�
4r and with the Newtonian potential corresponding to

� �
W
2r

� �: (27)

The solution of the Poisson equation,

r2� � 4$%; (28)

(where r2 is the Euclidean Laplacian obtained in the
Newtonian limit) then determines the combination of
Bondi variables W and � in (27). Since W and � cannot
be freely prescribed in the characteristic scheme, this
information has to be recast in terms of the free data J
by using the Bondi hypersurface equations. This leads to

�r2J;r�;r � �2ð2�: (29)

(This is Eq. (3.8) of [27] rewritten in the present notation.)
In a strict Newtonian limit, (29) must hold at each time
step. In determining quasi-Newtonian data, (29) is applied
as a Taylor expansion in u about the initial time and the
initial value of J expanded in a series

J �
X
n

J�n�4n: (30)

Each term in the u expansion determines an additional term
J�n� in the 4 expansion. The Einstein quadrupole formula
holds when J is determined up to order J�3� in the post-
Newtonian expansion [28]. Here we only consider the
leading term and set J � J�0�. This establishes a
Newtonian correspondence only on the initial null hyper-
surface u � 0.

The computation of � is straightforward and Eq. (29)
can then be solved by a combination of numerical and
analytic techniques, subject to boundary conditions that
determine the integration constants. At the r � 2M surface
of the black hole, we choose the boundary conditions

J � J;r � 0 at r � 2M (31)

for solving the Poisson equations. For M � 0, these bound-
ary conditions reduce to necessary conditions for regularity
-6
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at the vertex of the outgoing null cones. Details of the
calculation are given in the Appendix.

C. Inner boundary data

Our aim is to simulate a star which is in orbit close to an
astrophysical object undergoing gravitational collapse. We
model the exterior field of the collapsing object by the
vacuum geometry of the outgoing u � const null hyper-
surfaces whose inner boundary is a white hole horizon. In
terms of the Kruskal picture of an isolated Schwarzschild
black hole this inner boundary would be the past branch of
the r � 2M hypersurface. Thus our simulations corre-
spond to the characteristic evolution of data on two inter-
secting null hypersurfaces, the initial outgoing null
hypersurface N 0 and the white hole horizon H�. Since
the orbit of the star is exterior to H� the inner boundary
data for the matter is trivial.

The construction of general gravitational data for such a
double-null initial value problem has been reduced to the
integration of propagation equations (ODE’s) along the
null generators of H� [47]. The free data on H� consist
of the specification of its conformal metric, represented by
J, and its shift, represented by the Bondi variable U.

Here we make the simple choice that J � 0 on H�.
One of the propagation equations (the Raychaudhuri equa-
tion) then implies that the intrinsic expansion of H� is
constant along its generators. We choose the initial value of
this expansion to vanish so that r � const on H�. We then
set r � 2M on the sphere S� where H� and N 0 inter-
sect. Thus the inner boundary H� is described by

J � 0 at r � 2M: (32)

These choices simplify the integration of the remaining
propagation equations on H�. Choosing the ‘‘shift’’ of
H� to vanish leads to the further simplification that U �
0 on H�. We consider this choice first. (Below we con-
sider the shift corresponding to coordinates corotating with
the orbiting star.) The remaining data at S� is the initial
twist of the horizon, which determines U;r on the horizon
and the initial outward expansion of S�, which determines
the initial value of �. In the spirit of simplicity, we set the
twist to zero, which assigns zero angular momentum to the
white hole, and we set � to zero, which in the pure
Schwarzschild case sets the scale of retarded time u on
the horizon to the standard inertial time measured by
observers at null infinity.

Because all free initial inner boundary data at S0 have
been chosen to be identical to the inner boundary data of a
Schwarzschild horizon in standard Eddington-Finkelstein
form, and because we have chosen J � 0 on H�, this data
propagates along the generators of H� to give the
Eddington-Finkelstein boundary values for the correspond-
ing Bondi variables, namely J � U � U;r � � � 0, W �
�2M. Alternatively, we could prescribe Minkowskian in-
ner boundary data by setting the value of the inward
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expansion to match that of an ingoing (collapsing)
Minkowski light cone.

The Bondi evolution system also requires the value of J;r
on H�. However, for the simple boundary data presented
above, the horizon propagation equations imply that J;r �
const on H�, and our boundary condition (31) then
implies J;r � 0.

1. Corotating data

It is also desirable to be able to specify data at r � 2M
such that the angular coordinates of a star in uniform
circular orbit around the black hole with angular velocity
� remain constant. In terms of a standard angular coor-
dinate =, this can be arranged by the transformation = !
=� �u on the data presented above. This introduces a
shift on the horizon which is represented by a nonzero
value of U. At large distances from the horizon this shift
becomes superluminal, but calibration tests [48] have
shown that this does not preclude solving the characteristic
initial value problem. In the Schwarzschild case, the vector
field @u in the nonrotating coordinates is the time trans-
lation Killing vector T, whereas in the rotating coordinates
@u equals the helical Killing vector T � �� where � is a
rotational Killing vector.

The calculation of the required U, which must be carried
out in the stereographic �q; p� angular coordinates used in
the code, was performed by means of a computer algebra
script. We start with the Bondi-Sachs metric in standard
form for a Minkowskian space-time, with coordinates
�r; q; p; u�, and transform �r; q; p� to Cartesian coordinates
�x; y; z�, as specified in Eq. (13) [here the Cartesian coor-
dinates are written unprimed, even though they are written
primed in Eq. (13)]. We then perform a rigid rotation about
the y axis through an angle =, leading to Cartesian coor-
dinates �x0; y0; z0� with

x0 � x cos=� z sin=; y0 � y;

z0 � z cos=� x sin=:
(33)

Finally, we transform back to Bondi-Sachs coordinates
�r0; q0; p0; u0� by computing the transformation
�r; q; p; u� ! �r0; q0; p0; u0� and the Jacobian for the trans-
formation when = is small; then these are employed to find
the metric of Minkowskian space-time in �r0; q0; p0; u0�
coordinates. In order to check the calculation, via a com-
puter algebra script we checked that all components of the
Riemann tensor of the transformed metric are zero. Next,
we apply the coordinate transformation �r; q; p; u� !
�r0; q0; p0; u0� to the SE metric (14). We find that the metric
remains in Bondi-Sachs form with J � � � 0, W � �2
and

gqu �
2�r2�1 � q2 � p2�

�1 � q2 � p2�2
; gpu �

4qp�r2

�1 � q2 � p2�2
;

(34)
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where for convenience the 0 symbols have been dropped.
Thus,

U � ��
1 � q2 � p2 � 2qpi

1 � q2 � p2 : (35)

The value of � is set by the condition that the center of the
polytrope should be at rest with respect to the 0 coordinates.
We achieve this by transforming the covariant velocity (21)
to the 0 coordinates, and then evaluating the contravariant
velocity at r � a, q � p � 0. We find

Vq � �
<

2a
��������������
1 � 2M

a

q
 

�a� v

�����������������
1 �

2M
a

s !
; (36)

thus Vq � 0 if we set

� �
v

��������������
1 � 2M

a

q
a

: (37)

When v is given by Eq. (24),

� �

�����
M

a3

s
: (38)

Then Eq. (35) becomes

U � �

�����
M

a3

s
1 � q2 � p2 � 2qpi

1 � q2 � p2 : (39)

Note that U;r � 0. Furthermore, the transformation to 0
coordinates does not change the formulas for Vr, Vq, and
Vp given in Eq. (21); the formula for Vu is changed, but that
is not part of the required initial data. In the tests presented
later we will use � � constant, but in principle we may
take � � ��u� and develop an algorithm to update the
value of � so as to ensure strict corotation of the star.

Note that a corotating frame helps in describing the
dynamics of the system in several ways. It allow for main-
taining the star at relatively fixed angular coordinates
which not only simplifies the numerical treatment but
also could be used to prevent the star from moving from
one stereographic patch to the other. By avoiding this case,
the simulation evades the extra source of noise introduced
by the interpolation between patches in the fluid variables,
which can be rather significant for coarse resolutions.
IV. REGULARITY OF THE NULL COORDINATES

The Bondi description of an asymptotically flat space is
based upon the surface area coordinate r, which is assumed
to increase monotonically to infinity along the outgoing
null rays. This monotonicity is built into the initial data by
assuming that the matter variables and the gravitational
data J are well-behaved functions of r, for 2M � r � 1.
However, certain choices of matter data can lead to gravi-
tational data that is unrealistic astrophysically. For ex-
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ample, consider a spherical star of mass m and radius R�

located at r � a, with a � m so that the linear approxi-
mation for the bending of light by the star is valid. Then,
under normal astrophysical conditions, when

a �
R2
�

4m
; (40)

the outgoing null rays which graze the surface of the star
would be bent by the star so that they would travel to
infinity along asymptotically parallel trajectories. This
lack of expansion of the outgoing rays would be a break-
down of the regularity of the r coordinate, and it would also
introduce a large shear in the geometry of the outgoing null
rays. This loss of regularity can be mathematically avoided
by prescribing gravitational data with zero (or small) shear
along with the matter data for the star. But clearly that
would not represent an astrophysically realistic problem.
Note that, for a given star mass m, this breakdown occurs
for large values of a and not when the star is close to r �
2M.

It is important to monitor this effect. An affine parameter
4 measured along the radially outgoing null rays must of
course increase monotonically in an asymptotically flat
space. Thus the relevant quantity to measure is the expan-
sion � � @4r, which in a Bondi coordinate system is given
by

@4r � e�2�: (41)

In our setup, @4r � 1, i.e � � 0, at the inner r � 2M
boundary, but the Bondi hypersurface equation

@r� �
r
8
�J;r 
J;r � K2

;r� � 2$r�%� P�v2
r (42)

implies that � increases outward monotonically. Thus the
expansion @4r decreases monotonically and reaches its
smallest value at infinity. Initial data for which @4rj1 �
1=10, corresponding to �1 � 1, would either represent an
extreme astrophysical scenario (such as a star about to
enter a black hole) or would signal an imminent breakdown
of the r coordinate.

In Sec. VI E we illustrate how this effect can be moni-
tored by measuring �1. This is important in order to avoid
wasting computational time trying to simulate systems
which are either unrealistic astrophysically, or where a
coordinate singularity will develop.

V. NUMERICAL IMPLEMENTATION

A. Hydrodynamical equations

We implement an algorithm of Davis [24], which can be
regarded as adding artificial dissipation where needed to a
MacCormack scheme, by means of a ‘‘slope limiter’’
procedure. This procedure compares the slope of the fields
at the point of interest with those at the nearest points and
sets a limit on the allowed value. This helps to define an
algorithm to update the solutions so that its total variation
-8
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does not increase in time. The addition of the dissipation
requires knowledge of the largest of the eigenspeeds 4j

(speed of characteristic modes of the principal part of the
fluid’s evolution equations) in each direction. The expres-
sions for these can be read-off from those worked out in
[23].

This dissipation, shown in 1D for simplicity, takes the
form

U n�1
j � ~Un�1

j � �Dj�1=2 �Dj�1=2�; (43)

where n; n� 1 indicate time levels n and n� 1 respec-
tively, and j denotes a spatial grid point; ~Un�1

j is the update
from the MacCormack step and Dj�1=2 is defined as

Dj�1=2 � �K�
j�1=2�r

�
j � � K�

j�1=2�r
�
j�1���U

n
j�1 � Un

j � (44)

with

r�j �
h�Un

j�1=2;�Un
j�1=2i

h�Un
j�1=2;�Un

j�1=2i
; (45)

K�
j�1=2 �

1

2
C�v��1 � ��r�j�1=2��; (46)

with hu; vi � uv. The values of v, C, and � are

v � maxfj4jjg�

where � is given by the ratio of �u=minf�x;�q;�pg,

C�v� �


v�1 � v� if v � 0:5;
0:25 otherwise;

��r� �



min�2r; 1� if r � 0;
0 otherwise.
B. Update strategy

In this work we combine the PITT characteristic vacuum
code developed in [15,31,38] (and thoroughly tested and
applied in a variety of situations; see for instance
[16,40,48,49]) with the general relativistic hydrodynamic
equations provided above. Although this is the first appli-
cation of the combined equations in three-dimensional
settings, we follow closely the strategy pursued success-
fully in two-dimensional scenarios [13,14]. The hierarchy
of integration of the equations is basically the following:
(1) W
ith data on an initial hypersurface N u, the metric
is updated to the new level N u��u. Here the fluid
variables at the intermediate level N u��u=2, needed
for the integration of the metric equations, are ap-
proximated, to first order in time, by their values at
N u. Note that since the typical propagation speeds
of the fluid are less than the speed of light, this
approximation, in general, is acceptable.
(2) N
ext, the general relativistic hydrodynamic equa-
tions are updated to N u��u.
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Although the integrations of the gravitational/hydrody-
namical equations are written in second order form when
the fluid/gravitational variables are frozen, the above pro-
cedure is formally only a first order accurate approxima-
tion in time. Formally higher order schemes can be
obtained by iterating several times per time step, where
‘‘intermediate’’ values of the fields are employed (consist-
ing of the average of field values at N u and the previously
obtained fields at N u��u. Alternatively, a more efficient
scheme can be devised by keeping an extra level of the
fluid variables (at N u��u), so that one can extrapolate to
second order their values at N u��u=2. In the present work,
since we concentrate in rather short time evolutions, we
have opted not to do this in order to reduce the amount of
time required by the code. Additionally, during the time
evolutions we use a �-law equation of state given by p �
�� � 1�%6, with � � 1 � 1=n and ignore the effects of
viscosity and magnetic fields, since their dynamical time
scales are much longer than those considered here. Last, at
grid point regions not occupied by the star we employ an
‘‘atmosphere‘‘ with density 106 times smaller than the
central density of the star.
VI. COMPUTATIONAL TESTS

Our main goal here is to study the initial evolution phase
of a star in orbit around a black hole as a preliminary step
toward carrying out long-term evolutions. Of primary con-
cern is whether the system can be initialized in a way
which allows a meaningful simulation of the ensuing in-
spiral and capture of the companion star. The strategy is to
begin with a rough choice of gravitational data, and then
show that the system quickly relaxes to a state which
provides physically reasonable matter and gravitational
data, which can in turn be used to initialize a longer
evolution.

Several options are available for carrying out this study
in a discriminating and efficient way. They involve the
choice of initial data; the choice of coordinates fixed
with respect to the black hole or corotating with the orbit-
ing star; the possibility of setting the black hole mass to
zero; and the use of switches in the code that allow running
the gravitational field or the hydrodynamics in a frozen
mode (which expedites the turnaround of the numerical
tests). In all tests, the star is initialized with a uniform
angular velocity about the black hole corresponding to the
circular orbital velocity of its center. We then choose from
the following specific options:
(i) I
-9
nitial gravitational data given by either J � 0 or
quasi-Newtonian data.
(ii) F
ull evolution or evolution with the internal hydro-
dynamics of the star frozen, i.e. the gravitational
field reacts to a rigidly orbiting source.
(iii) F
ixed coordinates (U � 0 at the inner boundary) or
corotating coordinates (U given by the value calcu-
lated in Sec. III C 1).
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(iv) I

Q

min

Qβ

Q
global
nner boundary consisting of either a mass M � 1
Schwarzschild event horizon or of an ingoing null
cone in Minkowski space-time (no black hole).
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u

0
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Q

FIG. 1. For the case m � 10�5, M � 0, R� � 3, a � 9 and
grid sizes given by 452 
 63, 652 
 93, and 852 
 123, the
different self-convergence factors are obtained. The behavior
observed is consistent with at least first order convergence.
We also carry out experiments to check the range of
stellar mass, size, and orbital radius for which light bend-
ing effects do not introduce singularities in the null coor-
dinates. The observed behavior of the code is described in
the subsections below. Unless otherwise indicated, all
norms refer to the L2 norm.

A. Code convergence

The convergence of the PITT code has been established
in a series of papers for evolution in vacuum or with fluids
having negligible pressure [15,16,40,48]. The new ingre-
dient here is the addition of a fluid obeying a polytropic
equation of state. The fluid is treated numerically by a first
order accurate algorithm. To illustrate this we consider a
boosted star in a regular space-time (i.e. without a black
hole) and monitor the solution under different grid
resolutions.

Because the evolution of the hydrodynamics with the
present serial code is considerably time consuming, the
convergence test must be based upon limited grid resolu-
tion. We evolved the case m � 10�5, R� � 3, using quasi-
Newtonian initial gravitational data. The center of the star
was initialized at a � 9, q � p � 0 in the northern hemi-
sphere, with vr � vp � 0 and vq given as the value for a
circular orbit. Three different grid sizes were used: 452 

63, 652 
 93, and 852 
 123 (stereographic 
 radial).
With this choice of grid sizes, the middle and higher
resolution grid spacings correspond to 2/3 and 1/2 the
grid spacing of the base grid, respectively. With these
parameters, the coarsest grid resolves the star with at
most 7 grid points in each angular direction. In order to
assess the convergence behavior of the implementation we
examine the following quantities,

Q� �
j���� � j���2=3�j

j���2=3� � j���=2�j
; (47)

Qmin � min


jFI��� � jFI��2=3�j

jFI��2=3� � jFI��=2�j

�
; (48)

Qglobal �

�����������������������������������������������������������
"Ij�FIj��� � FIj��2=3��2

"Ij�FIj��2=3� � FIj��=2��2

vuut : (49)

The capital index I ranges over all gravitational fields, i.e.
FI � f�; J;U;Wg, and the index j over all points in the
base grid which are common to the middle and high
resolution grid. The fluid variables behave in a nicer way
as their field values vary slowly, so here we include the
gravitational variables as they show the most significant
dynamical behavior. The factors Q�, Qmin, and Qglobal

measure the convergence of the field �, the minimum of
the convergence rate obtained for all gravitational field
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quantities Qmin and a global value Qglobal including all
fields, respectively. The results are displayed in Fig. 1,
where the horizontal lines provide the value for first and
second order convergence. The observed behavior indi-
cates a convergence rate consistent with first order
convergence.

B. Evolution for different gravitational initial data

Independently of the initial data J, the star settles into
‘‘quasiequilibrium’’ after a couple of hydrodynamical
times given by 2R�, i.e. all variables relax to roughly
constant values with respect to a corotating observer. Of
the small remaining variation, a major portion subse-
quently dies off after a couple of crossing times 2a, the
time needed for the star to communicate with the inner
boundary and back. This latter behavior is observed
whether or not the internal hydrodynamics of the star is
evolved. After this relaxation period, the time dependence
of the gravitational field is mainly determined by the
motion of the star.

As an illustration of this behavior we evolve a star in a
space-time both with and without a black hole. The star is
placed at a � 9 with mass m � 10�4 and radius R� � 3
and the gravitational initial data is given either by J � 0
(shear-free data) or by the quasi-Newtonian value. For
purposes of comparison, runs are made both with the
hydrodynamic variables evolved and frozen. Figures 2
and 3 illustrate the behavior of J for these cases. After a
relatively brief transient behavior, the norm of J ap-
proaches a value quite independent of the initial data
(with similar behavior observed in all other gravitational
field variables). This indicates that most of the spurious
radiation present in the initial hypersurface is ‘‘flushed
out‘‘ in a short time. In order to elucidate whether the
system settles into a quasistationary state, as might be
-10
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FIG. 2. Behavior of jjJjj for the case with no black hole. Three
scenarios are plotted: Full evolution (hydrodynamics � gravity)
using initial data J � 0 (dashed line with ‘‘x’’ symbols); full
evolution using quasi-Newtonian initial data (solid line with
circular symbols); and gravitational evolution with frozen inter-
nal hydrodynamics using quasi-Newtonian data (dotted lines
with triangular symbols). After some transient behavior, lasting
until about u� 2, all curves roughly approach the same value.
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expected, we analyze next whether there is an approximate
helical Killing vector in the space-time.

1. Agreement of the ‘‘relaxed state’’

As indicated above, the system appears to relax to a state
independent of the details of the initial data. In order to
quantify whether this state is roughly the same in both
cases, we calculate the L2 norm of the difference between
0 0.5 1 1.5 2 2.5
 u [M]

0e+00

2e-04

4e-04

6e-04

8e-04 J
no_fluid_dyn

J
J=0 initial

J
Newt initial

FIG. 3. Behavior of jjJjj for the case of an M � 1 black hole.
Again three scenarios are plotted: Full evolution using initial
data J � 0 (dashed line with ‘‘x’’ symbols); full evolution using
quasi-Newtonian initial data (solid line with circular symbols);
and gravitational evolution with frozen hydrodynamics using
quasi-Newtonian data (dotted lines with triangular symbols).
After some transient behavior lasting until u� 2, all curves
roughly approach the same value.
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the two numerical solutions obtained with Newtonian and
with shear-free initial data. Figures 4 and 5 illustrate the
behavior of this difference vs time, showing how as time
progresses the agreement between the numerical solutions
becomes more pronounced.

It is also illustrative to observe the pointwise difference
between the two numerical solutions. In particular, inspec-
tion of jJNewt � Jspherj at I� reveals not only that the
solutions tend to agree as time progresses, but also that
this agreement is more marked along null rays passing
through the star and neighboring rays.

C. Quasiequilibrium behavior

In order to measure the approach to quasiequilibrium we
monitor the rate of change of the angular part of the metric
along the streamlines of the vector field ? � T � @��. As
explained in Sec. III C 1, for @ � 1, ? equals the helical
Killing vector of the background black hole with � set to
the initial orbital angular velocity of the star. For compari-
son purposes we also consider @ � 0, for which ? equals
the static Killing vector T of the background black hole,
and @ � �1, for which ? equals the helical Killing vector
counter-rotating with respect to the orbital motion of the
star. We measure the change of the gravitational field with
respect to the flow of these vector fields by the norm F@ �

jjL?hABjj2. For orbital motion in quasiequilibrium around
the black hole, we should then find F@�1 � 0. In order to
verify that this is the case, we monitor the values of F@ for
@ � 1; 0;�1. Again, the star is initialized at a � 9 with
mass m � 10�5 and radius R� � 3.

The first test, carried out with quasi-Newtonian initial
data and shown in Fig. 6, compares the behavior of F@ for
the three different values of @ indicated above. At first, the
curves differ very little, but at later times there is a marked
difference ( > 1:5 orders of magnitude), indicating that the
system approaches an approximate helical symmetry. For
0 0.5 1 1.5 2 2.5
u [M]

1e-06

2e-06

3e-06

4e-06

5e-06

||
J N

ew
t -

 J
sp

he
r||

2

FIG. 4. L2 norm of the difference between the computed
values of J for the quasi-Newtonian and spherically symmetric
initial data.
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FIG. 5. Absolute value of the difference between the computed values of J at I� evolved from quasi-Newtonian and from shear-free
initial data. The panels [(a), (b), (c), (d)]correspond to the time sequence u � 0, u � 0:75M, u � 1:5M, and u � 2:5M. Panel (a) has
been truncated for comparison purposes, as its height is � 9 
 10�5.
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the @ � 1 helical case, F1 decays more than 2 orders of
magnitude from its initial value.

Next we repeat the test with J � 0 shear-free initial data,
with the results shown in Fig. 7. The initial values of F@ are
not the same as those in the first test, but a similar time
behavior is observed. Again the helical choice F1 decays
more than 2 orders of magnitude from its initial value, and
more than an order of magnitude more than either F0 or
F�1.

D. Corotating coordinates

Corotating coordinates can improve the tracking and
hydrodynamic treatment of the orbiting star by reducing
or eliminating the variation of field values due to purely
coordinate effects. They are introduced here by specifying
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the value of U at the inner boundary, as described in
Sec. III C 1. By defining U via Eq. (39), we have checked
that this indeed keeps the angular coordinate of the star
fixed. The tests were carried out in the star mass range m 2
�10�7; 10�2�, with M � 1, R� � 3M, and a � 9M.
Figure 8 illustrates the results for m � 10�5. As can be
seen clearly from the density contours displayed, the co-
rotating coordinates maintain the central density of the star
at the same initial coordinate location after evolution
through u � 2:8. Note that, although the initial polytrope
is spherically symmetric about the center of the star, the
kinetic energy contributed by the initially uniform orbital
angular velocity skews the density distribution. These re-
sults verify that the initialization can be performed equally
well in corotating coordinates.
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FIG. 6. Comparison of F@ using quasi-Newtonian initial data.
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FIG. 8. For the case m � 10�5, R� � 3M, a � 9M we show
density profiles in the plane with stereographic coordinate p �
0. The motion takes place in the �r; q� plane. In all figures, the
vertical axis is x (the compactified radial coordinate) and the
horizontal axis is q. The top panels correspond to the fixed
coordinates (a) and corotating coordinates (b) at the initial
time u � 0. Figures (c) and (d) show the corresponding density
profiles at u � 2:8. The corotating coordinates, panel (d), per-
form well in keeping the coordinate location of the star fixed. For
comparison, panel (c) shows the actual displacement of the star.
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E. Monitoring the expansion of the null coordinates

When the star is initialized sufficiently far from the
central black hole, its bending effect on neighboring light
rays can cause a coordinate singularity, by reducing the
expansion of the outgoing null hypersurfaces to zero. As
discussed in Sec. IV, the bending effect on outgoing null
rays is first evident at future null infinity, where it is
manifested in our formalism by � ! 1. However, � !
1 also when the generators of the outgoing null hyper-
surfaces approach a black hole horizon, in which case � !
1 on a complete spherical set of rays. As a result, it is
difficult to distinguish at a given retarded time whether it is
a horizon or a coordinate singularity that is responsible for
the lack of expansion. In the present context, what matters
is whether such coordinate singularities can arise on a
relatively short dynamical time scale which would have
bearing on our main conclusion that the system relaxes to a
quasistationary orbit. To assess this possibility, we carry
out evolutions with a star of mass m � 10�3M and radius
R� � 3M initially placed in orbit at different distances a
from the central black hole. We then monitor the expansion
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FIG. 7. Comparison of F@ using shear-free initial data.
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e�2� for roughly the ‘‘relaxation’’ time. Figure 9 graphs
the u dependence of the minimum value of e�2� over the
sphere at null infinity for the initial orbital radii a �
9M; 16:5M; 20M; 25M; 30M. As expected, the expansion
becomes smaller as the separation between the star and the
black hole increases. More important to the initialization
0 0.5 1 1.5 2

u [M]
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e-2
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a=16.5M
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a=30M

FIG. 9. Time behavior of the minimum expansion e�2� at
future null infinity vs initial location of the star. As the star is
placed farther from the black hole its focusing effect on the
central null rays increases. However, the expansion stays close to
its initial value for a given separation a.
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FIG. 10. Behavior of the minimum of the expansion e�2� at
future null infinity vs location of the star. As the star’s initial
location is placed farther from the black hole, its focusing effect
on the central null rays becomes considerably enhanced.
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problem, for a given separation the minimum expansion
does not appear to change considerably from its initial
value during the relaxation time. An estimate obtained
with the lens equation combined with the initial value of
� at infinity seems to provide a good indicator of whether
coordinate singularities will develop.

We now examine the possibility of dealing with a more
massive star m � 10�1M, keeping R� � 3M. The lens
estimate predicts zero expansion at a separation given by
a � 22:5M. To study this problem, we set up data at
different separations and, in view of the behavior just
seen in the case with m � 10�3M, we evolve for a short
time (u � M=10). Figure 10 graphs the computed value of
e�2� vs a, for a range of separations. As the star is placed
farther from the black hole, the expansion gets consider-
ably smaller. Furthermore, the values obtained for a >
16M only represent an upper bound since even with the
largest practical grid nr
 nq
 np � 132 
 822 the star
is considerably unresolved. As a result, the neighboring
null rays pass by the star at a significant ‘‘grid distance’’
and do not accurately represent the expansion that would
be calculated in the continuum problem. Nevertheless, the
results in the figure suggest that it would be possible to
simulate a star in orbit around a black hole with a < 16M
on a uniform grid without developing coordinate problems.

F. Code performance

We illustrate the speed of the code for the case of the
finest grid used in the convergence test, i.e. 812 
 123.
Setting the time step to �u � 0:014M, a run until u �
1:5M takes 9 hours on a 2.4 GHz Pentium 4 processor, and
requires 1.4 Gb of memory. From this we conclude that a
single orbit would take roughly 1-1/2 months.
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VII. CONCLUSION

Within the characteristic framework, we have developed
and implemented a numerical relativity code, as well as
procedures for finding the required initial data, for evolv-
ing a star in close orbit around a Schwarzschild black hole.
We have shown that after a short evolution time the system
relaxes to a quasiequilibrium state which is mainly inde-
pendent of the initial gravitational data. Variations of the
initial matter data, such as the shape or size of the star, have
not been investigated. Such variations would occur if tidal
distortion were allowed, the equation of state were
changed, or a non-Newtonian (such as relativistic
Tolman-Oppenheimer-Volkoff) model were used. For
small variations (at constant mass), one would expect
similar results since the accompanying variations in the
star’s gravitational field should relax to the same quasie-
quilibrium state. We have also developed and demon-
strated tools that permit the use of corotating coordinates
and that monitor possible problems with the null coordi-
nate system.

Successful simulation of a neutron star in close orbit
around a black hole requires a gravity code, a hydrody-
namic code, and physically appropriate initial data. It has
already been demonstrated that the characteristic gravity
code is accurate and stable [15,38]. In this paper we have
implemented and tested a conservative formulation of the
hydrodynamics and used it to shed light on the problem of
prescribing physically meaningful initial data.

The code runs on a single processor and does not include
adaptive mesh refinement. In order to have resolution in the
angular directions, we needed a star with a large radius and
close to the black hole (even so, the coarsest grid used
resolved the star with at most 7 grid points in each angular
direction). The results in Sec. VI E show that the star’s
mass m cannot be much more than 10�1M, and in this case
the Roche indicator (which must satisfy 6R � 1 for tidal
stability) would be 6 � 1:11. We made short evolution
runs, both because of limited computer resources, and
because tidal instability means that longer runs do not
help with code validation. The constraint on physically
useful runs is very much a consequence of the requirement
to resolve the star. Once we are able to run with a much
smaller R�, it will be possible to satisfy both caustic and
tidal constraints, because the gap (on m) between these
constraints scales as R�1

� .
There are several issues that remain to be addressed

before physically interesting long-term evolutions can be
carried out. The results obtained in this paper would appear
to justify the effort required to make these improvements.
Specifically, in order for the code to yield astrophysically
useful results, three further conditions must be fulfilled.
First, more realistic inner boundary data must be provided.
This must correspond to a spinning black hole and must
include the gravitational distortion induced by the com-
panion star. Second, the turnaround of results must be
-14
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considerably improved. This will require revising the nu-
merical algorithms and parallelization of the code to take
advantage of large platforms. Finally, since accurate simu-
lations require that the numerical error be well below the
expected radiation output ( < 5%), the use of adaptive
mesh refinement seems crucial. Preliminary work in this
direction has recently been presented [50]. All of these
items are major tasks and are deferred to future work.
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APPENDIX: COMPUTATION OF THE QUASI-
NEWTONIAN INITIAL DATA

The Newtonian potential outside the polytrope is simply

� � �
m
R
�R> R��: (A1)
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Inside the polytrope, the derivation is rather more compli-
cated. We find

� � �
m
R�

�
m sinR$R�

R$
�R< R��; (A2)
and from it obtain ð2�. First, we make the following
definitions,

z � q� ip; t1 � �r� a�2 � z
z�r� a�2;

Pp � 1 � z
z; t2 �
$
R�

������
t1
Pp

s
; t3 �

a2r2z2m
������
Pp

p
t5=2
1

:

(A3)
Then we may write

ð2� � �12t3 �R> R��;

ð2� � �4
t3

R2
�$

 �
�$2r2 � 2r$2a

1 � z
z
Pp

� 3R2
�

� $2a2

�
sint2 � 3R�$

������
t1
Pp

s
cost2

!

�R< R��:

(A4)
Finally, J is obtained by numerically integrating �r2J;r�;r �
�2ð2� in second order form starting from the inner
boundary r � 2M.
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BISHOP, GÓMEZ, LEHNER, MAHARAJ, AND WINICOUR PHYSICAL REVIEW D 72, 024002 (2005)
[18] M. Shibata, K. Uryu, and J. L. Friedman, Phys. Rev. D 70,
044044 (2004).

[19] H. J. Yo, J. N. Cook, S. L. Shapiro, and T. W. Baumgarte,
Phys. Rev. D 70, 084033 (2004).

[20] Z. Andrade et al., Phys. Rev. D 70, 064001 (2004).
[21] E. Gourgoulhon, P. Grandclément, and S. Bonazzola,

Phys. Rev. D 65, 044020 (2002).
[22] R. J. Leveque, Numerical Methods for Conservation Laws

(Birkhauser-Verlag, Basel, 1990).
[23] P. Papadopoulos and J. A. Font, Phys. Rev. D 61, 024015

(2000).
[24] S. Davis, SIAM J. Sci. Stat. Comput. 8, 1 (1987).
[25] J. Winicour, J. Math. Phys. (N.Y.) 24, 1193 (1983).
[26] J. Winicour, J. Math. Phys. (N.Y.) 25, 2506 (1984).
[27] R. A. Isaacson, J. S. Welling, and J. Winicour, J. Math.

Phys. (N.Y.) 26, 2859 (1985).
[28] J. Winicour, J. Math. Phys. (N.Y.) 28, 668 (1987).
[29] Some notion of the proximity to stationarity on the initial

hypersurface can be gained without evolution by the
approach introduced in [30].

[30] S. Dain, Phys. Rev. Lett. 93, 231101 (2004).
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