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Abstract—

 

If strategy shifts speed up performance, learning curves
should show discontinuities where such shifts occur. Relatively smooth
curves appear consistently in the literature, however. To explore this
incongruity, we examined learning when multiple strategies were
used. We plotted power law learning curves for aggregated data from
four mental arithmetic experiments and then plotted similar curves
separately for each participant and strategy. We then evaluated the fits
achieved by each group of curves. In all four experiments, plotting
separately by strategy produced significantly better fits to individual
participants’ data than did plotting a single power function. We con-
clude that improvement of solution time is better explained by practice
on a strategy than by practice on a task, and that careful assessment of
trial-by-trial changes in strategy can improve understanding of the

 

effects of practice on learning. 

 

0

 

The generality and precision simultaneously achieved by express-
ing empirical regularities as mathematical functions facilitates theoret-
ical development, testing, and the application of scientific knowledge.
Although mathematical laws are more prevalent in the physical sci-
ences than in the social sciences, psychology’s search for quantitative
laws that describe human behavior is long-standing, dating back to the
1850s. A few notable successes have been achieved, including Fitts’s
law (1954) and the Hick-Hyman law (Hick, 1952; Hyman, 1953). 

Newell and Rosenbloom (1981) proposed another candidate for the
status of quantitative psychological law. They argued that the 

 

power
law of practice
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 offers a sufficiently accurate, general, and useful char-
acterization of human skill acquisition. This article examines that pro-
posal in the light of empirical evidence that strategy changes
sometimes play an important role in cognitive skill acquisition. Such
evidence raises questions about the adequacy of the regular power law
as a complete descriptor of the temporal course of complex human
learning. Our goal is to describe the tension arising between the general
formulation of the regular power law and the data on strategy shifts and
then to suggest a way to reconcile the two bodies of evidence. 

 

PRACTICE AND SPEED OF PERFORMANCE 
IN SKILL ACQUISITION 

 

It is well established that practice on a task almost always improves
performance, both by reducing the number of errors and by reducing
the time required to perform the task. Many longitudinal studies using
performance time (e.g., solution time for problems, reaction time to
stimuli) to measure skill acquisition have shown a remarkable regular-

 

0. 

1. This regularity was first noted by Lewis (1976) in an unpublished
manuscript that Newell acknowledged reading. 

ity across a wide variety of tasks in numerous domains (e.g., motor,
perception, and cognitive): The relation between practice and perfor-
mance time is characterized by monotonically diminishing returns.
That is, performance speeds up with practice, but the amount of trial-
to-trial improvement decreases as practice continues (Anderson, 1983;
Chase, 1986; Crossman, 1959; DeJong, 1957; Fitts & Posner, 1967;
Nerb, Krems, & Ritter, 1993; Newell & Rosenbloom, 1981; Snoddy,
1926). Figure 1a illustrates this relation using data cited by Newell and
Rosenbloom (1981) and originally collected by Seibel (1963). 

Newell and Rosenbloom, in their efforts to formalize this relation
with a variety of data sets, repeatedly found that the relation between
practice and performance time could be modeled using a power func-
tion, whose general form is shown in Equation 1.

(1)

In Equation 1, the parameter 

 

T

 

 represents the performance time for
a given trial, 

 

B

 

 is the time taken to perform the first trial, and 

 

N

 

 is the
trial number. The rate at which performance time changes is repre-
sented by 

 

α

 

, with the negative value indicating that performance time
decreases at a rate specified by 

 

α

 

. This interpretation of 

 

α

 

 is more
readily understood when log transforms are applied to Equation 1,
yielding a linear function with 

 

α

 

 as its slope, as seen in Equation 2.

(2)

Figure 1b shows the effect of this transformation graphically when it is
applied to the data plotted in Figure 1a. 

Newell and Rosenbloom (1981) achieved impressive quantitative
fits to the data from a variety of skill acquisition studies, justifying
their proposal that this functional relation be elevated to the status of
psychological law. They were, however, careful to conclude that gen-
eral power functions provided good approximations to the empirical
data. This qualification was prompted in part by residuals that deviated
systematically from the fitted functions. 

 

IMPROVEMENT DUE TO STRATEGY SHIFTS 

 

A growing body of evidence suggests that strategy changes can
improve skilled performance, and that experts employ strategies that
are more effective than those used by novices on the same tasks (e.g.,
Chi, Feltovich, & Glaser, 1981; Ericsson & Smith, 1991; Larkin,
McDermott, Simon, & Simon, 1980; Staszewski, 1990). Studies of
mental calculation provide some of the clearest evidence. 

Improvements in problem solution times for a variety of arithmetic
tasks have been linked to the adoption and adaptive use of different
strategies (e.g., Compton & Logan, 1991; LeFevre, Bisanz, et al.,
1996; LeFevre, Sadesky, & Bisanz, 1996; Lemaire & Siegler, 1995;
Reder & Ritter, 1992; Siegler & Jenkins, 1989; Staszewski, 1988).
New strategies frequently reduce the number of intermediate steps in
solutions, often by substituting a single memory retrieval step for
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several computational steps. Replacing multiple time-consuming steps
with retrieval decreases solution time accordingly (e.g., Klapp,
Boches, Trabert, & Logan, 1991; Staszewski, 1988). 

Staszewski (1988), for example, found that extensive practice at
solving multidigit multiplication problems without external memory
aids led participants to adopt a variety of new strategies. These
included replacement of a series of computational steps with direct
retrieval of products, adoption of more efficient calculation algo-
rithms, and efficient memory management strategies. Although the
participants involved were ordinary undergraduates, their performance
at the conclusion of their laboratory training reached the level of estab-
lished mental multiplication experts. 

Compton and Logan (1991) used an “alphabet arithmetic” verifica-
tion task in which the participants’ goal was to determine whether

equations such as 

 

A

 

 + 3 = 

 

D

 

 were true; in this case, the answer would
be “true” because 

 

D

 

 is three steps away from 

 

A

 

 in the alphabet. On one
sixth of the trials, after completing the verification, participants were
asked to press a button corresponding to the strategy they employed.
With experience, participants learned to use direct memory retrieval
instead of a series of computational steps, thereby reducing solution
times. 

Reder and Ritter (1992) used an arithmetic task in which partici-
pants were to rapidly choose one of two procedures to solve two-digit

 

×

 

 two-digit arithmetic problems (e.g., 44 

 

×

 

 18). Participants were told
to imagine that they were in a “game show” and had 850 ms to choose
to either compute the answer (calculation strategy) or retrieve the
answer from memory (retrieval strategy). If they selected the retrieval
strategy, they then had about 1 s to state the answer; if they selected the
calculation strategy, they had effectively unlimited time to compute
the answer. Participants were given an incentive for choosing to
retrieve, provided that they could come up with the answer quickly
enough. Over the course of the experiment, specific arithmetic prob-
lems were repeated numerous times, and participants’ tendency to
select “retrieve” rather than “calculate” increased accordingly. 

Several authors have shown similar effects of strategy changes on
young children’s arithmetic. For example, Siegler and Jenkins (1989)
used concurrent verbal protocols and videos of young children who
knew how to add using a simple counting-from-one rule. After 11
weeks of practice, almost all of the children had learned a more effi-
cient rule that involved counting up from the larger addend rather than
counting up from one. Children using this more sophisticated counting
rule were faster at solving the problems because they had many fewer
operations to perform to produce the answers. 

In summary, several studies in the domain of arithmetic problem
solving indicate that strategy shifts occur along with improvements in
solution times. These findings suggest that at least within this task
domain, strategy shifts could produce the systematic deviations seen
when power functions have been fit to practice-related reductions in
solution times. If so, when fitting power functions to practice data,
investigators could obtain better accounts of practice-related changes
in performance by supplementing practice measures with measures of
strategy than by using power functions alone. In particular, our
hypothesis is that strategies may change with practice, and that perfor-
mance improves according to the power law for each individual strat-
egy, even if performance on the task as a whole, with strategies not
analyzed separately, does not. 

It should be noted that our claim is similar in many ways to one
made by Rickard (1997), who has independently pursued a related
avenue of research. He fit the power law to data from an arithmetic
task that used a synthetic operator similar to one used by Reder and
Ritter (1992). The fits obtained were then compared with those pro-
duced by fitting strategy-sensitive functions to the same solution
times. The latter were generated by first partitioning data points by
strategy employed on a given trial.

 

2

 

 A power function was then fit sep-
arately to only those trials associated with each individual strategy.
The individual-strategy functions were then compared with the regular
power function to determine which better explained the variability in
participants’ performance. Rickard’s finding was that the individual-
strategy functions were no better in terms of 

 

R

 

2

 

. Visual inspection of

 

2. Rickard had strategy information for only one third of all trials. He
used logistic regression to interpolate for the remaining trials. 

Fig. 1. A regular power function fit to an experiment, with untrans-
formed axes (a) and with both axes log-transformed to linearize the
relation (b). Data from Seibel (1963).

a

b
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plots of the data, however, suggested that the individual-strategy func-
tions provided a more accurate fit to the data. On this basis, Rickard
(1997) argued that individual functions should be fit to each strategy
separately. 

Our methods are similar in many respects to those of Rickard
(1997), but also differ in important ways. We reanalyzed data from four
mental arithmetic studies that assessed strategy on every trial. In addi-
tion to performing analyses similar to Rickard’s, we analyzed the per-
formance of individual participants by comparing, for every participant,
the predictions of the regular power function and the appropriate indi-
vidual-strategy functions. We were then able to compare the regular
power law with an alternative form based on improvement of specific
strategies. 

 

THE FEELING-OF-KNOWING EXPERIMENTS 

 

A series of three experiments performed by Reder and Ritter
(1992) and Schunn, Reder, Nhouyvanisvong, Richards, and Strof-
folino (1997) examined feeling of knowing in mental arithmetic prob-
lems. Although the present article is not concerned with feeling-of-
knowing judgments per se, the data from these experiments provide a
valid measure of participants’ strategy use that is independent of the
solution times for each trial. That information along with trial-by-trial
solution times allowed us to trace the effects of strategy shifts on solu-
tion time. 

Participants were presented with relatively novel two-digit 

 

×

 

 two-
digit arithmetic problems (e.g., 45 

 

×

 

 27) in a random order. In each
experiment, half of the problems used the multiply operator, and the
other half used a different one. In one of these experiments, the other
operator was plus (+); in the other two, the second operator, called

 

sharp

 

 (#), was invented for the experiment.

 

3

 

 Problems recurred a vari-
able number of times, so that by the end of the experiment, partici-
pants had received different amounts of practice with different
problems. Prior to attempting to answer each problem, participants
were instructed to make a snap judgment (within 850 ms) as to
whether they could retrieve the correct answer directly from memory
or whether they would have to calculate the answer. Calculation is
much slower than retrieval. This fact was used to verify that the quick
decision, or feeling-of-knowing judgment, was an excellent predictor
of strategy choice, or at least that the error rates and solution times cor-
responded closely to what one would expect given that strategy choice
(see Reder & Ritter, 1992, or Schunn et al., 1997, for details). 

In the analyses reported here, we excluded trials in which partici-
pants responded incorrectly because of the difficulty of interpreting
solution times on those trials. Excluded trials were treated as missing
values (i.e., they still contribute to the amount of practice participants
received). However, we did include trials in which participants
exceeded the solution time limit (approximately 1 s for retrieval or
18 s for calculation). 

 

3. Sharp was defined for two-digit 

 

×

 

 two-digit arithmetic problems by
the pseudoequation 

 

AB

 

 # 

 

CD

 

 = [(

 

A

 

 + 

 

C

 

) 

 

×

 

 (

 

B

 

 + 

 

D

 

) 

 

×

 

 3] modulo 100. For
example, 34 # 56 = [(3 + 5) 

 

×

 

 (4 + 6) 

 

×

 

 3] modulo 100 = 40. Application of
this rule creates an operation roughly equivalent in performance time to
multiplication (Reder & Ritter, 1992). Note that this operation is not iden-
tical to Rickard’s (1997) pound operator, which is defined by the equation

 

a

 

 # 

 

b

 

 = [(

 

b

 

 – 

 

a

 

) + 1] + 

 

b

 

 = 2

 

b

 

 – 

 

a

 

 + 1. 

 

Analysis of Group Data 

 

For each experiment and operator, the data were aggregated over
participants. For each participant, we took the mean solution time of
each problem after a given number of presentations of that problem;
we then collapsed over participants. The regular power function was
then fit to these aggregate data. 

Solution times were also partitioned according to which strategy
was used, calculation or memory retrieval. This classification was
done on the basis of each participant’s explicit strategy selection (i.e.,
the feeling-of-knowing button press). It should be noted that the strat-
egy transition did not always occur in a stepwise fashion. Participants
frequently chose to calculate an answer after they had retrieved it on a
prior trial, averaging 2.39 and 2.12 strategy shifts per problem in
Reder and Ritter’s (1992) experiments and 3.23 switches per problem
in the Schunn et al. (1997) experiment. This effect was not due solely
to brief fluctuations in strategy choice while adopting a new strategy;
for those problems for which more than one switch occurred, the
region between the first and last strategy shift amounted to, on aver-
age, 52%, 48%, and 42% of the total trials for the three experiments,
respectively. Hence, there was rarely a single point where a subject
switched to a new strategy and then never switched back.

 

4

 

 Power func-
tions were then fit to these strategy-specific data subsets, after aggre-
gating over participants. 

The fits of the regular power function and individual-strategy power
functions are summarized in Table 1. Although the specific strategies
are well fit by power functions, there is little reason to prefer them to
the non-strategy-specific regular power function, because all of the fits
capture at least 95% of the variance in mean solution time. An example
fit has been plotted as Figure 2. The figure plots the relationship of
solution time to practice on a given problem for each strategy sepa-
rately, as well as showing the more traditional plot of solution time
against practice with a problem, regardless of strategy. As expected, the
retrieval strategy is faster than the calculation strategy, and the regular
power law predicts solution times somewhere in between. 

 

4. Monotonic shifts do occur for some subjects, however, as reported
by Ritter, Reder, and Newell (1989). This finding was one of the direct pre-
cursors to our work reported here. 

Table 1. R2 values for individual-strategy function fits and 
regular power function fits for the feeling-of-knowing data 
aggregated over participants

Experiment
Calculation

R2
Retrieval

R2
Overall

R2 

Reder and Ritter (1992) 
Experiment 1, multiply .999 .993 .999 
Experiment 2, multiply .999 .979 .998 
Experiment 2, sharp .999 .974 .998 

Schunn, Reder, Nhouyvanisvong, 
Richards, and Stroffolino 
(1997), Experiment 1 

Multiply .999 .991 .999 
Sharp .999 .983 .999 

 



 

PSYCHOLOGICAL SCIENCE

 

4

 

VOL. 9, NO. 1, JANUARY 1998

 

Strategy and the Power Law

 

Another measure of fit is the autocorrelation of the residuals. Sys-
tematic patterning of the residuals following a curve fit may indicate
that a predictive variable has not been considered or that an incorrect
curve has been fit. Table 2 shows the results of autocorrelating the
residuals for both the regular power function and the two individual-
strategy functions in each of the experiments. The analysis shows that
in two of the five cases, the regular power function estimates deviated
systematically from the observed data (and in a third case, the regular
power function estimate showed a marginally significant deviation
from the observed data). In contrast, only one of the individual-
strategy functions showed systematic deviations from the observed
data (in a case in which the regular power function fared well). 

In summary, analyses of aggregated data suggest that strategy vari-
ation affects solution times as hypothesized, but not unequivocally so.
The mixed findings could, however, be the result of losing information
by aggregation. In the next section, we address this issue through anal-
yses of individual participants’ performance. 

 

Analysis of Individual Participants’ Data 

 

Analyses of individual participants’ data were conducted accord-
ing to the general method outlined earlier. Each data point used in the
analysis represented a single experimental trial; there was no aggrega-
tion over participants or trials in these analyses. Data were grouped for
analysis by operator (i.e., all multiplication problems together, all
sharp problems together). 

First, each participant’s solution times were log-transformed and
regressed on the log-transformed number of trials of practice with a partic-
ular problem (i.e., we applied the power law to get an estimate of solution
time). In order to generate a strategy-specific estimate of solution time, we
created two single-strategy functions. These were power functions fit to
log-transformed solution times and log-transformed number of trials on
which the strategy had been used for this problem by the participant (as
indicated by the feeling-of-knowing button press). Both of these estimates
were then entered as predictors of solution time in a stepwise fashion to
determine which provided a better account of improvement on the task. 

We reasoned that we would be able to adequately distinguish
between the two estimates only if participants used each strategy on at
least 30% of the total trials. As we were interested only in those cases
in which the two estimates would differ, we made an a priori decision
to analyze only the data from participants who used each strategy on
30% or more of all trials for a particular operator. Using this criterion,
we made 46 individual participant-by-operator comparisons, 28 for
multiply and 18 for sharp (recall that the sharp operator was not used
in one of the experiments). 

The results of this analysis are presented in Table 3. In every case,
the strategy-specific estimate was superior to the regular power func-
tion estimate. Furthermore, the regular power function did not account
for a significant amount of variance once the strategy-specific estimate
was entered, except in one case in which it explained an additional 2%
of the variance. Table 3 also shows the incremental variance accounted
for by the strategy-specific estimate after the regular power function
estimate is forced in. In every case, the strategy-specific estimate
accounts for additional variance. 

 

Differences Between Strategies 

 

As the slope and intercept of the power function can vary consider-
ably from task to task (Newell & Rosenbloom, 1981), it seemed prob-
able that the slopes and intercepts for different strategies would also
vary. The slopes and intercepts are given in Table 4. However, the dif-
ferent strategies in these tasks did not have significantly different
slopes. Two-tailed pair-wise comparisons revealed no significant dif-
ferences between the slopes of the retrieval and calculation power law
learning curves for multiplication, 

 

t

 

(28) = 1.63, or for sharp, 

 

t

 

(17) =
1.21. The slopes of the calculation curves for sharp and multiply were
not significantly different across participants, 

 

t

 

(15) = 0.90; neither
were the slopes of the retrieval curves for these operators, 

 

t

 

(15) = 0.78. 
The intercepts did differ, with retrieval being faster than calculation for

both multiplication, 

 

t

 

(27) = 18.67, 

 

p

 

 < .001, and sharp, 

 

t

 

(17) = 9.13, 

 

p

 

 < .001. 

Fig. 2. Example plot of power law fits to the feeling-of-knowing data,
with both axes log-transformed to linearize the relation. The retrieval
strategy (bottom line) and calculation strategy (top line) curves are
plotted as a function of strategy for a given problem, not practice with
the problem per se, and have different intercepts from the regular power
curve (center line). Data from Reder and Ritter (1992), Experiment 1,
multiplication problems (aggregated over participants and problems).

Table 2. Autocorrelation of residuals (lag = 1) by condition 
for the feeling-of-knowing data aggregated over participants 

Experiment
Calculation 

(r)
Retrieval 

(r)
Overall 

(r)

Reder and Ritter (1992)
Experiment 1, multiply .23 .13 .49** 
Experiment 2, multiply .05 –.12 .29 
Experiment 2, sharp .11 –.27 .45* 

Schunn, Reder, Nhouyvanisvong, 
Richards, and Stroffolino 
(1997), Experiment 1 

Multiply .04 .38 .63** 
Sharp .15 .58** .21

*p < .10. **p < .05.
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EXPERIMENT WITH AN EXPERT 
MENTAL CALCULATOR 

 

The analyses just described show that the natural transition from
calculation to direct memory retrieval that occurs with practice on a
problem is better fit by two power functions than by one. To test the
generality of this conclusion, we reanalyzed Staszewski’s (1988) data.
In this study, a single subject (G.G.) practiced mental multiplication
for more than 600 sessions. After the 500th session, G.G. was taught a
new strategy. This data set allowed us to look at long-term strategy
changes following explicit instruction. It also differs from the feeling-
of-knowing experiments in that strategies were not interleaved; rather,
the introduction of a new strategy occurred at a single transition point. 

 

Method 

 

Problems from nine problem-size categories were presented either
orally or visually. For visually presented problems, the problem
operands remained available to the participant throughout his compu-
tation. The problem-size categories were differentiated by the size of
problem operands: Multipliers were one or two digits, and multipli-
cands ranged from one to five digits. An example from the problem-
size category called 2 

 

×

 

 4 would be 69 

 

×

 

 4,957. Problems were ran-
domly generated for each problem size during the first phase of the
experiment, so repetitions were rare (unlike in the feeling-of-knowing
experiments). During the second phase, problems from the last 100
practice sessions of the first phase were repeated in order. 

During the first phase, G.G. was instructed to use an unconventional
general solution strategy commonly used by expert mental calculators
(Smith, 1983). Unlike the usual strategy, which works from right to left,
the experts’ strategy works in the opposite direction. That is, they start
computations with the digits of the highest magnitude in both operands
and proceed to the lowest. G.G. was instructed to work as quickly and
accurately as possible, although accuracy was emphasized if his aggregate

error rate exceeded 10%. He took 20 sessions to achieve this criterion,
which he never again exceeded, maintaining an average error rate of 5.2%
over the remainder of his training. His consistently high accuracy mini-
mizes any interpretation problems arising from speed-accuracy trade-offs. 

Starting with the 501st practice session, the second phase began,
and G.G. was instructed to use a new strategy that applied only to the
problems with two-digit multipliers (i.e., 2 

 

×

 

 

 

n

 

s, where 

 

n

 

 is 2, 3, 4, or
5). This new strategy offers greater efficiency because it reduces mem-
ory load relative to the original two-place multiplication procedures
(consult Staszewski, 1988, for further details). During his 1 day’s
practice with this new strategy, G.G. gave concurrent verbal reports. In
later sessions, retrospective reports were used to monitor strategy use,
and he consistently reported using the new strategy. Moreover, G.G.
was also required to give concurrent verbal protocols of how he was
solving the problem during approximately half of these later sessions,
and these protocols also revealed consistent use of the new strategy. 

 

Comparison of Performance by Problem Condition 

 

The data were fit separately to a power function for each mode of
presentation for each of the nine problem-size categories. Each data
point in our analysis is the median correct solution time over five
experimental sessions for that problem size (15 presented problems).
The analysis procedure is identical to that used for the feeling-of-
knowing data sets, with one exception: The power function used in fit-
ting included an empirically determined asymptote for each problem
size (based on Staszewski, 1988). In other words, we generated two
estimates of solution time, one based on the regular power law (the
regular power function estimate) and the other based on fitting two
separate functions to the data set, splitting the trials into those from the
first phase using the old strategy and those from the second phase
using the new strategy (the multiple-strategy estimate). These two esti-
mates were then employed as predictors of solution time in stepwise
regressions. 

We predicted that for 2 

 

×

 

 2 to 2 

 

×

 

 5 problems, to which the new
strategy applied, we would see an improved fit by taking into account
strategies, while in the 1 

 

×

 

 2 to 1 

 

×

 

 5 problems, for which the new
strategy had no effect, we would not see an improved fit. The results of
the analysis are shown in Table 5. In analyses in which predictors with
the highest 

 

F

 

 value entered the regression models first (column 1), the
multiple-strategy estimate entered first for each problem condition.
The regular power function estimate accounted for incremental

Table 3. Summary of individual-strategy estimates’ ∆R2 
values for stepwise regressions for the feeling-of-knowing data 

Experiment
Free-entry

R2 a
Forced-entry

∆R2 b N 

Reder and Ritter (1992) 
Experiment 1, multiply .537 (.125) .369 (.136) 6 
Experiment 2, multiply .602 (.083) .510 (.071) 5 
Experiment 2, sharp .620 (.152) .453 (.144) 4 

Schunn, Reder, Nhouyvanisvong,
Richards, and Stroffolino 
(1997), Experiment 1

Multiply .633 (.122) .278 (.179) 17 
Sharp .665 (.156) .265 (.155) 13

Note. Values enclosed in parentheses represent standard deviations. All
values that contributed to these means were significant, p < .01 or better. 
aEstimates for individual-strategy solution time entered the regression
model first in the free-entry analyses for all conditions. Estimates based
on the regular power function augmented the model for only 1 participant,
who contributed to the mean for the sharp problems in Schunn et al. The
incremental variance accounted for by this variable in this case was .020. 
b∆R2 values in the forced-entry analyses represent the additional explanatory
power achieved by entry of the individual-strategy estimates after variance
accounted for by the regular power function estimates has been removed.

Table 4. Mean slope and intercept values of individual-
strategy power functions for the feeling-of-knowing data 

Condition Mean slope (α)

Mean 
intercept 
(log B)

Multiply, retrieval strategy 0.54 (0.53) 3.21 (0.25) 
Multiply, calculation strategy 0.37 (0.18) 3.99 (0.13) 
Sharp, retrieval strategy 0.11 (1.15) 2.97 (0.90) 
Sharp, calculation strategy 0.25 (0.88) 3.77 (1.14)

Note. All means are based on the slope and intercept for the linear form
of the power function (Equation 2). Values in parentheses represent stan-
dard deviations.
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variance in only one condition (2 

 

×

 

 5 oral) in which strategy was
manipulated (i.e., 2 

 

×

 

 2, 2 

 

×

 

 3, 2 

 

×

 

 4, 2 

 

×

 

 5), and the amount was small
(0.5%). In analyses that forced the regular power function estimate
into the model first, the multiple-strategy estimate always accounted
for a significant amount of incremental variance for the conditions in
which the new strategy applied (column 2). 

For the majority of those cases in which the new strategy did not
apply (i.e., the new strategy should not have influenced performance),
the multiple-strategy estimate did not account for incremental variance
once the regular power function estimate was forced in. The small
improvement due to the multiple-strategy estimate in some of these
cases may be due to other concurrent endogenous local strategy
changes found in G.G.’s solutions to specific subproblems. The evi-
dence indicates that subproblems can be identified in problems with
multidigit operands, and that direct retrieval supplants multistep com-
putation for an increasing proportion of 1 

 

× 2 and 1 × 3 subproblems
with practice (Staszewski, 1988). Additional small endogenous strat-
egy shifts cannot be ruled out. 

Figure 3 provides example plots for G.G.’s solution times in the 2 × 5
visual and 1 × 5 visual conditions, blocked for display in 15-session
practice blocks. Figure 3a shows the fits of the regular power function
estimates (including asymptotes computed by Staszewski, 1988, p. 115)
for the 1 × 5 problems and for the 2 × 5 problems. Additionally, a third
line has been included to show how improvement on the new strategy

deviates from improvement on the old. There are two things to note
about this additional line. One is that the first few points after the new
strategy is introduced are above the regression line for the older strategy.
This is because when people first learn a new strategy, it often takes
longer to use it than a more practiced strategy. The other observation is
that the slope of the new function implies that by Session 1,000, G.G.
would be answering 2 × 5 problems as quickly as 1 × 5 problems, which
seems unlikely. This is an artifact of starting the plot of a new strategy

Table 5. Summary of individual-strategy estimates’ ∆R2 
values for stepwise regressions for the expert mental 
calculator data 

Condition Free-entry R2 a Forced-entry ∆R2 b 

1 × 1 oral .274 .066 
1 × 2 oral .779 .008 
1 × 3 oral .757 —
1 × 4 oral .713 .011 
1 × 5 oral .797 —
2 × 2 oral .883 .012 
2 × 3 oral .931 .010 
2 × 4 oral .889 .018 
2 × 5 oral .888 .060 
1 × 1 visual .679 .013 
1 × 2 visual .801 —
1 × 3 visual .734 —
1 × 4 visual .781 —
1 × 5 visual .772 —
2 × 2 visual .848 .017 
2 × 3 visual .892 .004 
2 × 4 visual .822 .031 
2 × 5 visual .794 .049

Note. All numerical entries in this table were significant, p < .05. 
aEstimates of individual-strategy solution time entered the regression
model first in the free-entry analyses for all conditions. Estimates based
on the regular power function augmented the model only for the 2 × 5
oral problems. The incremental variance accounted for by this variable
in this case was .005. 
b∆R2 values in the forced-entry analyses represent the additional solu-
tion time variance accounted for by the individual-strategy estimates
after the variance accounted for by the regular power function estimate
has been removed.

Fig. 3. Comparison of regular power functions and individual-strat-
egy power functions. Shown in (a) is an example plot of the regular
power function estimates of solution times produced by an expert
mental calculator (G.G.) for 1 × 5 (one-digit × five-digit) and 2 × 5
(two-digit × five-digit) visually presented mental multiplication prob-
lems, as a function of practice. Each data point represents 15 sessions.
Also shown is a power function fit to the subset created by introducing
a new strategy at Session 501, plotted to show the nonlinearity of the
log-log plot when the new strategy is introduced. Shown in (b) are
example plots of the individual-strategy power function estimates of
the same data, plotted as a function of practice with the strategy rather
than with the task. Data from Staszewski (1988). 

a

b
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far along in the practice curve, however. When the same data are
replotted using our individual-strategy formulation in Figure 3b, the
slope of the new strategy function is more sensible. Here, the new-
strategy data for the 2 × 5 problems are plotted starting from Block 1,
because if it is assumed that practice occurs by strategy rather than by
task, then there is no practice on the new strategy until it is introduced. 

GENERAL DISCUSSION 

Two general concerns motivated this work: theoretical unification
and progress. Cognitive psychology’s apparent acceptance of the
power law of practice is inconsistent with growing evidence that strat-
egy shifts play an important role in cognitive skill acquisition. We
hoped to reconcile the two typically unrelated bodies of data that pro-
duce this tension. Our results indicate that such a reconciliation is pos-
sible, and we offer one form that it can take. The explanatory
capability of the power law can be improved by assuming that power-
law improvement occurs relative to strategies, not tasks. We found that
composite functions interleaving point predictions generated by fitting
strategy-specific power functions to partitioned sets of solution times
yield better accounts of observed behavior than the regular power law.
This improvement was illustrated both when the strategy shift was dis-
crete and explicitly taught and when the shift from one strategy to
another was gradual and motivated by task constraints. As noted in the
introduction, this conclusion has been independently verified by
Rickard (1997). The generality of these findings is also strengthened
by the work of Lovett and Anderson (1996), whose analyses of simple
problem-solving tasks yielded additional converging results. 

Our second concern involves the de facto status of the power law of
practice as a benchmark for evaluating and comparing unified theories
of cognition otherwise known as cognitive architectures. Explanations
of the smooth, continuous changes in solution time consistent with the
regular power law have become a standard for evaluating such large-
scale theories (e.g., Anderson, 1983; Newell, 1990), despite reserva-
tions about the power law’s accuracy as a descriptor of human learning
(Chase, 1986). It now seems clear that a composite of strategy-sensi-
tive power functions represents a more precise description than the
regular power law (and may help indicate where such strategy shifts
occur). To remain viable, candidate architectures that seek to explain
the acquisition of complex skills must accommodate strategy change
and strategy variation, and account for the independent speedup of
each strategy. Clearly, this effort will require understanding the condi-
tions that determine strategy changes as well as how and why new
strategies emerge. This more accurate prediction comes at a price of
more detailed analysis. 
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