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How do people decide whether to try to retrieve an answer to a problem or to compute the 
answer by some other means? The authors report 2 experiments showing that this decision is 
based on problem familiarity rather than on retrievability of some answer (correct or 
incorrect), even when problem familiarization occurred 24 hr earlier. These effects at the level 
of the individual problem solver and the results reported by L. M. Reder and E E. Ritter (1992) 
are well fit with the same parameter values in a spreading-activation computational model of 
feeling of knowing in which decisions to retrieve or compute an answer are based on the 
familiarity or activation levels of the problem representation. The authors therefore argue that 
strategy selection is governed by a familiarity-based feeling-of-knowing process rather than 
by a process that uses the availability of the answer or some form of race between retrieving 
and computing the answer. 

When given any problem to solve, the problem solver 
may choose to retrieve a previously computed solution from 
memory or choose to compute the answer by using some 
reasoning strategy (e.g., using an algorithm, inferencing, or 
making plausibility judgments). This decision between re- 
trieving and computing is used in a wide range of problem 
domains. In academic domains, the decision is important in 
tasks varying in complexity from simple arithmetic (e.g., 
9 + 6) to fact verification in story comprehension (e.g., Did 
the heir to the hamburger chain love his wife?) to economics 
(e.g., What is the effect of a value added tax on supply and 
demand?). In everyday problem domains, the decision is 
also important in a wide range of tasks such as navigating a 
path to the grocery store or calling someone on the phone. 

How is the decision between retrieval and reasoning 
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made? A simple model of cognition is one in which retrieval 
is used when the answer is known, and other strategies are 
used when the answer is not known. There are many variants 
of this simple model. The chunking algorithm used in the 
Soar cognitive architecture (Laird, NeweR, & Rosenbloom, 
1987; Newell, 1990) provides a simple example. When a 
new problem is solved, the chunking algorithm creates a rule 
that will retrieve the solution should that same problem 
reoccur. Another variant of this type of model asserts that 
retrieval is always attempted first, and a calculation strategy 
is attempted only when the retrieval process either fails to 
produce any answer within a given time limit or fails to 
produce an answer of sufficient strength (e.g., Siegler, 1987, 
1988; Siegler & Shrager, 1984). A third variant assumes that 
there is a race between the process of retrieving an answer 
and computing the answer (e.g., Logan, 1988). If  the answer 
can be retrieved before an answer can be computed, then the 
retrieved answer is used; otherwise the answer is computed. 

However, there are several empirical phenomena that are 
problematic for these simple models. Reder (1982, 1987, 
1988) presented a strategy selection model and empirical 
data that strongly rejected the notion that people will always 
retrieve the answer if it is known. These experiments 
showed that question-answering strategy choice can be 
influenced by factors of the questioning situation and the 
question itself. For example, Reder (1987) found that 
participants' tendency to search for an answer rather than 
compute an answer was affected by variables such as prior 
history of success with retrieval on other problems, specific 
advice as to which strategy was more likely to work, and 
whether components of the question had been primed 
earlier. 

How might these factors influence the decision to retrieve 
or compute? A general process that has been argued to 
underlie this decision is feeling of knowing (e.g., Miner & 
Reder, 1994; Nelson & Narens, 1990; Reder, 1987, 1988). 
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Feeling of knowing is the degree of belief that a piece of 
information can be retrieved from memory. Although some 
researchers have focused on feeling-of-knowing judgments 
made after memory retrieval failures (e.g., Connor, Balota, 
& Neely, 1992; Gruneberg & Monks, 1974; Hart, 1965; 
Nelson & Narens, 1980; Schwartz & Metcalfe, 1992; Yaniv 
& Meyer, 1987), others have conceptualized feeling of 
knowing as a rapid, preretrieval process (e.g., Miner & 
Reder, 1994; Reder, 1987, 1988; Reder & Ritter, 1992; 
Schreiber & Nelson, 1995). It is this rapid feeling-of- 
knowing process that we argue is being used in the decision 
to retrieve or compute. 

For example, in an arithmetic task, Reder and Ritter 
(1992) studied the process by which individuals decide 
whether to retrieve or calculate. The paradigm they used had 
participants deciding whether to retrieve or compute within 
850 ms after being presented 2 digit x 2 digit multiplication 
and addition problems. This short deadline was used to 
ensure that participants could not retrieve the answer before 
making the decision. After the decision, participants gave 
their answer, either by retrieving the answer from memory or 
by computing the answer. The amount of time given to 
participants to respond depended on their initial decision. If 
they chose to retrieve, then they were given 1,400 ms to 
initiate their response. If they chose to calculate, then they 
were given 20 s. A payoff scheme was used that heavily 
rewarded correct, on-time retrievals. 

Using this paradigm, Reder and Ritter (1992) found that 
participants' retrieve--compute decisions were quite accu- 
rate. That is, participants were usually able to retrieve the 
answer when they chose to retrieve, and they were usually 
not able to retrieve when they chose to compute. Thus, 
participants were quite able to make these decisions while 
selecting quickly. Moreover, Reder (1987) found that the 
time to simply answer the question without first explicitly 
reporting the strategy choice was equal to the time to report 
the strategy choice plus the time to then give an answer. This 
finding is consistent with the claim that the strategy choice 
process is a natural part of the problem-answering process. 

What mechanism subserves this rapid feeling-of-knowing 
process? Reder and Ritter (1992) suggested that these 
decisions were not based on an early read of the answer. 
Rather, they argued that the decisions were based on 
familiarity with the problem. In support of this argument, 
they found that familiarity with components of the problem 
strongly predicted participants' feeling-of-knowing judg- 
ments, most notably in the case of novel problems that were 
similar to previously seen problems. For example, some of 
the previously seen problems were presented with the 
operators switched (i.e., multiply instead of add or vice 
versa). Despite not knowing the answers to these operator- 
switch problems, participants were just as likely to think 
they knew the answer to these problems as they were to the 
original problems. Similarly, Reder (1987) found that surrep- 
titious familiarization with words in a question also led to 
spurious feelings of knowing. Recently, other researchers 
have also found evidence suggesting that feeling-of- 
knowing judgments are based on features of the problem 
rather than on features of the solution (e.g., Connor et al., 

1992; Schreiber & Nelson, 1995; Schwartz & Metcalfe, 
1992). 

Thus, existing research suggests that individuals decide 
whether to retrieve before attempting a memory retrieval. 
However, there are several potential problems with this 
account. First, there is an alternative account of the previous 
findings that may be consistent with the theory that partici- 
pants always try to retrieve first. Under this account, 
participants may be basing their feeling-of-knowing judg- 
ments on an early read of some answer, not necessarily the 
correct answer. That is, in previous experiments, when 
participants have been fooled into believing that they know 
the answer when in fact they have only been exposed to 
similar items (e.g., Reder & Ritter, 1992), they may have 
based their responses on partial retrievals of the answer to 
those similar problems (i.e., the wrong answer). Thus, while 
Reder and Ritter argued that their results provided evidence 
for a preretrieval strategy selection process based purely on 
the familiarity of the problem statement (and not on any 
aspect of the answer), it may be that participants actually 
always do attempt to retrieve first and that the feeling-of- 
knowing judgments simply reflect the initial, potentially 
incorrect, outcomes of that retrieval process. In support of 
this interpretation, Schwartz and Metcalfe (1992) found in 
some of their experiments that priming the answer occasion- 
ally increased feeling-of-knowing judgments and that prim- 
ing the cue occasionally decreased accuracy of recall. The 
equivocal nature of the Schwartz and Metcalfe results does 
not bear on the issue of strategy selection because they only 
studied feeling of knowing after recall failures (i.e., well 
after strategy decisions had been made); however, the 
alternative interpretation of the Reder and Ritter results is 
potentially damaging to an account of strategy selection that 
is based on familiarity. 

The second potential problem with the role of feeling of 
knowing in strategy choice relates to potential external 
validity problems with the paradigm used to establish this 
connection. In previous experiments (e.g., Reder & Ritter, 
1992; Schwartz & Metcalfe, 1992), participants gave feeling- 
of-knowing judgments only for items that they had recently 
encountered (i.e., during the experimental session). In other 
words, feeling-of-knowing judgments were made after rela- 
tively short delays from the last exposure. It may be that 
under these artificially short delays, participants made 
feeling-of-knowing judgments on the basis of still active 
problem representations. Further, under longer delays, it 
may be that people are not be able to use the relatively louver, 
long-term activation levels of problem representations to 
guide strategy choice.J Thus, the previous findings might not 
generalize to the more typical, long-term case. 

Third, the use of feeling of knowing to decide whether to 
retrieve or compute presents a computational conundrum: 
What is the advantage of first computing feeling of knowing 
over simply attempting to retrieve immediately? That is, 
why is computing feeling of knowing easier than retrieving 
the answer? If they were equally difficult, there would be no 

1 We thank Robert Siegler for pointing out this possibility. 
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advantage of  computing feeling of  knowing before retriev- 
ing over always trying to retrieve first. This computational 
conundrum may be why most models of  strategy choice 
have assumed that participants always try to retrieve first. 

In summary, there are several potentially valid alternative 
explanations questioning the conclusion that individuals 
decide whether to retrieve or compute, and there are 
computational issues suggesting that individuals always 
retrieve first. To address these issues, we present a new 
computational model of  feeling of  knowing and two new 
experiments. We begin with an experiment that establishes 
the phenomenon that is to be modeled. We then turn to a 
description of  the model and provide detailed fits of  the 
model to the data at an individual participant level. Experi- 
ment 2 is then presented as further test of  the model, as well 
as an extension of  the generality of  the basic empirical 
findings. 

E x p e r i m e n t  1 

In Experiment 1 we sought to test one of  the alternative 
explanations for the findings of  previous studies that argued 
for the problem-familiarity hypothesis. Under this explana- 
tion, participants may not have been making retr ieve-  
compute decisions on the basis of  familiarity with the 
problem. Instead, participants might actually have made 
these decisions on the basis of  an early read of  an answer. 
Although previous work using similar-looking trick prob- 
lems has established that participants' decisions were not 
based on an early read of  the correct answer to a particular 
problem, participants might have misrecognized the trick 
problems as the original problems and based their decisions 
on an early read of  the (now incorrect) answer to the original 
problem. In Experiment 1 we attempted to eliminate this 
alternative explanation, and we used a variant of  the rapid 
feeling-of-knowing decision paradigm used by Reder and 
Ritter (1992). 

As in Reder and Ritter (1992) participants in Experiment 
1 were repeatedly presented with arithmetic problems and 
were asked to make a rapid decision as to whether they 
would retrieve or compute the answer. However, to rule out 
the explanation that participants were making retr ieve-  
compute decisions on the basis of  early read of  some answer, 
special problems were created for which participants made 
the initial retr ieve-compute decisions but, on most of  the 
trials for these problems, they were not allowed to actually 
retrieve or compute an answer. On these special trials, the 
screen was cleared immediately after the retr ieve-compute 
choice, and the participant was instructed to continue onto 
the next question. Occasionally, participants were required 
to give an answer to the problems assigned special status. 
This was done to allow problem strength and answer 
strength to vary somewhat independently and to ensure that 
participants could not learn that these problems were never 
answered. Only a subset of  the problems was assigned to this 
special status----other problems were answered whenever 
they were seen. Thus, for these special problems, called 
infrequently answered problems, problem familiarity was 
increased, but the associated answers were typically not 

strengthened. I f  the early-read hypothesis is correct, then 
participants should not select retrieve for  theseinfrequently 
answered problems because the answer is not being associ- 
ated with them on most o f  the trials. However, if  the 
problem-familiarity hypothesis is correct, then participants 
should select retrieve for these infrequently answered prob- 
lems, and the probability of  selecting retrieve should be a 
simple function of  the amount of  exposure to the problems 
because the familiarity of  the problem is being increased 
with each exposure. 

M e ~ o d  

Participants. Twenty-five Carnegie Mellon University and 
University of Pittsburgh graduates and undergraduates participated 
in the experiment. They were paid on the basis of their perfor- 
mance. However, the minimum payment was $5/hr. 

Procedure. Participants were told that they would answer a 
large series of arithmetic problems. Half of the problems involved 
multiplication, and half involved an invented operator (described 
below). Different problems were presented at different frequencies 
in a random order. Thus, as the session progressed, answers to 
frequently presented problems would be learned. 

The participants sat in front of a computer monitor with a button 
box and microphone on the table. After each arithmetic problem 
was presented on the screen, participants rapidly chose to either 
calculate or retrieve the answer with the button box; they then 
executed their strategy and spoke their answer into the voice key 
microphone, which ended the trial. 

Specifically, each trial began when the participant said "next" 
and triggered the voice key. The problem was displayed 0.5 s after 
the trigger, in large font on the screen. The operands were presented 
vertically, one on top of the other, and the operator was presented to 
the left of the bottom operand. The participant then chose a strategy 
by pressing either the fight button marked R for retrieve or the left 
button marked C for calculate. Participants were given 850 ms to 
make this initial decision. The 850-ms response deadline was 
enforced with a large difference in points received. A letter prompt 
(R or 6') indicating the participant's decision was displayed on the 
screen. The participant then either retrieved the answer from 
memory or calculated the answer on paper. The voice key recorded 
the onset of the answer with millisecond accuracy. 

The time that participants were given to answer a problem was a 
function of the strategy selected. When participants chose to 
retrieve, they were then allotted 1.4 s to initiate their response. By 
contrast, when participants selected calculate, they were given 20 s 
to compute, before they had to initiate their response. Both 
operations (multiplication, *, and sharp, #) were modulo 100, so 
only the right-most two digits were given. For a problem ab # cd, 
sharp was defined as [(a + c) * (b + d ) * 3] modulo 100. For 
example, 52 # 34 = [8 * 6 * 3] modulo 100 = 144 modulo 100 = 
44. In addition to being given the definition of the sharp operator 
before starting the task, participants were also given several 
practice problems. 

The retrieve cutoff was chosen to allow sufficient time to retrieve 
but not enough time to calculate the answer. The calculation cutoff 
was selected to provide sufficient time for participants to perform 
the calculations but provide motivation to work quickly. That goal 
seems to have been satisfied in that fewer than 1% of the 
calculation trials for either operator exceeded the deadline. 

After each trial, the experimenter typed in the participant's 
answer or nullified the trial if the participant made a premature 
vocalization or failed to speak loudly enough to activate the voice 
key. Then the screen displayed the score for the current trial, the 
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total score, the time to choose a strategy, whether the strategy 
choice or answer was late, and the correct answer, which always 
remained on the screen until the participant requested the next 
question by speaking into the microphone. 

One fourth of the trials involved infrequently answered prob- 
lems. Each infrequently answered problem was answered only two 
out of every seven times it was presented. On each of the other five 
of seven trials, when the participant was not asked to answer the 
problem, the screen was cleared immediately after the retrieve- 
compute choice, and the participant was instructed to continue onto 
the next question. 

The instructions emphasized five specific payoff situations: (a) 
Participants received 50 points when they selected the retrieval 
strategy, and both strategy choice and strategy execution were on 
time, and the answer was correct (i.e., all three conditions were 
satisfied); (b) participants received 5 points when they selected the 
calculation strategy and met the comparable constraints; (c) if one 
of the two times (time to select the strategy or to give the answer) 
was late, but the answer was correct, participants received 1 point 
(regardless of strategy choice); (d) for infrequently answered 
problem trials that were not answered, participants received 2 
points, regardless of their strategy choice; and (e) when participants 
met neither deadline or failed to answer correctly, they received no 
points. At the start of the experiment, all problems were new and 
the participants understood that calculation was the only viable 
strategy. Without a strong incentive to use retrieval, participants 
would play it safe and always select to calculate. 

Participants received 0.1 cents per point (1,000 points = $1,00). 
As an additional incentive to select retrieval, participants received 
an extra dollar if their point total exceeded the current highest 
score. The average total paid was $7.71. 

Twenty-one practice problems were presented to familiarize 
participants with the apparatus, the task, and the payoff scheme. 
Several practice problems were duplicates of each other, and the 
instructions emphasized that problems would be repeated and that 
some would not be answered. Participants then spent approxi- 
mately 75 min completing the experiment, with a short break 
halfway through the problems. 

Design and materials. Presentation frequency of problems 
varied two factors: the frequency of the top operand, and the 
frequency of the bottom operand. This design was replicated for 
both operators (* vs. #). Two sets of arithmetic problems were 
created consisting of 12 normal problems and 4 infrequently 
answered problems. There were also several frequency levels for 
problems of each type. The design is illustrated in Figure I. Each 
level of the tree corresponds to one of the two factors; the number 
inside the node refers to the frequency of presentation of a numeral 
assigned to that condition. The branches represent the levels of the 
two frequency factors: (a) the frequency of presentation of the top 
operand (a high-frequency operand occurred in 42 problems, 
whereas a low-frequency operand occurred in 21 problems) and (b) 
the frequency of presentation of the bottom operand (again, high 
vs. low frequency). The numbers at the terminal nodes of the tree 
indicate how often a specific problem in that condition was 
presented (e.g., 14 presentations for the high-low frequency pairs). 
Complete problems were presented 7, 14, or 28 times, producing a 
total of 189 normal problem trials and 63 infrequently answered 
problem trials. 

The four rows of letter-operator-letter problems listed at the 
bottom of Figure 1 represent the complete set of problems 
presented to a given participant. Each letter corresponds to a 
number. Note that any given number appears in only two problems: 
one multiply problem and one sharp problem. The assignment of 
nunibers to these letters was random, without replacement. This 
random assignment was done separately for each participant, 

Problem T r e e  

7 ~°tt°mOper~ ~ 

A#I A*J B#K B*L 
i 

C*M C#N D*O D ~  

E*K E#L F*I F#J 

G#O G*P H#M H*N 

Normal Problems 
lnfimquently- Amtweaed 

P r o b l e n u t  

Figure 1. The problem frequency template for Experiment 1. The 
four rows of letter-operatorqetter problems represent the complete 
set of problems presented to a given participant. Each letter 
corresponds to a number. Any given number appears in only 2 
problems: one multiply (*) problem and one sharp (#) problem. 

selecting from a set of 16 numbers between 14 and 38 (14, 16, 17, 
18, 19, 23, 24, 26, 27, 28, 29, 32, 34, 36, 37, 38). The excluded 
numbers were easier to multiply and more memorable (Battig & 
Spera, 1962). The particular row in the template that was assigned 
to infrequently answered problems was varied across participants 
(i.e., it was not always the fourth row as is suggested by the figure). 
Thus, across all participants, infrequently answered problems 
appeared with both operators equally often. 

The presentation order of the normal problems was randomly 
determined for each participant. The 63 infrequently answered 
problem trials were also distributed randomly within the normal 
problem trials. Again, the infrequently answered problems differed 
from the normal problems in that, on average, 5 of every 7 
infrequently answered problem presentations were not to be 
answered. However, because the ordering of infrequently answered 
problems was random for each participant, the number of infre- 
quently answered that was actually answered in a given string of 7 
such problems could have been more or less than 5. Because the 
presentation order of the normal and infrequently answered prob- 
lems was completely random, and because the problems varied in 
their overall presentation frequency, the number of times that a 
given problem had been seen previously was not strongly corre- 
lated with trial number. This complex design prevented participants 
from being able to use a simple strategy of simply selecting retrieve 
gradually more often over the course of the task without paying 
attention to particular problem characteristics. 

In summary, the goal of Experiment 1 was to test further the 
hypothesis that feeling-of-knowing judgments are made on the 
basis of familiarity with the problem statement rather than on 
partial retrievals of the answer. Previous tests of this hypothesis 
(e.g., Reder & Ritter, 1992; Schwartz & Metcalfe, 1992) estab- 
lished that familiarity with the correct response was not the source 
of feeling-of-knowing judgments. However, in these previous tests, 
it is possible that familiarity with some other (potentially incorrect) 
response was the source of the feeling-of-knowing judgments. To 
rule out this alternative explanation, we included in Experiment 1 

problem trials in which a problem was presented but no answers 
(correct or incorrect) were associated with the problem. If the 
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partial-retrieval-of-some-answer hypothesis is correct, then partici- 
pants should not be influenced by the unanswered problem trials. 
By contrast, if the problem-familiarity hypothesis is correct, then 
participants' feeling-of-knowing judgments should be influenced 
by exposure to these unanswered problem trials. 

Results and Discussion 

The data from 5 of the 25 participants were not analyzed 
because 4 of  the participants selected retrieved fewer than 30 
times out of the 252 trials; the 5th did not finish the 
experiment. Fewer than 2% of the trials were excluded 
because of inaccurate voice key measurements, and fewer 
than 1% were excluded because of very slow responding 
(i.e., more than 2 s to select a strategy). We first present 
several global analyses of  performance in this task demon- 
strating the general adaptiveness of  the participants' strategy 
selections and then present more direct analyses of the 
hypotheses under study. 

Operator differences. Table 1 presents summary statis- 
tics for the two operators (* and #). There are two salient 
differences between the operators: The sharp problems had a 
higher retrieval strategy selection rate and a higher false- 

Table 1 
Participant Means and Standard Errors for All Problems 
in Experiment 1 

Multiplication Sharp 

Calcu- Calcu- 
Measure lation Retrieval lation Retrieval 

Strategy selected (%) 
M 66.2 
SE 4.7 

Strategy selection time 
(ms) 

M 647 
SE 33 

Late to choose strategy 
(%) 

M 8.6 
SE 1.8 

Correct answer times 
(ms) 

M 7,787 1,415 
SE 523 389 

Correct answer (%) 
M 90.1 
SE 1.5 

Incorrect choice of 
retrieval (% false 
alarms) 

M 20.4 
SE 3.5 

Both strategy choices 
~fee~ oOmowiag md ~ing 

M .82 
SE .10 

d' 
M 1.95 
SE 0.24 

33.8 61.1 38.9 
4.7 5.1 5.1 

607 645 596 
41 21 29 

11.4 11.9 10.9 
4.7 2.0 3.3 

7,235 1,376 
547 242 

67.6 86.7 65.1 
5.3 1.8 4.6 

27.7 
4.4 

.87 

.04 

2.07 
0.21 

Note. Trials with late strategy selection were included only in the 
means of the su~tegy selection time. 

alarm rate. It is likely that this difference was due to a bias to 
select retrieve for sharp as some participants attempted to 
play beat the clock for those problems. However, because 
both operators exhibited similar behavior in all respects 
other than this simple bias, the data were collapsed over 
operators for all of the analyses.: 

Strategy selection time. Participants were generally able 
to select a strategy before the 850-ms deadline. The mean 
strategy selection time was lower than 650 ms for both 
operators (see Table 1). Fewer than 10% of the strategy 
selections were late (greater than 850 ms), and the late 
responses occurred primarily in the beginning of the experi- 
ment. 

Appropriateness of strategy selections. In addition to 
selecting a strategy quickly, participants' retrieve-compute 
decisions can be evaluated as appropriate or not. By 
appropriate, we mean selecting to retrieve if the correct 
answer could be generated within the retrieval deadline. 
Furthermore, if a participant chose to calculate and an- 
swered quickly, that too was a poor choice. This selection 
appropriateness (also referred to as accuracy) was measured 
both in terms of the Goodman-Kruskal gamma correlation 
advocated by Nelson (1984, 1986) and in terms o fd '  (Swets, 
1986a, 1986b). Gamma takes on values between - 1  and 1 
and reflects the probability that any pair of items has the 
same ordering in knowing (e.g., one answer is fast and 
correct, and the other is slow or incorrect) as it has in feeling 
of knowing (e.g., one involves a retrieve strategy selection, 
and the other involves a calculate strategy selection): When 
the probability is 0, ~/is - 1; when the probability is .5, ~/is 
0; and when the probability is 1, ~/is 1. Both measures were 
computed for each participant and then averaged. 

For both measures, hits were defined as trials in which 
participants chose to retrieve and correctly answered within 
1.4 s. Misses were those trials in which participants chose to 
calculate but answered correctly within 1.4 s. False alarms 
were trials in which participants chose to retrieve when they 
could not answer correctly within 1.4 s. Correct rejections 
were trials in which participants chose to calculate and either 
took longer than 1.4 s to answer or answered incorrectly. 

Participants' accuracy was generally quite high. For 
multiplication problems, participants had a mean gamma of 
.82 and d' of 1.95. For sharp problems, participants had a 
mean gamma of .87, and d'  of 2.07. These levels of accuracy 
are considered quite good, suggesting that whatever mecha- 

2 Because of a misprint in Reder and Ritter (1992), Experiment 1 
was first conducted with an incorrect version of sharp, which was 
defined as {[(a * c) + (b * d)] * 3} modulo 100 for a problem ab # 
cd (i.e., multiplication and addition were reversed). As a result, the 
first 6 participants were given the incorrect version of sharp. To 
assess whether the participants' behavior with the different versions 
of sharp differed at all, analyses were conducted on percentage of 
retrieval decisions, decision times, percentage of late decision 
times, retrieval answer times, compute answer times, percentage of 
correct responses, percentage of hits, percentage of false alarms, 
and d'. Because no differences were found on any of the measures 
(ps > .25), results were collapsed across the two versions. 
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nism underlies participants' strategy selections, it is overall 
quite adept. Was this generally effective mechanism fooled 
by the unusual infrequently answered problems? Unfortu- 
nately, it is not possible to conduct d' analyses separately for 
the two problem types as the participants rarely knew the 
answer to the infrequently answered problems (participant 
mean of 9.6% vs. 25.9% of regular problems), and the 
infrequently answered problems occurred on only one in 
four trials. Analyses focusing on how participants chose to 
retrieve or compute for the infrequently answered problems 
are presented in the next section. 

An important component of the preceding analysis, and of 
the design of the experiment, is the assumption that partici- 
pants could not calculate the answer in the time allotted to 
them when they selected to retrieve. If the participants could 
calculate in that short amount of time, then the initial 
judgment that participants were making would not be 
between whether to retrieve or calculate, but rather how 
much time to assign the calculation process. Although it is 
intuitive that the fast answering times (e.g., less than 2 s) 
were due to retrieval, it is conceivable that there were some 
very rapid computations. Conversely, it could be that some 
of the slow answers assumed to involve the calculation 
strategy actually involved retrieval. However, there are 
several types of evidence to support the view that fast 
answering times were due to retrieval and that slow times 
were due to computation. First, participants used paper and 
pencil to perform their calculations. There was no time to 
calculate using paper and pencil when it was a nominal 
retrieval trial. Second, one should not have seen so much use 
of paper and pencil on the calculate trials if they were just 
slow retrievals. Finally, the notion that the early trials could 
be slow retrieval violates common sense: How could they 
retrieve the answer if they did not know it? Thus, there are 
several reasons to suspect that participants could not calcu- 
late within the retrieval time deadline, that fast answer times 
actually involved retrieval, and that slow answer times 
actually involved calculation. In other words, the decision 
that participants made really was a decision about whether to 
retrieve or calculate. Now, we turn to analyses of the 
processes that underlie these strategy choices. 

The effect of practice on knowing and feeling of knowing. 
Do both knowing the answer and feeling of knowing change 
at the same rate? Do they depend on the same variables? If 
so, feeling of knowing may be based on an early read of the 
answer. As one learns to associate an answer with its 
question (or problem statement), the response time to give 
that answer will decrease. Thus, correct answer time is a 
measure of the degree of knowing. Likewise, the probability 
of selecting the retrieval strategy is a measure of feeling of 
knowing. 

To determine which variables predict feeling of knowing, 
we conducted a logistic regression predicting the probability 
of selecting retrieval. The variables under consideration as 
predictors of knowing and feeling of knowing were as 
follows: (a) attempted solutions, the number of times 
participants were asked to give the answer to a problem, 
either by computing or by retrieving an answer; (b) estima- 
tions, the number of times participants estimated whether 

they would retrieve or compute, whether they were then 
actually allowed to retrieve or compute an answer; (c) total 
study time, the total amount of time spent studying that 
problem's answer3; and (d) last study time, the amount of 
time spent studying that problem's answer the previous time 
that it appeared. Estimations and attempted solutions were 
the primary variables under consideration. Total study time 
and last study time were used as an attempt to equate 
problems for study time. However, all of the analyses 
produced qualitatively similar results when total study time 
and last study time were not entered into the regression 
equations. 

When the entire data set was considered, both estimations 
and attempted solutions were strong independent predictors 
of retrieval selections (see Table 2). This result argues 
against the early-read hypothesis because estimations should 
not have independent predictive power over attempted 
solutions under that hypothesis (because they do not them- 
selves lead to any answer being associated with the prob- 
lem). The independent contribution of attempted solutions 
over the contribution of estimations neither supports nor 
contradicts either of the alternative accounts: Attempted 
solutions may have increased familiarity because of greater 
depth of processing on normal problems than on infre- 
quently answered problems. 

To test this hypothesis, we analyzed whether total expo- 
sure (the sum of total decision time, total answer time, and 
total study time for each problem) could account for the 
differences between the effects of estimations and attempted 
solutions. Figure 2 displays the percentage use of the 
retrieval strategy as a function of the total exposure to the 
problem. As can be seen in the figure, when we controlled 
for exposure time to the problem, there are no differences 
between normal and infrequently answered problems. That 
is, there appears to be no added effect of actually computing 
the answer on the probability of selecting retrieve beyond 
the added exposure to the problem. 

An analysis of covariance with Problem Type (normal- 
infrequently answered) × Total Exposure Time conducted 
on the strategy selections confirmed the results suggested by 
the graph: The effect of total exposure was highly signifi- 
cant, F(1, 5037) = 459.3, p < .0001, whereas the effect of 
problem type was not significant, F(1, 5037) < 1. 

There is another reason for why the logistic regressions 
presented in Table 2 might have underrepresented the effect 
of estimations on feeling of knowing. Over the entire data 
set, estimations and attempted solutions were highly corre- 
lated because they will only differ for the small set of 
infrequently answered problems. Thus, the logistic regres- 
sion may not have accurately separated the independent 
contributions of estimations and attempted solutions. To 
address this issue, we conducted a separate logistic regres- 
sion by using data from only the infrequently answered 
problems, for which participants evaluated the problems on 
two of every seven trials (see Table 2). For these problems, 

3 Note that total study time is not redundant with the attempted 
solutions and estimations variables because participants could vary 
the amount of time they spent studying each problem. 
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Table 2 
Results of Logistic Regressions Predicting Strategy Selection for Choice-on-Time 
Problems in Experiment I 

Regression. 
Variable Range coefficient SE Izl" 

All problems 
Intercept constant -0.708 0.156 4.53* 
Participant's own coded variable 0.071-9.15" 
Last time studied (ms) -0.00002 2.95* 
Total time studied (ms) 0.000001 0.736 
Number of estimations 0-27 0.051 4.66* 
Number of attempted solutions 0-27 0.093 8.67* 

Infrequently answered problems only 
Intercept constant -0.266 0.312 0.855 
Participant's own coded variable 1.48-4.51" 
Last time studied (ms) 0.000021 0.058 
Total time studied (ms) 0.0000043 2.51" 
Number of estimations 0-27 0.033 3.83* 
Number of attempted solutions 0-8 0.108 2.61" 

0.015-3.657 

0.668-4.777 
0.0000012 
0.000013 
0.128 

-0.281 

0.0000007 
0.0000002 
0.011 
0.011 

~Computed as (coefficient/SEco~cient) in the regression. 
*p < .01. 
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estimations (the number of times participants were exposed 
to the problem) remained a strong independent predictor, 
whereas attempted solutions (the number of times partici- 
pants were exposed to the answer) correlated with feeling of 
knowing in the wrong direction (i.e., more attempted 
solutions lead to fewer retrievals). 

Although these results provide evidence against the 
early-read hypothesis and support the familiarity hypothesis, 
there is one potential confound that may rejuvenate the 
early-read hypothesis: The estimation process may have 
influenced the participants' ability to retrieve the answer. To 
assess this problem, we conducted a linear regression on the 
answer times by using attempted solutions, estimations, total 
study time, and last study time as predictor variables. We 
found that estimations had no independent predictiveness 
for answer times, t(1426) = 0.01, p > .99, above the 
predictiveness of attempted solutions, t(1426) = - 2.10, p < 
.05, and last study time, t(1426) = 2.20, p < .03. If 
estimations were based on an early read of the answer, then 
one would have expected estimations to predict answer time. 

In summary, the results of this experiment support the 
familiarity hypothesis and argue against the early-read 
hypothesis. It cannot be the case that participants were 
basing their decisions on an early read of some answer (either 
correct or incorrect) because they were influenced by exposures 
to problems in which no answer was strengthened. 

In the SAC model section, we present a model of the 
retrieve-compute strategy selection process and fit it to the 
data generated by Reder and Ritter (1992) and our Experi- 
ment 1. This modeling section serves three important 
functions. First, it provides a mechanistic account of a 
strategy selection process on the basis of problem familiar- 
ity. Second, it demonstrates that a familiarity-based account 
can provide a good quantitative fit to strategy selection data 
(including making quantitative predictions about the of 
decay of feeling of knowing with time that we test in 
Experiment 2). Finally, the model serves to address the 

computational conundrum associated with familiarity-based 
accounts (i.e., the question of why would one try to compute 
a feeling of knowing rather than simply trying to retrieve 
immediately). 

The SAC Model 

Overview 

Reder's model is based on what could be viewed as a 
generic semantic network model of memory (see also 
Kamas & Reder, 1994; Reder & Gordon, 1996; Reder & 
Schunn, 1996). The model is called SAC, which stands for 

1- 

i 0.9- 

"~ 0.8- 

r,~ 0.7- 

"~ 0,6- 

0.5- 

"~ 0.4- 

i~. 0.3-- 

0.2- 

:~ o.1-' I ~ Normal Problems [ 
Infi~uenfly-Amwered Problems 

Total Exposure On seconds) 

Figure 2. For regular and infrequently answered problems for 
Experiment 1, the mean percentage of retrieval strategy selections 
as a function of total exposure to the problem (in seconds). It 
should be noted that the last three points for the infrequently 
answered problems are unstable because they have a mean of 19 
observations/point, whereas the preceding points have a mean of 
150 observations/point. 
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source of activation confusion. The representation used by 
the SAC model consists of interassociated nodes represent- 
ing concepts that vary in long-term strength. In this article, 
we apply the SAC model to the arithmetic experiment of 
Reder and Ritter (1992) and to our Experiments 1 and 2. For 
these simulations, nodes represent numbers, operators, and 
whole problems. The nodes representing whole problems 
connect the operands and operators to the answers. Nodes 
representing numbers may serve as operand nodes for some 
problems and answer nodes for other problems (e.g., 31 is an 
operand in the problem 23 * 31 and is also the answer to 
14 + 17). See Figure 3 for an illustration. 

Each node has a base-level or long-term strength. The 
strength of a node represents the history of exposure to that 
concept, with more exposure producing greater strengthen- 
ing. Nodes that represent arithmetic problems such as 27 * 
34 would start out weak at the beginning of the experiment, 
as these problems were initially unfamiliar to the partici- 
pants. By contrast, nodes for familiar problems such as 4 * 7 
or 12 * 12 would be strong, even at the beginning of the 
experiment. However, the experiments did not use problems 
that were likely to have preexperimental familiarity, and the 
simulations presented here assume that all problem nodes 
are created for the first time during the experiment. 

Strength can also be thought of as the baseline or resting 
activation level of a node. Increases and decreases in this 
baseline strength change according to a power function: 

B = cXtrd, (1) 

where B is the base-level activation, c and d are constants, 
and ti is the time since the ith presentation. This function 
captures both power-law decay of memories with time and 
power-law learning of memories with practice. 4 The central 
feature of power-law decay is that memories decay quickly 
initially and then much more slowly at increasing delays. 
Similarly, the central feature of power-law learning is that 
first exposures to an item contribute more than do subse- 

Figure 3. An example semantic network representing problem 
components, problems, and answers nodes. Note that only a small 
set of the finks emanating from the operand and operator nodes is 
shown. 

quent exposures. That is, the incremental contributions of 
each new exposure decreases with increasing numbers of 
exposures. 

In addition to the base or resting level of activation of a 
node, there is also the current activation level of a node. The 
current level of a node will be higher than its baseline 
whenever it receives stimulation from the environment (i.e., 
when the concept is mentioned or perceived, or when the 
concept receives activation from other nodes). Although 
baseline strength decays according to a power function (i.e., 
first quickly and then slowly), current activation decays 
rapidly and exponentially toward the base level. Let A 
represent the current level of activation and B represent the 
base level of activation. Then, the decrease in current 
activation will be 

= - p ( A  - B) ,  (2 )  

such that, after each trial, the current activation will decrease 
for every node by the proportion p times that node's current 
distance from its base-level activation. To present a concrete 
example, suppose after a trial, a node's hase-level activation 
was 20 and its current activation was 60. Further suppose 
that p is set to 0.8--the actual value used in all of our 
simulations. Then, after just one trial, the current activation 
would drop to 28 [i.e., 60 - .8 * (60 - 20)], ignoring for the 
moment the small power-law decay in the base-level activa- 
tion. After three trials, the current activation would have 
dropped to 20.3, not significantly different from the resting 
activation of 20. Thus, current activation drops quite rapidly 
and only has noticeable effects on the trial on which it 
became activated, and perhaps the trial immediately thereaf- 
ter. 

Activation spreads between nodes via links. Links con- 
nect nodes that are associated through conceptual relations. 
For example, links connect nodes that represent the compo- 
nents of a problem---operands and operators--to the node 
that represents the entire problem. Links also connect the 
nodes representing the entire problems to the nodes represent- 
ing the answers. These links will vary in strength depending 
on how often the two concepts have been thought of 
concurrently. Strength of links also depends on the delay 
between exposures. Specifically, link strength is determined 
by a power function given by 

s~,~ = Xt/~, (3) 

where S~,~ is the strength of the link from the node s to node r, 
t,. is the time since the ith coexposure, and dL is the decay 
constant for finks. 

The current activation level of a node can rise from 
environmental stimulation or from associated nodes that 
send activation to it. The amount of activation that is sent 
depends on the activation level of the source (sending) node 
and on the strength of the link from the source node to the 
receiving node, relative to the strength of all other links 

4 See Anderson and Schooler (1991) for a discussion of the 
evidence for this function in learning and retention phenomena. 
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emanating from the same source node. The change in 
activation of some node r is computed by summing the 
spread of activation from all source nodes s directly 
connected to node r according to the equation 

aAr = ~,(A, * SJ'2S~,~), (4) 

where Zk4r is the change in activation of the receiving node r, 
A~ is the activation of each source node s, S,,r is strength of 
the link between nodes s and r, and 2S,,~ is sum of the 
strengths of all links emanating from node s. The effect of 
the ratio S,,,l~S~,i is to limit the total spread from a node s to 
all connected nodes to be equal to the node s's current 
activation A~. For example, if a node had three counections 
emanating from it with link strengths of one, two, and three, 
then the activation spread along those links would be, 
respectively, ¼, ½ (i.e., 2A), and ½ (i.e., ¾) of the node's 
current activation level. Equation 4 is very similar to ones 
given by Anderson (1976, 1983, 1993) that account for data 
in fan effect paradigms (e.g., Anderson, 1974). Fan effect 
experiments have found that the greater the number of 
competing facts involving a particular object, the slower 
participants are to accept or reject statements about that 
object. We offer an analogous explanation that also involves 
competition for the limited activation from a source node. It 
is important to note that the absolute magnitude of the link 
strength is irrelevant---only the strength relative to the total 
strength of other links emanating from the same node 
matters. By contrast, the absolute magnitude of activation 
level of the sending and receiving node does matter. 

In this spreading-activation model, feeling-of-knowing 
judgments are based on the activation level of the node 
representing the problem. In essence, it is assumed that 
feeling of knowing monitors intersection of activation from 
two source nodes. Specifically, when two terms in a problem 
send out activation to associated concepts, and an intersec- 
tion of activation is detected by bringing an intermediate 
node over threshold, a person will have a feeling-of- 
knowing response (of. Dosher & Rosedale, 1989, 1990; 
Glucksberg & McCloskey, 1981; Ratcliff & McKoon, 1988; 
Reder, 1979, 1987, 1988, for related treatments of intersec- 
tion of activation). 

In our current simulations, we assume that when a 
problem is presented, all of the nodes representing the 
components are activated. For example, in the problem 23 * 
14, the nodes representing 23, *, and 14 are all activated. 
Then, activation spreads from the component nodes to all the 
connected problem nodes (see Figure 3). In the 23 * 14 
example, activation spreads to all the problem nodes involv- 
ing 23 (e.g., 23 * 14, 23 + 17), * (e.g., 23 * 31, 14 * 17, 
23 * 14), and 14 (e.g., 14 + 17, 14 * 17, 23 * 14). Problem 
nodes connected to several of the components receive the 
greatest amount of activation (e.g., 23 * 14). The extent of 
activation that accumulates at the problem node affects the 
likelihood of selecting retrieve as the strategy of choice. In a 
similar fashion, activation spreads from problems nodes to 
answer nodes. This is how answers are retrieved. Relations 
of connectivity define the objects, but a given node can be 

both an answer and an operand (e.g., 31 as the answer to 
14 + 17 and as an operand in 23 * 31). 

Because activation that spreads to a node is added to the 
base activation, the selection of which problem node will 
have the highest final activation will also depend on the 
relative base-level activations. The current activation level 
of the most (currently) active problem node is used to 
determine feeling of knowing. On the basis of the feeling of 
knowing, a decision is then made to retrieve or compute. 
That is, if the problem node has a relatively high activation 
level, then retrieval will most likely be selected; if the 
problem node has a relatively low activation level, then 
computation will most likely be selected. 

This model unravels the computational conundrum under- 
lying the use of feeling-of-knowing judgments in strategy 
choice--feeling of knowing is automatically represented in 
the parsing and representing of the problem. Thus, in this 
scheme, feeling of knowing is a natural precursor to the 
retrieval process. 

Model Details 

In addition to predicting feeling-of-knowing decisions 
(i.e,, decisions between retrieval and computation), this 
model can also predict which answers are retrieved from 
memory, and the speed with which the answers are retrieved. 
In this article, however, we focus on the feeling-of-knowing, 
or retrieve--compute, decisions. As input, the computer 
simulation is given the same problems presented to each 
participant. Because each participant received a different set 
of problems in random order, a separate simulation was 
conducted for each participant. This precise yoking of the 
simulation to participants was important because on a given 
trial the expected activation level for a problem would vary 
depending on the exact sequence of trials: For any partici- 
pant on a given trial, the number of links, the current 
activation, and the strengths would be different from any 
other participant's values. The simulation output is a prob- 
ability of selecting to retrieve on each trial. We now step 
through the process by which that probability is determined. 

At the start of the experiment, the representation of 
memory for the simulation is identical regardless of the 
experimental stimuli to be seen. Nodes for the operands are 
assumed to already exist; whereas nodes for the problems 
are assumed not to exist (i.e., the problems are novel). For 
simplicity, the initial base-level strengths of the operand 
nodes (numbers used as problems) and operator nodes are 
set to a constant amount, the amount being irrelevant to the 
simulations of the retrieval process. When problems are seen 
for the first time, a problem node is created, as are the links 
from the component operand and operator nodes to the novel 
problem node. The initial base-level strengths of the prob- 
lem nodes and of the links are simply determined by the 
equations determining power-law growth and decay---the 
computation of initial strength values requires no extra 
parameters. 

On each trial, all of the nodes representing the problem 
components are activated to the same constant amount, 
again for simplicity. It is assumed that a b/tsic perceptual 
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process activates these nodes and that all of the problem 
components (e.g., the operators and the operands) used in 
these experiments were familiar entities. For example, when 
the problem 23 * 14 is presented, the three nodes represent- 
ing 23, *, and 14 are activated. Activation then spreads along 
the links emanating from nodes representing each of the 
problem components to nodes representing the complete 
problems themselves. Activation only spreads to directly 
connected nodes at this point and is not yet carded forward 
beyond the first layer of receiving nodes. Again, the amount 
that is spread is a function of that specific participant's 
problem presentation history. 

Once the activation has spread across these links, activa- 
tion of the problem nodes can be used to make a strategy 
selection between retrieve and calculate (feeling of know- 
ing). The activation value of the most active node is used. It 
is assumed that this decision follows a normally distributed 
function of activation. Rather than making a binary choice, 
the simulation predicts a probability of choosing retrieve on 
the basis of this activation value. This means that if the 
activation value of the most active node is low, the 
probability of selecting retrieve is very low; conversely, 
when the activation value of a node is very high, the 
probability of selecting retrieval is high, but not necessarily 
unity. This probability of choosing retrieve is calculated by 
assuming a normal distribution of activation values with a 
fixed variance and activation threshold for selecting retrieve. 
This probability is reflected in the formula 

P = N[(A - T)l(r], (5) 

where A is the activation of the most-active problem node, T 
is the participant's threshold, cr is the standard deviation, and 
Nix] is the area under the normal curve to the left of x for a 
normal curve with mean equaling zero, and standard devia- 
tion equaling one. 

After each trial, all of the node strengths and activations 
are updated by using Equations 1 and 2. Link strengths are 
also updated for each link, following the same kind of 

power-law function used to determine changes to base-level 
activation--all of the links connecting the problem compo- 
nent nodes to the problem node in the just-presented 
problem are strengthened; whereas all other links in the 
network are weakened (using Equation 3 for both strengthen- 
ing and weakening). It is at this point that if a new problem 
has been presented for the first time, then a new node 
representing that problem is created, and links are created 
connecting the component nodes to the problem node. As 
with the initial strength values of the nodes, the initial 
strength values of the links are determined by the growth and 
decay equation--no extra parameters are required. This 
process of updating nodes and links is identical whether the 
participant actually selected to retrieve or calculate, or 
whether a correct or incorrect answer was given (because the 
participants were always given the correct answer to study). 
Although it is likely that the amount of time spent studying 
the answer will influence the strengthening, as a simplifying 
assumption a common increment amount independent of 
study time is assumed. 

The simulation just described involves seven parameters 
that are listed in Tattle 3. Two of these parameters are related 
to the initialization and decay of current activation. First, the 
input-activation parameter, arbitrarily set to 50 for all of the 
simulations, determines the current activation setting of the 
nodes representing the problem components (but not prob- 
lems nodes) when the problem is presented. Second, the 
fast-decay parameter, p, is the exponential decay constant at 
which the current activation of a l l  nodes decays. For 
simplicity, the unit of decay is trials rather than time. 
Preliminary analyses indicated that a value of 0.8 for the 
decay parameter gave the best fit, and thus this parameter 
value was used for all simulations. 

Two other parameters of these seven are necessary for 
changing the base activations. These are the two parameters 
in the power-law Equation 1 determining base activations, c 
and d, They were set to 5 and 0.175, respectively, for all of 
the simulations. Thus, the initial strength value of problem 
node after its creation was 5, and it decayed with time and 

Table 3 
SAC Model Parameter Descriptions and Values and the Model Equations 

Parameter name  Funct ion Value 

Input activation 
P 
C 
d 
aL 
T 
ff 
Never retrieve 

Input current activation for component nodes 50 
Exponential decay constant for current activation 0.8 
Power-law growth constant for base-level activation 5 
Power-law decay constant for base-level activation 0.175 
Power-law decay constant for link strength 0.12 
Retrieve-compute decision threshold 30-200 
Retrieve-compute decision standard deviation 45 
Does participant decide to never retrieve for one of the operators? True-False 

Equation Description 

(1) B = c ~ t J  Base-level activation as a function of delay and repetitions 
(2) AA = -p(A - B) Change in current activation from one trial to the next 
(3) Ss,, = ~t? ~z Link strength as a function of delay and repetitions 
(4) l~kA r = ~(As * S s , r / ~ S s , i )  Change in receiver's current strength due to activation spread 
(5) P = N[(A - T)/cr ]  Probability of selecting retrieve as a function of current activation 

Note. SAC = Source of activation confusion. 
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grew with repeated presentations from there. As with fast 
decay, trials were used as the unit rather than time for 
simplicity. 

Only one parameter is used in the computation of link 
strength. Link strength is updated using the same kind of 
power-law function used to determine base activation. 
However, the c constant is not used because the absolute 
magnitude of the links is irrelevant (because of the effect of 
fan in Equation 4). The d constant, labeled dr. to differentiate 
from the d constant used in the determination of base-level 
node strength, was set to 0.12. 

To convert these activation values to probabilities of 
selecting retrieve (vs. compute), two further parameters are 
necessary. Recall that we assumed this decision follows a 
normally distributed function of activation. Correspond- 
ingly, there are two parameters used to determine the shape 
of this normal function: the threshold which is the center of 
this distribution and the standard deviation. A single value 
for the standard deviation parameter was used for all 
simulations. 

However, in contrast to the single standard deviation, we 
assumed that participants vary in their thresholds for choos- 
ing between retrieve and compute. That is, some participants 
were conservative and had high thresholds; other partici- 
pants were optimistic and had lower thresholds. This thresh- 
old value reflects the participant's overall base rate of 
selecting retrieve. Note that because this value is the center 
of the normal distribution, the probability of selecting 
retrieve when the activation value equals the threshold was 
.5. A value between 30 and 200 was selected for each 
participant to maximize fit to their data. This wide range of 
possible values mirrored the large between-participants 
variance that was found within each of the experiments in 
the retrieval selection rates. Although the participants might 
have differed on other dimensions as well, there were no 
other obvious differences (with the exception of the one 
mentioned below), and so, for parsimony's sake, the other 
six parameters were held constant across participants. 

There is one final component of the SAC model that 
required an additional parameter. This eighth parameter was 
only used for simulating some of the participants. The 
parameter was simply a binary value by participant reflect- 
ing whether the participant had a predilection not to choose 
retrieve for a particular operator. This parameter was added 
because we found that some participants had a strong 
aversion to choosing retrieve for a particular operator. For 
example, a few participants never chose retrieve for prob- 
lems involving the operator sharp (a novel operator that 
involved a combination of addition and multiplication). 
Perhaps they did not want to memorize problems that 
involved a fake operator. A few other participants were 
found to never retrieve for multiply, although they chose 
retrieve for sharp problems. These participants may have 
been bothered by the modular arithmetic that was used in 
some of the experiments and did not want to memorize the 
wrong answers to multiply problems. Whatever participants' 
reasons for choosing to never retrieve for an operator, we 
found that the eighth parameter was useful for simulating 
these participantsmthose that seemed to use a metarule for 

making their decisions, in which they refused to retrieve for 
one of the operators. To model these participants, the 
probability of selecting retrieve on that operator was set to 
zero. For those participants, the probability of selecting 
retrieve for the other (nonmetarule) operator was simply 
determined as for the regular participantsmby the equations 
given in the SAC model. A simple 5% cutoff was used to 
select which participants to model with this never-retrieve 
rule: Participants had to have selected retrieve for less than 
5% of the trials with a particular operator. The evidence for 
the use of this rule is presented with the simulations. 

It should be noted that this rule was invoked only eight 
times out of the 58 participants modeled. We felt it was 
better to use this metarule than to assign separate thresholds 
for problems of each operator type. Not only would this give 
us too many degrees of freedom, it was hardly necessary: 
Except for these few participants using this metarule, the 
correlation between the rate of selecting retrieval for prob- 
lems involving of each operator type was quite high across 
participants. Finally, it is important to note that although we 
believe that some participants actually used this metarule, 
this feature of the simulation is not necessary to fit the data. 
Therefore, the fits to data without the use of this feature are 
also presented. 

In summary, there are eight parameters for the simula- 
tions, six of which were held constant for all simulations. 
Table 3 presents a summary of these parameters, as well as 
the five equations underlying the SAC model. 

To compare SAC's predictions to participants' actual 
retrieve-compute decisions, we used an aggregation proce- 
dure developed by Anderson (1990). For each trial, for each 
participant, the model produced a probability of choosing 
retrieve on the basis of the calculated activation values 
resulting from the trial history for that participant. That is, 
the probability reflected the model's experience with the 
exact same problems given to the participant. This probabil- 
ity was also based on the particular participant's threshold. 
Because participants made binary decisions on each trial and 
the simulation produced probabilities, it was necessary to 
aggregate trials. That is, all trials for a given participant for 
which the simulation predicted that the probability of 
selecting retrieve would fall between 0% and 10% were 
grouped, together; all trials in which the probability fell 
between 10% and 20% were grouped together and so on. 
Next, we tabulated the actual proportion of retrieval strategy 
selections that were made by that participant for the exact 
same trials in each probability range. This was done for all 
probability ranges. Note that each participant contributes 
data points to each (or at least many) of the ranges. The fit of 
the model was tested by plotting mean actual proportion of 
retrieval strategy selections against mean expected propor- 
tion of retrieval strategy selections. A perfect fit would be a 
straight line with a slope of one and a y-intercept of zero 
(i.e., predicted = actual). On each graph, we plot this 
desired line to show where the fitted points should actually 
lie. 

Rather than plot the full scatter plot of each participant's 
value in each probability range, which often contains too 
many points from which to abstract the central tendency 
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accurately, we plot the mean participant value (i.e., mean of 
participant means) within each range. To present an estimate 
of the participant variance, we also plot standard error bars. 
Furthermore, we present the r 2 value between predicted and 
actual values on the basis of the full scatter plot, not the 
mean responses across participants. This value presents a 
good estimate of the amount of variance that the model 
accounts for at the individual participant level, a fine- 
grained level of detail not typically presented in tests of 
computational or mathematical models. To assess whether 
there are any systematic biases in the model's predictions, 
we also present the slope and y-intercept of the best fitting 
regression line. 

Because there are a differing number of observations that 
contribute to each participant's value, and they vary across 
the probability ranges, we also plot the number of observa- 
tions that fell within each probability range. The number of 
observations often varied widely across the probability 
ranges because values were much more likely to fall into the 
lower probability ranges. Therefore, we felt a logarithmic 
scale was most appropriate. 

Because the number of participants and data points per 
participant varied for the various experiments and analyses, 
it was necessary to vary the size (and hence number) of the 
probability ranges. If the ranges were made too small, then 
participants would contribute too few observations to each 
range, and the participant estimates would contain too much 
instability because of random noise. If the ranges were made 
too large, then there would be very few points plotted, and 
too little information would be given about the quality of the 
fit. Compromise values were selected for each analysis by 
using the following rule of thumb: The ranges were made 
sufficiently large such that each participant contributed at 
least five data points to most of the ranges, thereby ensuring 
stable proportions. Note that for a given analysis, all of the 
probability ranges are of the same size: I/n, where n is the 
number of ranges used. In the few cases in which a 
participant contributed only two or fewer data observations 
to a probability range, that participant was considered not to 
have contributed anything to that probability range. This 
procedure was necessary because proportion estimates are 
highly unstable for ns of one and two. 

We used the values produced by this aggregation proce- 
dure to derive the best fitting parameters. The fit of the 
model to the data was defined as the sum of the squared error 
between the model's predicted retrieval rate for each partici- 
pant in each range and each participant's actual retrieval rate 
in each range. The full, exhaustive combinatorial space of 
possible parameters was not searched. Instead, we iteratively 
tried a range of values on each parameter dimension, 
selecting the value on each dimension producing lowest sum 
squared error. For the six parameters held constant across the 
simulations of different data sets, the parameters were 
determined once for the first data set and were then held 
constant across all other data sets. Although we did not 
conduct an exhaustive search of the parameter space, we did 
find that changing any of the parameter values by more than 
20% did alter the fit of the SAC model in a way such that 
selecting new values for the other parameters could not 

completely compensate. In other words, all of the param- 
eters did contribute to the fit of the SAC model. 

Here is a brief summary of the process of fitting the SAC 
model to one participant's data. The model begins with only 
operator and operand nodes. When problems are seen for the 
first time--in the order the participant was given the 
problems--problem nodes and the links connecting them to 
the component (operand and operator) nodes are created. 
For a given trial, the model activates the operator and 
operands from the problem being presented. Activation 
spreads to all directly connected problem nodes. The activa- 
tion of the problem node with the highest activation is used 
to make the feeling-of-knowing judgment. This most- 
activated problem node is usually the one that represents that 
problem; however, it need not be. For example, if the 
problem node for the currently presented problem does not 
exist, then, of the other problem nodes that have partially 
been activated, the one with the highest activation value is 
selected. 5 If the current participant was determined to be 
using the never-retrieve metarule for the current operator, 
then the probability of selecting retrieve is simply zero. 
Either way, the SAC model generates a predicted probability 
of selecting retrieve. This is the prediction that is compared 
against the actual response by using the aggregation proce- 
dure described earlier. The network is then updated as 
follows: (a) new problem nodes and finks are created if 
necessary, (b) baseline activations are updated for all nodes 
by using Equation 1, (c) current activations are updated for 
all nodes by using Equation 2, and (d) link strengths are 
updated for all links by using Equation 3. Because we were 
not modeling the answers that participants gave, the SAC 
model was not influenced by the answers that participants 
gave or by the time to give them. This process is then 
repeated for each trial for a participant, and the whole 
process is repeated for each participant. At the end, the mean 
proportion of actual responses is calculated for each partici- 
pant in each predicted probability range. 

Simulation o f  Reder  and Ritter (1992) 

As a first test of the SAC model, we selected the strategy 
choice data from Reder and Ritter (1992). We focused on 
data from their Experiment 2. Reder and Ritter's Experiment 
1 involved addition and multiplication facts. For the addition 
problems, many participants always selected retrieve and 
tried to quickly compute the answer, as there was a heavy 
incentive to select retrieve if the answer could be given on 
time. To remove this problem, Reder and Ritter's Experi- 
ment 2 replaced addition with a new operator (the sharp 
operator used in our Experiment 1) that participants could 
not execute as quickly. Because Experiment 2 did not have 
the methodological problem just mentioned, it is this 
experiment that we used. 

Reder and Ritter's (1992) Experiment 2 used the same 
methodology as our Experiment 1, with a few exceptions, 
which are noted below. The primary exception was that they 

5 On the very first trial there ate no problem nodes, so an activation 
value of zero is used for the feeling-of-knowing judgment. 
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Figure 4. For (a) all problems and (b) the operator-switch problems only, in Reder and Ritter 
(1992), mean actual proportion of retrieval strategy selections (and standard error) as a function of 
grouped predicted proportions of retrieval strategy selections, along with the number of trials in each 
grouping plotted in logarithmic scale. Note that the line drawn in the graph is the desired line 
actual = predicted, not the best fitting regression line. SAC = source of activation confusion. 

did not have infrequently answered problems---their partici- 
pants had to provide answers to all problems, as in our 
Experiment 2. Instead, Reder and Ritter used operator- 
switch problems (a training problem with the operator 
switched to be the other operator). In their experiment, 
participants were asked to solve 18 arithmetic problems 
repeatedly. Half of the problems involved multiplication, 
and the other half involved the sharp. In addition to 200 
training trials with these 18 problems, operator-switch 
problems were interspersed among them. 

Reder and Ritter (1992) found that participants' retrieve- 
compute decisions were predicted by the frequency with 
which the two operands appeared together. Furthermore, 
participants were just as likely to select retrieve for the 
corresponding operator-switch problems (for which they did 
not know the answers) as for the training problems. Reder 
and Ritter interpreted these results as supporting the hypoth- 
esis that participants were using familiarity with the problem 
rather than with the answer in deciding whether to retrieve or 
compute. 

To further test this hypothesis, we compared SAC's 
predictions to participants' actual retrieve-compute deci- 
sions, using the aggregation procedure described earlier. The 
best fitting participant thresholds ranged from 30 to 200, 
with a mean threshold of 130.8 (SD = 42.8). Using these 
values, SAC fit the dataquite well, producing a Pearson's r a 
of .85 (see Figure 4a). e The slope of the best fitting line was 
not significantly different from one (slope = 0.993), t(56) = 
0.125, p > .9, nor was the intercept significantly different 
from zero (intercept = -0.001), t(56) = 0.029, p > .9. In 
other words, the SAC model accounted for a large percent- 
age of the variance of the participant's strategy selections 

even at the individual participant level, and there were no 
systematic biases in the model's predictions. 

A key result of Reder and Ritter (1992) was that partici- 
pants were as likely to select retrieve for operator-switch 
problems as for the training problems. The SAC model 
predicts this effect: Operators are associated with a large 
number of problems (i.e., they have a large fan out). The 
activation spread from a node along each link is inversely 
proportional to the total connection strength of the links 
emanating from that node. Thus, very little activation 
spreads from operator nodes to any particular problem node 
(see Anderson, 1983, for a more detailed discussion of the 
fan effect). Accordingly, the SAC model predicts that there 
will be little impact o f  switching operators on retrieve- 
compute decisions because the activations of the problem 
nodes are not significantly affected. Verifying this predic- 
tion, the fit of  the SAC model to the operator-switch retrieve 
data was quite good (r 2 = .82). Figure 4b presents this fit. 
Fewer groupings were used in this analysis because there 
were relatively few operator-switch problems. Again, the 
slope of the best fitting line was not significantly different 
from one (slope = 1.!7), t(23) = 1,42,p > .15, nor was the 
intercept significantly different from zero (intercept = 
-0.009), t(23) = 0.22,p > .8. 

6Reder and Ritter (1992) found that participants learned 
"twin" problems (i.e., same top and bottom operands) much more 
quicHy than nontwin problems. This feature was not added to the 
model, and, consequently, the twin data were not included in the 
model fits. 
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An additional, noncentral assumption of the SAC model 
involved the never-retrieve rule. What is the evidence for 
this rule? The motivating factor for this rule was that some 
participants almost never selected retrieve for one of the 
operators while selecting retrieve quite frequently for the 
other operator. Because problems with either operator were 
presented equally frequently and the solutions were equally 
complex, there was no external, environmental basis for this 
difference in retrieval selection rates. With the 5% cutoff 
used for selecting never-retrieve rule users, 4 participants 
were assumed to be using this rule. Using data from all the 
participants, the correlation between participant retrieval 
selection rates for one operator and participant retrieval 
selection rates for the other operator was .93. When the 4 
participants were removed, this correlation rose to .96. This 
increase in correlation size is noteworthy given that the 
usual effect of reducing the range of data is to lower 
correlations. However, the fits of the SAC model did not 
crucially depend on the application of the never-retrieve 
rule. In fact, the overall correlation between actual and 
predicted retrieval rates without the never-retrieve rule 
(t a = .89) was slightly higher than with the rule. 

Value o f  Each Parameter 

One potential criticism of the SAC model is that it 
contains many free parameters. This leads to the question: 
Are all of the parameters necessary, or could simpler models 
provide an equally good fit? We have already evaluated the 
necessity of the never-retrieve rule and found that, in this 
case, it was not necessary for the excellent fits to data that we 
obtained. Rather than testing the value of the remaining 
parameters individually, we address this issue more globally 
by exploring one particular reduced alternative model. This 
alternative model might be called the everything-is-in-the- 
threshold-values account. Because each participant was 
given a different threshold value, and there were more 
participants tha~ probability ranges, it might be argued that 
the good fits were due to having more free parameters than 
data points. The obvious response to this Criticism is that (a) 
each participant contributed to most of the probability 
ranges, and (b) the correlations were based on the individual 
participant data rather than on aggregations across partici- 
pants. However, to evaluate this alternative more formally, 
we created a variant of the SAC model in which the model's 
predictions for each participant were scrambled. That is, the 
original model's predictions for each participant were kept, 
but the pairing with the participant's actual responses was 
randomly reorganized. For example, rather than having the 
model's prediction for the first trial paired with the partici- 
pant's response to the first trial, the model's prediction for 
the first trial might be paired with the participant's response 
to the 10th trial, or perhaps the 100th trial. This randomiza- 
tion was done separately for each participant. This method 
holds constant the distribution of predictions made for each 
participant and the distribution of responses made by each 
participant but removes the contingency with the ordering of 
trials and the types of trials. The logic of this test was as 
follows: If the original model's predictions were entirely due 

to the participant thresholds, then only the participant 
thresholds should matter, and the rest of the SAC model 
components based on power-law growth and decay and so 
forth should have no effect. 

In fact, this scrambled model was able to account for 54% 
of the variance in the individual participants' strategy 
selections, suggesting that participant thresholds were an 
important part of the SAC model's good fit to the data. 
However, this fit is much worse than the 85% of the variance 
for which the original model can account (see Figure 5a). 
Furthermore, the scrambled model's best fitting regression 
line deviates significantly from the desired line: Its slope 
differed significantly from one (slope = 0.694), t(56) = 
3.56, p < .001, and the intercept differed significantly from 
zero (intercept = 0.068), t(56) = 2.04, p < .05. In other 
words, in addition to the participant thresholds, the rest of 
the SAC model's machinery was necessary to produce the 
good fits observed in Figure 4. The values for these other 
parameters will be held constant in the remaining data fits, 
providing a strong test of the model given that these 
parameters do play an important role in the quality of the fits. 

Comparison With Other Models 

It is worth noting that the SAC model's predictions for 
this aspect of the data are in direct contrast with the 
predictions of other models of cognition. For example, 
Logan's (1988) Instance Theory assumes that there is a race 
between retrieving the answer and computing the solution, 
and that the speed with which answers are retrieved is 
dependent on the number of instances of that answer that are 
stored in memory. Because no instances of the answer to the 
operator-switch problems had been stored in memory, 
Logan's theory would predict that participants would never 
attempt to retrieve the answer. Under Logan's theory, it 
cannot be the case that participants were simply not encod- 
ing the operator, because problems with the two operators 
were intermixed throughout the task, and the participants 
needed to use information about the operator to decide 
which computing strategy (i.e., algorithm) to use. In other 
words, if it is assumed that the calculation strategies are 
executed in parallel with the retrieval process, then the 
participants could not be ignoring the operators and retriev- 
ing the wrong answers, because they had to have been 
immediately encoding the operators to begin the calculation 
process. 7 

As another alternative to the SAC model, there is a class 
of strategy selection models that we call base-rate models 
(e.g., Anderson, 1993; Lovett & Anderson, in press; Siegier 
& Jenkins, 1988; Siegler & Shipley, 1995). Base-rate models 
assume that strategies are selected according to the relative 
proportion of times each strategy has been successful. Such 
a model could be quite fruitfully applied tO our experimental 
data as it makes some correct qualitative predictions. In 

7 Of course, under our account, it is not necessarily the case that 
participants were encoding the operators--the data from our 
Experiment 1 can address this possibility. It is only Logan's (1988) 
theory that requires that participants encode the operators. 
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Figure 5. For all problems in Reder and Ritter (1992), using (a) the scrambled model and (b) the 
base-rate model, mean actual proportion of retrieval strategy selections (and standard error) as a 
function of group predicted proportions of retrieval strategy selections, along with the number of 
trials in each grouping. 

particular, such a model would predict that participants 
should initially select to calculate and gradually shift to 
selecting to retrieve because the experiment was designed 
such that participants would initially know none of  the 
answers and gradually know an increasingly larger percent- 
age of  the answers. 

To evaluate whether such a base-rate model could account 
for as much variance as the SAC model, we tested the 
following model, using the same evaluation procedure used 
for the SAC model. We assumed that there was a linear 
increase over trials in the probability of  selecting retrieval 
because analyses of  the data had suggested that there were 
no significant curvilinear trends over time. Each participant 
was assigned two parameters: the initial retrieval rate)  and 
the rate at which retrieval selections increased over time. 
The best fitting parameter values were used. Despite having 
many free parameters, the base-rate model was only able to 
account for 71% of the variance in the individual participant 
strategy selections (see Figure 5b), significantly lower than 
the 85% produced by the SAC model. The slope of  the best 
fitting line was not significantly different from one 
(slope = 1.09), t(39) = 0.75, p > .45, nor was the intercept 
significantly different from zero (intercept = 0.032), t(39) = 
0.61, p > .5. Yet, Figure 5b shows that there were serious 
deviations between the predicted and actual strategy selec- 
tions rates. Thus, although there may be some use of  success 
base rates in the participants' strategy selections, the SAC 
model provides a better overall account of  the strategy 
selection data. Furthermore, the base-rate model could not 
explain why participants would be sensitive to the familiar- 
ity of  operator-switch problems-- i t  would simply predict 
that the current base rate would be used no matter what the 
familiarity of  the operator-switch problem. 

In summary, the SAC model presents a very good fit to the 
data from Reder and Ritter (1992). In addition to providing a 
strong fit to the training data (much stronger than several 
alternative models), the SAC model also provided a good 
account for the operator-switch data. However, it might still 
be argued that the close fits to the data may be due to the high 
degrees of  freedom associated with a model with eight 
parameters. To provide a stronger test of  the SAC model, it 
would be desirable to fit a different set of  data by using the 
same parameter settings. The data from Experiment 1 
provided an opportunity for such a test. 

Experiment  1 Simulations 

As with the fit to the Reder and Ritter (1992) data, we 
compared the SAC model's predictions to participants' 
actual retrieve-compute decisions. Again, the probability of 
selecting retrieve for each trial was computed, and trials 
were grouped according to ranges of expected probability. 
Because our new Experiment 1 produced more data than 
Reder and Ritter's experiment, a greater number of (smaller) 
groupings were used. To provide a much stronger test of the 
SAC model, we set the model's parameters to the same 
values that were used in the simulation of Reder and Ritter. 
The only parameters that we did not take from the simulation 
of Reder and Ritter to use for the simulations of Experiment 
1 were the two participant-specific parameters: the partici- 
pant's threshold, and whether they used the never-retrieve 

8 This initial retrieval rate is equivalent to a participant-specific 
threshold. Thus, this alternative model subsumes the individual 
threshold model and is guaranteed to provide at least as good of a fit 
to the data as the scrambled model. 
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rule for an operator. The best fitting participant thresholds 
ranged from 50 to 155, with a mean threshold of 115.5 
(SD = 22.8), 

As with the Reder and Ritter (1992) data, the SAC model 
fit our new Experiment 1 data quite well, producing a 
Pearson's r a of .69 (see Figure 6a). The slope of the best 
fitting line was not significantly different from one 
(slope = 0.951), t(254) = 1.22, p > .2, nor was the intercept 
significantly different from zero (intercept = 0.011), t(254) = 
0.54, p > .5. Thus, the SAC model generalizes very well to 
other data sets with all but the participant-specific param- 
eters held constant across the data sets. 

The primary manipulation of Experiment 1 was the 
introduction of infrequently answered problems. Because 
frequency of presentation is the basis of strategy selections 
in the SAC model, the model predicts that participants' 
feeling of knowing for the infrequently answered problems 
should increase just as rapidly as with the normal problems. 
The SAC model was able to account for participant's 
behavior on these infrequently answered problems: The 
slope of the best fitting line was not significantly different 
from one (slope = 0.936), t(105) = 0.68, p > .45, nor did 
the intercept differ significantly from zero (inter- 
cept = -0.036), t(105) = 0.80, p > .4. Although with a 
little more noise in the predictions, because of the smaller 
number of observations per point, the SAC model accounted 
for a near majority of the variance in the participant-level 
behavior, producing an r z value between the actual and 
predicted proportion of retrieval selections of .49 (see Figure 
6b). 

The effect of this manipulation serves to differentiate 
empirically between the SAC model and several other 
models of cognition. Recall, for example, Logan's (1988) 

Instance Theory, which assumes that there is a race between 
retrieving the answer and computing the solution and that 
the speed with which answers are retrieved is dependent on 
the number of stored instances of that answer. Under such an 
account, participants should not be affected by the trials in 
which they did not compute an answer, as no answer is then 
stored with the problem. This incorrect prediction holds true 
for other theories of strategy selection as well (e.g., Ander- 
son's, 1993, ACT-R; Siegler & Shipley's, 1995, ASCM 
[adaptive strategy choice model]), which assume that strat- 
egy selections are influenced by the strength of the answer 
and expectations about the relative speed and successfulness 
of each strategy that derived from previous experience. 
Because the unanswered trials provide no information about 
the answer nor about the speed and successfulness of 
strategies, these other theories would also predict no effect 
of the unanswered problem trials. Yet, participants were 
affected by unanswered trials, as predicted by the SAC 
model. Consequently these other theories cannot account for 
the main results of Experiment 1. 

The data from Experiment 1 provided a better test of the 
importance of the never-retrieve rule to the SAC model. In 
this experiment, 3 participants were classified as using this 
rule under the same criterion used to fit the Reder and Ritter 
(1992) data. Using data from all participants, the correlation 
between participant retrieval selection rates for each opera- 
tor (i.e., how often they selected to retrieve with sharp 
problems compared with how often they selected to retrieve 
with multiplication problems) was not statistically signifi- 
cant (r = .156, p > .5). However, with these 3 participants 
removed, the correlation was quite high (r = .786, 
p < .0001), indicating that all but those 3 participants 
evaluated the two operators similarly. Thus, Experiment 1 
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Figure 6. For (a) all problems and (b) the infrequently answered problems, in Experiment 1, mean 
actual proportion of retrieval strategy selections (and standard error) as a function of group predicted 
proportions of retrieval strategy selections, along with the number of trials in each grouping. SAC = 
source of activation confusion. 
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presented strong evidence for some participants adopting a 
form of  metastrategy similar to the never-retrieve rule. 

The fit o f  the SAC model to the data for Experiment  1 was 
also more dependent on the use of  the never-retrieve rule 
than with the Reder and Ritter (1992) data. Without the 
never-retrieve rule, for all problems the SAC model ac- 
counted for significantly less variance ( r  2 = .61), although 
still at a high level overall. Furthermore, the slope of  the best 
fitting line was significantly less than one (slope = 0.842), 
t(256) = 3.76, p < .0002. In other words, without the 
never-retrieve rule, the model overpredicted the participant's 
retrieval selection rates. 

In summary, with the parameters set to the same values 
used for the simulations of  the Reder and Ritter (1992) data 
(but still allowing participant-specific parameters), the SAC 
model produced a very good fit to the data. This high degree 
of  generalization across the fits to both data sets may not be 
all that surprising given that the paradigm and interface used 
in Experiment 1 were very similar to those used by Reder 
and Ritter. In Experiment 2 we sought to provide a stronger 
test o f  the SAC model 's  ability to generalize. In particular, 
Experiment 2 provided a test of  whether the exact size of  the 
long-term effects are accurately predicted by the SAC 
model, holding constant all of  the parameter values (cru- 
cially including the learning and decay parameters) from the 
simulations of  Reder and Ritter and our Experiment 1. 

In Experiment 2 we also sought to address another 
remaining problem with past confirmations of  the problem- 
familiarity hypothesis, including the current Experiment 1: 
Previous experiments on feeling of  knowing have used 
relatively short delays, typically less than 1 hr. As a result, 
participants may have been making feeling-of-knowing 
judgments on the basis of  problem representations still in 
working (or active) memory, whose influence overwhelms 
any influence of  an early read of  the answer. For more 
typical, longer term delays, early reads of  the answer might 
become influential on strategy selection. Thus, it is possible 
that the findings from previous experiments will not general- 
ize to longer delays (i.e., that retr ieve-compute strategy 
decisions at longer delays are based on an early read of  the 
answer rather than on familiarity with the problem state- 
ment). Experiment 2 was designed to test this hypothesis. 

E x p e r i m e n t  2 

The overall design of  Experiment 2 was to present 
participants with a great deal of  practice on some arithmetic 
problems on one day, and then test the participants on related 
(similar-looking) problems 24 hr later. To make the test 
situation more realistic, we presented the test problems 
intermixed with new problems added on the second day. The 
test problems were operator-switch problems (same oper- 
ands, new operator) analogous to those used by Reder and 
Ritter (1992). Thus, if  participants select retrieval for these 
test problems, it is because the problems seem familiar 
rather than because they know the answer, because they had 
not before seen the problems with the operators reversed. 

Method 

Participants. Participants were 29 undergraduate and graduate 
students at Carnegie Mellon University. They received course 
credit, money, or both for their participation in the 2-day experi- 
meat, 

Procedure. A procedure similar to that of Experiment 1 was 
used. Participants were told that they would be shown a long series 
of arithmetic problems. After each arithmetic problem was pre- 
sented on the screen, participants rapidly chose to either calculate 
or retrieve the answer. They then executed a strategy and gave their 
answer, after which they were informed of the points earned. 
Finally, they studied the problem and answer. However, unlike the 
previous experiments, a new interface was used, the primary 
differences being that participants entered their responses using the 
keyboard rather than responding verbally and that participants gave 
the full answer to the questions rather than the answer modulo 100. 
The new interface was developed to eliminate voice key errors and 
to test the generality of the effects to other response modalitles. 
Modulo arithmetic was removed to establish the previous results 
using a more realistic version of multiplication. 

Each trial began when the participant pressed the space bar. The 
problem was displayed with the words "Retrieve or Calculate" 
above the problem. The participant then chose a strategy by 
pressing one of two keys. The zero and period keys were selected as 
they were on the numeric keypad that participants used to enter 
their answers. The use of these keys minimized larga-scale hand 
movements. As before, participants were given 850 ms to make 
their initial decision, but in this experiment they entered their 
response by using the numeric keypad. The time that participants 
were given to answer a problem was a function of the strategy 
selected. When participants chose to retrieve, they were allotted 2.5 
s to type in their full response. Pilot work established that 2.5 s was 
sufficient for participants to retrieve and enter a response but was 
not long enough for any of the participants to calculate the answer. 
When participants selected calculate, they were given 30 s to 
compute the answer. After executing the appropriate strategy, the 
participant was verbally informed :by the computer of how many 
points he or she received, if any. The feedback was an auditory 
recording of the experimenter's voice. Tone and volume of'the 
feedback were set to reward correct, on-time reuievals and 
admonish late responses. The participant was also informed if 
either of the deadlines was not met. The problem and correct 
answer were then presented for study. The study period w a s  

self-timed with a 2-s minimum. The participant began the next trial 
by pressing the space bar. 

The reward structure was as follows: (a) Participants received 25 
points when they selected the retrieval strategy, both strategy 
choice and strategy execution were on lime, and the answer was 
correct. (b) Participants received 5 points when they selected to 
calculate, answered correctly, and met both deadlines. (c) If one of 
the two times to select the strategy or to give the answer was late, 
but the answer was correct, participants received 1 point. (d) 
Participants received 0 points when they met neither deadline or 
failed to answer correctly. 

The participants taking part for course credit received $0.001 per 
point plus a base fee of $2.00. Participants who participated for 
money only received $0.002 per point plus a base fee of $5.00. As 
an additional performance incentive, all participants received an 
extra dollar if their point total for the 2 days exceeded the "current 
high score." The average paid for this experiment was $5.41 for the 
credit participants and $12.31 for the money-only participants. 

After participants completed the first session, which was approxi- 
mately 90 rain in length, they were instructed to come back 
tomorrow "to do a slightly different task." When participants 
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returned for the second session, they were told that they would be 
doing the same task, but with new problems. They were quickly 
reminded of the taskprocedure and were then given the new set of 
problems. At the end of the second session, participants were asked 
whether they had noticed anything about today's problems and 
whether they had used any special strategies in deciding whether to 
chose retrieve or calculate. The second session was approximately 
1 hrin length. 

Design. The design of the problem set was similar to the one 
used in Experiment 1, with several modifications. On the first day, 
there were a total of 300 training trials. These were broken down 
into six blocks of 50 trials. The order of these trials was completely 
random. There were 16 problems, varying in frequency of presenta- 
tion (high, medium, or low). A template for creating problems 
similar to those in Experiment 1 was used, except that there were 
no infrequently answered problems (i.e., all problems were always 
answered). The high-, medium-, and low-frequency problems were 
presented 27, 18, and 12 times, respectively. A high overall 
frequency of presentation for Day 1 problems was chosen to 
maximize transfer. 9 Because two sets of 16 problems had to be 
created in this experiment, a slightly larger set of numbers was used 
from which to select opexands: 12, 13, 14, 16, 17, 18, 19, 21, 23, 24, 
26, 27, 28, 29, 31, 32, 34, 36, 37, 38. 

On the second day, there was a total of 204 trials. Sixteen new 
training problems were created, again varying in frequency of 
presentation by using a template similar to that used for Day 1. The 
16 new problems were selected from the same set of possible 
operands as in Day 1, with the constraint that the Day 2 operand 
pairings were completely novel. That is, ff a # b was a problem on 
Day 1, then a * b, b # a, and b * a could not be used on Day 2. Other 
than this consuaint, the newly selected pairs were chosen ran- 
domly. As a consequence, operands that were high frequency on 
Day 1 could be not present, high frequency, or low frequency on 
Day 2. 

For Day 2, the high-, medium-, and low-frequency problems 
were presented 20, 10, and 5 times, respectively, resulting in 180 
training trials. There were also 24 test (operator-switch) problems, 
16 of which were from the Day 1 sample and 8 were from the Day 2 
problems. All of the operator-switch problems were presented only 
once, ensuring that the participants would not know the answer to 
any of these problems. The 16 Day 1 test problems represented all 
of the Day 1 problems: 4 high frequency, 8 medium frequency, and 
4 low frequency. The Day 2 operator-switch test problems were 
included as a replication of previous studies of short-delay 
familiarity (e.g., Reder &Ritter, 1992) by using the new interface, 
There were 8 such problems: 4 were operator-switches of high- 
frequency training problems, and 4 were operator switches of 
medium-frequency training problems. Low-frequency operator 
switches for Day 2 training problems were omitted to minimize the 
total number of test problems. Note that none of the previous day 
test problems involved exact repetitions of the previous day 
training problems; rather they were always presented with the 
operator switched. This design was deemed preferable to including 
exact repetition 24 delay test problems because the operator-switch 
problems were deemed a stronger test of the familiarity hypothesis, 
and the overall ratio of test problems to training problems on Day 2 
had to be Ininimized. 

The order of the training problems was completely random. The 
first 80 trials included only training trials. After the 80th trial, a test 
problem was presented once in every 5 trials. The location within 
each block was randomly selected with the constraint that the test 
problems could not occur consecutively. The relative order of the 
test problems was also completely random. 

In summary, the goal of Experiment 2 was to establish that the 
familiarity-based feeling-of-knowing effects also occur in long- 

term phenomena. On Day 1, participants were trained on one set of 
problems. On Day 2, participants began training on an entirely new 
set of problems. Unbeknownst to the participants, two kinds of test 
trials were inserted into the training trials. First, there were 
operator-switch problems based on problems from Day 2 (i.e., the 
same day). Second, there were operator-switch problems based on 
problems from Day 1 (i.e., the previous day). If there are long-term 
effects of problem familiarity, then participants should be more 
likely to select to retrieve for high-frequency previous day operator- 
switch problems than for medium- and low-frequency previous day 
operator-switch problems. 

Results and Discussion 

Four participants were dropped from the analyses: 3 
participants did not finish the task because of a time 
constraint, and 1 participant did not complete the second day 
problems because of  technical difficulties. Trials with very 
long strategy selection times (i.e., took longer than 2 s) were 
discarded (0.8% on Day 1 and 0.2% on Day 2). The analyses 
consisted of  two parts: several global analyses of  perfor- 
rnance in this task, assessing the impact of  the new interface, 
and more direct analyses of  the hypotheses under study. 

Operator differences. Tables 4 and 5 present summary 
statistics for performance on the training trials for both 
operators (* and #) on each day. As with Experiment 1, there 
was a small bias to select retrieve for sharp problems. The 
other difference between the operators was that the calcula- 
tion times were longer for multiplication than for sharp, 
reflecting the relative difficulty of  the algodthrns-- this  
difference may have been hidden in Experiment 1 because 
modulo arithmetic was used for that experiment and hence 
did not require complete calculation of the answers. How- 
ever, because both operators exhibited similar behavior in all 
other respects, the data were collapsed over operators for all 
of  the analyses presented below. 

Strategy selection time and appropriateness of  strategy 
selections. Participants were generally able to select a 
strategy before the 850-ms deadline. The mean strategy 
selection time was lower than 650 ms for both operators on 
Day 1 and lower than 550 ms on Day 2 (see Tables 4 and 5). 
Fewer than 16% of the strategy selections were late on Day 1 
(greater than 850 ms), and this number dropped to fewer 
than 5% on Day 2. 

In addition to generally making on-time selections, the 
appropriateness or accuracy of participants' selections was 
high. For multiplication problems, participants had a mean ~/ 
of  .85 and d'  of  1.62 on Day 1 and a mean ~/of .81 and d '  of  
1.48 on Day 2. For sharp problems, participants had a ~/of  
.68 and d '  of  1.39 on Day 1 and a ~/of .75 and d '  of  1.34 on 
Day 2. Thus, with the new interface, participants were still 
able to make generally very accurate, on-time decisions. As 
with Experiment 1, we could not conduct d '  analyses 

9 Of course, these presentation rates are likely to be much lower 
than those typically experienced for arithmetic problems during 
primary education. 
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separately for the different problem types: Operator-switch 
problems occurred relative infrequently, and participants 
almost never knew the answer to those problems (participant 
means of 2.2% for previous-day operator switches and 3.1% 
for same-day operator switches vs. 35.6% for Day 2 training 
problems). I° However, as is shown in the next set of 
analyses, participants were just as likely to select retrieve for 
the operator-switch problems (to which they did not know 
the answer) as they were to select retrieve for the training 
problems (to which they frequently did know the answer). 

The effect of practice on feeling of  knowing. First, we 
wanted to ensure that the previously found familiarity effects 
would replicate, so analyses were conducted on the aspect of 
Experiment 2 that was most similar to previous studies: the 
Day 2 training and same-day operator-switch data. A logistic 
regression was conducted on the strategy selections for these 
trials (see Table 6). The frequency with which the bottom 
operand appeared, and the frequency with which both 
operands appeared, proved to be highly predictive 
(IZI = 2.99, p < .01, and IZI = 6.05, p < .001, respec- 
tively). However, whether the problem was a training 
problem or an operator-switch problem had no impact 

Table 4 
Participant Means and Standard Errors for All Problems 
on Day I of Experiment 2 . 

Multiplication Sharp 

Calcu- Calcu- 
Measure lation Retrieval lation Retrieval 

Strategy selected (%) 
M 59.2 
SE 5.3 

Strategy selection time 
(ms) 

M 636 
SE 31 

Late to choose strategy 
(%) 

M 14.3 
SE 2.4 

Correct answer times 
(ms) 

M 9,132 1,653 
SE 546 217 

Correct answer (%) 
M 87.8 
SE 1.5 

Incorrect choice of 
retrieval (% 
false alarms) 

M 22.1 
SE 3.6 

Both strategy choices 
~/feet~ of know~ and know~ 

M .85 
SE .03 

d' 
M 1.62 
SE 0.11 

40.8 58.8 41.2 
5.3 5.4 5.4 

687 638 611 
72 33 39 

19.0 16.7 12.3 
3.8 2.7 2.6 

6,408 2,164 
430 425 

80.5 88.4 78.5 
2.8 1.6 3.5 

26.7 
4.3 

.68 

.11 

1.39 
0.20 

Note. Trials with late strategy selection were included only in the 
means of the strategy selection time. 

Table 5 
Participant Means and Standard Errors for Training 
Problems on Day 2 of Experiment 2 

Multiplication Sharp 

Calcu- Calcu- 
Measure lation Retrieval lation Retrieval 

Strategy selected (%) 
M 68.7 31.3 65.2 34.8 
SE 4.8 4.8 5.1 5.1 

Strategy selection time 
(ms) 

M 489 536 474 518 
SE 30 25 27 25 

Late to choose strategy 
(%) 

M 4.6 5.5 4.9 4.7 
SE 1.6 1.5 1.5 1.7 

Correct answer times 
(ms) 

M 8,604 1 , 9 7 2  5,713 1,954 
SE 604 473 440 411 

Correct answer (%) 
M 89.5 78.6 89.3 81.1 
SE 1.8 4.0 2.0 3.5 

Incorrect choice of 
retrieval (% 
false alarms) 

M 15.7 20.3 
SE 2.9 4.2 

Both strategy choices 
~/fee~ of knowing md ~,ing 

M .81 .75 
SE .04 .06 

d' 
M 1.48 1.34 
SE 0.15 0.15 

Note. Trials with late strategy selection were included only in the 
means of the strategy selection time. N = 23 for retrieval entries 
because 2 participants never selected to retrieve. 

(IZ I = 0.27, p > .5), suggesting that participants were com- 
pletely fooled by these test problems. The results are 
qualitatively identical to those found by Reder and Ritter 
(1992)--participants made retrieve--compute decisions by 
using a partial-matching strategy. We now turn to the central 
issue explored in this experiment: the 24-hr delay results. 

Long-term feeling of knowing. To test whether partici- 
pants still thought problems were familiar after a 24-hr 
delay, we conducted a repeated-measures ANOVA on each 
participant's proportion of retrieval strategy selections for 
the high-, medium-, and low-frequency operator-switch test 
problems from the previous day. Figure 7a presents the mean 
rates for selecting retrieval, as well as data from the Day 2 
training and the same-day operator-switch test problems for 
comparison. To make the time periods comparable, training 
data were only taken from the interval during which test 
trials were presented (i.e., Trials 81-204). The dotted line 

l0 Indeed, it is likely that participants did not know the answer to 
any operator-switch problems (never having seen them before) and 
correctly guessed the answer on a few problems. 
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Table 6 
Results of Logistic Regression Predicting Strategy Selection for All Choice-on-lime 
Training and Operator-Switch Problems on Day 2 of Experiment 2 

Regression 
Variable Range coefficient SE ]Zla 

Intercept constant - 1.92 0.183 10.5" 
Participant's own coded variable 0.02--4.13 0.09-5.62 
Frequency of top operand 0--30 0.0035 0.0088 0.40 
Frequency of bottom operand 0-30 0.026 0.0088 2.99* 
Frequency with which both operands appeared together 0-20 0.12 0.019 6.05* 
Type of problem 0-1 -0.05 0.182 0.27 

~Computed as (coefficient/SEco~cient) in the regression. 
*p < .01. 

indicates the mean retrieval strategy selection rate for 
low-frequency training problems. Because participants are 
unlikely to be familiar with these low-frequency problems, 
this rate represents an estimate for the base rate with which 
retrieval is selected by mistake or from a bias to choose 
retrieve. 

In agreement with the statistical analyses of the previous 
section, Figure 7a shows that there was no effect of 
switching operators on the same day problems with respect 
to participants' strategy selections. The effects of frequency 
of presentation on the previous day operator-switch test 
problems were in the expected direction, with participants 
being more likely to select retrieval for high-frequency than 
for medium-frequency test problems and being more likely 
to select retrieval for medium-frequency than for low- 
frequency test problems. However, the effects were small 
and not statistically significant, F(2, 48) < 1. 

One factor that reduced the size of the effect was that 
several participants were at floor or ceiling on strategy 
selections (i.e., either rarely or always selecting to retrieve). 
To partial out the influences of this factor, we removed 
participants at floor and ceiling from the analyses. Partici- 
pants were said to be at floor if they selected retrieve fewer 
than 10% of the time for the high-frequency training 
problems (n = 3). Participants were said to be at ceiling if 
they selected retrieve more than 50% of the time for 
low-frequency training problems (n = 4). Note that the data 
used to select which participants to remove were different 
from the data used in the statistical analysis of interest (i.e., 
independent criteria were used). Furthermore, these deleted 
participants do not contradict the familiarity hypothesis in 
anyway----their performance can easily be captured by using 
very high and very low response thresholds. Figure 7b 
presents the results with these participants removed. Once 
again, the effects were in the expected direction. Even the 
(relatively) low-frequency test problems demonstrated some 
resiliency to the 24-hr delay. The overall effect of frequency 
within the previous day test problems was marginally 
significant, F(2, 32) = 3.02, p < .06. Futhermore, the rate of 
selecting retrieval for the high-frequency previous-day test 
problems was significantly higher than the base rate of 
selecting retrieval, F(1, 16) = 5.44, p < .05. 

The analyses presented thus far provided only marginal 
evidence for long-term effects. To further investigate these 

effects, we redid the analyses as linear regressions. How- 
ever, rather than using presentation frequency as a predictor, 
we selected a different measure of item familiarity: the rate 
at which the retrieval strategy was selected for training 
problems on the  previous day. Because participants often 
reported using idiosyncratic patterns to make retrieve-- 
compute decisions, this measure is likely to be a more 
sensitive measure of item familiarity as it included both 
problem frequency and problem-idiosyncratic features. Pre- 
vious day retrieval selection rate was a significant predictor 
of (operator-switch) test retrieval selection rates (r = .707, 
p < .0001). Thus, there is strong evidence for long-term 
effects. 

However, it may be that these long-term effects were due 
to participants getting an early read on the answer rather than 
simple familiarity with the problem. To test among these 
alternative accounts, we conducted a multiple regression 
using the rate of retrieval strategy selections and the rate of 
actual retrievals (i.e., correct answers given in less than 2 s). 
If the early-read hypothesis is correct, then the rate of actual 
retrievals should be a strong predictor of test problem 
choices. By contrast, if the familiarity hypothesis is correct, 
then previous-day strategy selections should be the only 
independent predictor. The results of the multiple regression 
supported the familiarity hypothesis: Previous-day strategy 
selections predicted test problem strategy selections 
([3 = 0.75), F(1,397) = 62.40, p < .0001, whereas the 
previous day rate of actual retrievals did not ([3 = -0.02),  
F(1,397) < 1,p > .85. 

When we turn to the modeling of these data, we argue that 
the attenuation of the frequency of presentation effects found 
for the previous day test problems was due to the decay of 
long-term strength over the delay, just as the SAC model 
predicts. However, an alternative explanation for this phe- 
nomenon is that participants might have become aware that 
all problems from the previous day were operator-switch 
problems and that they should select to calculate whenever 
they recognize a problem from the previous day. At an 
intuitive level, this alternative explanation seems implau- 
sible because participants could not know that trials from the 
previous day would all be operator switches until the task 
was almost over, assuming that they even recognized that the 
trials were operator switches of previous-day problems. 
However, to provide more concrete evidence against this 
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Figure Z For (a) all participants and (b) with participants at floor and ceiling removed, the mean 
rate of selecting retrieval (and standard error) in Experiment 2 at each frequency level for same and 
previous day operator-switch test problems and for comparable-time training trials. 

alternative account, we analyzed the awareness data, in 
which we asked participants at the end of the second day 
whether they had noticed anything special about the second- 
day trials. Ten of  the 25 participants reported being aware 
that there were operator-switch trials intermixed with the 
regular trials. We then analyzed whether these aware partici- 
pants were less likely to select retrieve overall, or whether 
they were less likely to select retrieve for the previous-day 
operator-switch trials. There were no significant effects of  
awareness on either factor, F(1, 23) < 1,ps > .6 for both. In 
the case of  overall retrieve rates, if anything, aware partici- 
pants were slightly more likely to select retrieve overall 
(M = 35.8%, SE = 10.0) than were nonaware participants 
(M = 31.7%, SE = 6.2). Similarly, if  anything, aware partici- 
pants were slightly more likely to select to retrieve for the 

previous-day operator-switch trials (M = 30.0%, SE = 5.6) 
than were the unaware participants (M = 27.8%, SE = 4.6). 
Thus, it is unlikely that the attenuation of the presentation 
frequency effects after a 24-hr delay was due to the 
participants using a metastrategy of  not selecting retrieval 
for trials recognized to have occurred on the previous day. 
Rather, it is more likely that the attenuation was due to decay 
of long-term strength. 

In summary, the results of  Experiment 2 demonstrate that 
there are long-term feeling-of-knowing effects on strategy 
selection and that rapid feeling of  knowing is not simply a 
short-term phenomenon. Furthermore, problem familiarity 
rather than early reads on the answer underlies these strategy 
selections, even in the long-term case. To see whether the 
exact size of  the long-term effects are predicted by the 
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model, we now present the simulations of Experiment 2 
results. 

Experiment  2 Simulations 

As with the fit to the other data sets, we compared the 
SAC model's predictions of each participant's actual retrieve- 
compute decisions on the basis of the actual frequency of 
problems seen by that participant. Again, all of the same 
parameter values from the previous simulations were used 
for all but the two participant-specific parameters (i.e., the 
participant's threshold, and whether they used the never- 
retrieve rule for an operator). Further, the two participant- 
specific parameters were held constant across the simula- 
tions of Experiment 2 data (e.g., the same values were used 
for Day 1 and Day 2 simulations). The best fitting participant 
thresholds ranged from 35 to 180, with a mean threshold of 
97.2 (SD = 35.6). 

As in the simulations of the previous experiments, for 
simplicity, trials were used rather than time to represent the 
unit of learning and forgetting. Therefore, the size of the 
delay had to be estimated in number of trials. On Day 1, 
participants completed approximately 300 trials in 90 min. 
Therefore, 24 hr should be the equivalent of 4,800 trials. 
Consequently, the 24-hr delay was simulated by decaying all 
node strengths and link strengths by 4,800 trials. 

As with the other data sets, SAC fit the training data quite 
well. The model accounted for 76% of the variance in the 
individual participant's strategy selections for the Day 1 data 
and 63% of Day 2 data (see Figures 8a and 8b). Furthermore, 
the slopes of the best fitting lines were not significantly 
different from one in either case (slope = 1.02), t(287) = 
0.50, p > .6 for Day 1, and slope = 1.07), t(172) = 1.09, 

p > .25 for Day 2. However, the intercepts deviated slightly 
from zero---statistically significantly in the case of Day 1 
(intercept = -0.051), t(287) = 2.79, p < .01, and very 
marginally in the case of Day 2 (intercept = 0.038), t(172) = 
1.35, p > .15. It seems that the SAC model slightly 
overpredicted retrieval rates on Day 1 and underpredicted 
retrieval rates on Day 2. These effects may reflect shifting 
thresholds across the two experiment sessions. 

These preceding model fits did not depend significantly 
on the use of the never-retrieve rule: Only 1 participant was 
classified as using this rule, and the overall correlation 
between predicted and actual strategy selection rates re- 
mained unchanged when the never-retrieve rule was not 
used in the simulations. 

One important result of Experiment 2 was a replication of 
the Reder and Ritter (1992) findings on the effect of operator 
switches on strategy selection. That is, as the SAC model 
predicts, participants were just as likely to select retrieve for 
the operator-switch test problems as for the original training 
problems. Because each participant received very few 
same-day operator-switch problems, only a small number of 
probability ranges could be used, and there were few 
observations contributing to each participant's proportions 
within each range. Given the large amount of noise in the 
data due to low ns, the fit of the model was adequate, 
accounting for 46% of the variance in the individual 
participant's proportion of retrieval strategy selections (see 
Figure 9a). The slope of the best fitting line was not 
significantly different from one (slope = 0.823), t(32) = 
1.07, p > .25, and the intercept was only slightly above zero 
(intercept = 0.139), t(32) = 2.17, p < .05. 

The major result of Experiment 2 was the discovery of 

a )  1 - SAC Model b) 1 - SAC Model ,, 0 / I  0 Z 
0 .8 -  0.8 

~ 0 .7 -  0.7 
0.6 - 0.6 
0.5- ~- 0.5 

6 0.4- /~--~ 0.4 " r , , ~  

0.2 
0.1 

" 0 - -  - -  I I I I I I I I I I 0 I I I I I I . I  I I I 
0 0.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.I 0.2 0.3 0.4 0,5 0.6 0.7 0.8 0.9 I 

~ 100-~ -- -- - - - ~  101) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Predicted Proportion Predicted Proportion 

Figure 8. For (a) Day 1 training problems and (b) Day 2 training problems, in Experiment 2, mean 
actual proportion of retrieval strategy selections (and standard error) as a function of group predicted 
proportions of retrieval stratagy selections, along with the number of trials in each grouping. SAC = 
source of activation confusion. 
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Figure 9. For (a) same day operator-switch test problems and (b) previous day operator-switch test 
problems, in Experiment 2, mean actual proportion of retrieval strategy selections (and standard 
error) as a function of group predicted proportions of retrieval strategy selections, along with the 
number of trials in each grouping. SAC = source of activation confusion. 

long-term familiarity effects on strategy selections. The 
SAC model predicts that there should be long-term effects. 
However, it is not necessarily true that the SAC model will 
be able to account for the absolute magnitude of these 
long-term effects because their magnitude depends strongly 
on the details of the underlying memory model. 

One method for assessing the SAC model's long-term 
predictions is to compare the predicted and actual strategy 
selection rates in the same fashion that the other fits were 
evaluated: grouped by model prediction rates. With this 
method of evaluation, the SAC model performed quite well, 
accounting for 71% of the variance in the individual 
participants' selections (see Figure 9b). Furthermore, the 
slope of the best fitting line did not deviate significantly from 
one (slope = 1.19), t(32) = 1.38, p > .15, nor did the 
intercept deviate significantly from zero (intercept = 
-0.047), t(32) = -0 .96 ,p  > .3. 

Another method for assessing the SAC model's long-term 
predictions is to compare the predicted and actual effects of 
frequency of presentation directly. That is, rather than 
plotting the observed data as a function of the model 
predictions, one can plot the observed data as a function of 
conditions and also plot the predicted values as a function of 
these conditions. This more typically used method provides 
a direct comparison of the simulation results to the empirical 
findings. Figure 10 presents the actual rate of retrieval 
strategy selections for the previous-day operator-switch test 
problems (first presented in Figure 7a) with the predicted 
retrieval strategy selection rates for each frequency level. 
The actual and predicted strategy selection rates were 
generally quite close. In particular, the predicted mean was 
always within one standard error of the actual mean. Thus, 

any deviations between predicted and actual could have 
been due to noise in the data. 

General Discussion 
The two experiments presented in this article have 

generated further support for the view that rapid feeling of 
knowing and strategy selection are based on features of the 
question or problem statement. In particular, the experi- 
ments provided evidence against two alternative hypotheses: 

Figure 10. Mean actual (with standard error) and predicted rates 
of retrieval strategy selections for each level of presentation 
frequency for previous day operator-switch test pairs in Experi- 
ment 2. 
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(a) the hypothesis that participants were basing their deci- 
sions on an early-read of some (possibly incorrect)answer, 
and (b) the hypothesis that the previously found problem- 
familiarity effects would not generalize to situations with 
long delays. 

The SAC model of feeling of knowing and strategy 
selection has been applied to three data sets. It is the first 
computational model of feeling of knowing and strategy 
selection to be fit to feeling-of-knowing data in a rigorous 
fashion. For each experiment that we simulated, our fit to 
data was very good both the relative ordering of retrieval 
strategy selections on various problems and the absolute 
magnitude of selection rates were fit well by the SAC model. 
These strong fits are especially impressive given that the 
same basic parameter values were used in all of the 
simulations. 

Although we accounted for large percentages of the 
variance in the data, we did not account for all of it. This 
observation leads to the question: What was the source of the 
remaining variance? We believe that, in large part, the 
answer is noise. The model fits that we presented were at the 
individual participant level, rather than the more typically 
used across-participants aggregate level. Consequently, many 
of the observed values were based on relatively few 
observations. Because the dependent measure was a binary 
variable, the resulting proportions were highly unstable for 
low ns. When we fit the SAC model by aggregating across 
participants (see Reder & Schunn, 1996), we found that in 
all cases the model could account for over 95% of the 
variance in strategy selections. However, because the SAC 
model was yoked to each individual participant's stimuli, 
and the individual level is a more difficult one to predict, we 
felt that tests of the model at the individual participant level 
were the more stringent tests. 

To provide some contrast to the SAC model, we tested 
two alternative models. We found that a model using only 
participant thresholds could not account for nearly as much 
of the variance as the SAC model. In other words, the good 
fits that we found could not be attributed to having a free 
parameter associated with each participant. Furthermore, 
such a simple model could not account for the effects of any 
variable on strategy selection (e.g., the effects of  problem 
presentation frequency). Similarly, a simple base-rate model, 
while able to account for a significant proportion of the 
variance, did not provide as good a fit overall, despite having 
many free parameters. Furthermore, this base-rate model 
could not account for important portions of the data (e.g., the 
operator-switch data). Given these basic limitations of the 
alternative models, we only presented these comparisons for 
the fits to the Reder and Ritter (1992) data. However, as one 
would expect given these important limitations, testing the 
alternative models by using data from Experiments 1 and 2 
produced the same findings: The SAC model accounted for 
significantly more variance. 

Another important feature of the SAC model is that there 
are no ad hoc assumptions, and that this same model is being 
used by Reder to account for other phenomena such as 
cognitive illusions and word frequency effects (e.g., Kamas 
& Reder, 1994; Reder, Nhouyvanisvong, Schunn, Angstadt 

& Hiraki, 1996; Reder & Gordon, 1996). Although the 
never-retrieve rule might be considered an ad hoc assump- 
tion, the SAC model was still able to produce good fits to 
data without this feature. The type of activation-based model 
that we used is part of a powerful class of such models that 
have been used to account for a wide range of memory 
phenomena, including the shape of learning functions (e.g., 
Anderson, 1993; Anderson & Schooler, 1991; McClelland & 
Rummelhart, 1986), the shape of forgetting functions (e.g., 
Anderson & Schooler, 1991), and fan effect phenomena 
(e.g., Anderson, 1983; Reder & Ross, 1983). 

Another strength of the SAC model, as compared with 
competing models of the retrieve--compute selection pro- 
cess, is that in addition to doing a much better job of 
accounting for the effects found in our experiments, the SAC 
model's assumptions are consistent with and can capture 
many other basic memory phenomena. Other recent models 
of the retrieve-compute selection process such as Siegler 
and Shipley's (1995) ASCM or Logan's (1988) Instance 
Theory do not seem equipped to account for basic cognitive 
phenomena such as forgetting. 

In this article we have focused on one function of feeling 
of knowing--strategy selection. Other functions of feeling 
of knowing include regulating search length during retrieval 
(Gruneberg, Monks, & Sykes, 1977; Lachman & Lachman, 
1980; Nelson, Gerler, & Narens, 1984; Reder, 1987, 1988; 
Ryan, Petty, & Wenzlaff, 1982) and adjusting memory trace 
strengths during learning (Metcalfe, 1993, 1994). The SAC 
model could potentially be extended to account for these 
other functions of feeling of knowing as well by applying the 
SAC model's activation values, to these other processes. 

The SAC model of feeling of knowing and strategy 
selection that we have presented is based on a spreading- 
activation semantic network. Yet this was not the only way 
that we could have fit the data. An appropriately specified 
convolution or compound cue model could also be fit to 
these data. The goal of our modeling attempt was not to 
demonstrate the unique virtues of a spreading-activation 
model. Instead, we sought to demonstrate how a widely 
applied, general model of memory could be extended to 
account for strategy selection and feeling-of-knowing judg- 
ments. An important aspect of the SAC model--that feeling- 
of-knowing is driven by familiarity with components of the 
problem-question--is a relatively unique contribution. The 
only similar model of feeling of knowing is Metcalfe's 
composite holographic associative recall model (CHARM) 
(Metcalfe, 1993, 1994; Metcalfe, Cottrell, & Mencl, 1993), 
which is based on a convolution vector model of memory. It 
is difficult to evaluate the relative contribution of the SAC 
model versus Metcalfe's CHARM model. Her model also 
posits that features of the problem influence feeling of 
knowing, but unlike SAC, it has never formally been applied 
or fit to an intricate set of data. 

As indicated earlier, the SAC model bears similarity to 
other semantic network models of cognition; however, it 
also differs from these other models in important ways. In 
particular, many of these models (e.g., Anderson's, 1983, 
ACT) do not address the issue of strategy selection. Even the 
current ACT-R (Anderson, 1993), which does contain a 
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theory of strategy selection, fails to recognize that features 
of the problem affect strategy choice. The SAC model also 
differs significantly from other kinds of models of strategy 
selection, which have typically assumed that participants 
always attempt to retrieve first and only attempt other 
strategies on retrieval failures (e.g., LeFevre, Greenham, & 
Waheed, 1993; Siegler, 1987, 1988; Siegler & Shrager, 
1984). 

We take the findings of this article to support the view that 
people can and do decide between trying to retrieve an 
answer from memory and trying to compute the answer, and 
they make this decision before trying to retrieve the answer. 
That is, we argue that people do not always try to retrieve 
first. Furthermore, the decision process cannot be captured 
with a simple horse race between retrieval processes and 
computing processes. If the decision process were a horse 
race, then factors affecting the retrievability of the answer 
from memory and the speed of execution of the computing 
strategy should be the only factor affecting the decision 
process (see also Lemalre & Reder, 1996). However, 
Jameson, Narens, Goldfarb, and Nelson (1990) have shown 
that priming of the answer affects retrievability of the 
answer but does not affect feeling-of-knowing judgments, 
and Reder (1987) found that priming of question statements 
increased decisions to retrieve but did not affect retrievabil- 
ity of the answer. These findings are in direct conflict with 
the fundamental assumption of many models of cognition 
(e.g., Logan's, 1988, Instance Theory; Anderson's, 1983, 
ACT theory) that memory retrieval is an automatic process 
not subject to adaptive strategy selection processes. 

Another feature of the SAC model is that it shows how 
feeling of knowing is used as a component of strategy 
selection--we have provided a solution to the computational 
conundrum associated with assessing question familiarity to 
make retrieve-compute decisions. We illustrated with our 
SAC model that problem familiarity can be used to guide 
strategy selection because the assessment inherently occurs 
before retrieval. Empirically we have shown that it is an 
accurate predictor of retrieval success despite the fact that it 
can be subverted; that is, it is a heuristic that is not based on 
an earlier read of the answer. 

How well do our findings generalize to other kinds of 
problems and tasks? It might be argued that people do not 
make the strategic decision between computing and retriev- 
ing for very simple problems like retrieving someone's 
phone number or answering simple arithmetic problems like 
2 * 2.However, there are several reasons to believe that SAC 
applies to such situations as well. In the case of trying to 
retrieve someone's phone number, one must decide whether 
to search the phone book or search memory first. Even for 
simple arithmetic problems, recent research has found that a 
majority of adults (including university students) occasion- 
ally use a compute strategy for some single digit addition 
and multiplication problems (LeFevre, Sadesky, & Bisanz, 
1996). That is, even very simple problems are not exempt 
from the strategic decisions. Furthermore, the fact that 
people usually retrieve answers for very simple answers is 
consistent with this model--SAC predicts that people will 

select to retrieve for highly familiar problems, which such 
simple problems usually are. 

Another potentially problematic case for our familiarity- 
driven strategy selection model is the use of the never- 
retrieve rule. Although we were easily able to model such 
behavior with the addition of this simple rule, the use of a 
rule of this type is a clear exception to familiarity-driven 
strategy selection. This contrast between the familiarity- 
driven heuristics and the never-retrieve rule is but one 
instance of a more general distinction between the two types 
of factors that influence strategy selection: features con- 
tained in the question or problem (e.g., the problem familiar- 
ity), and features contained outside the problem or question 
(e.g., the history of success of a particular strategy or 
operator). Reder (e.g., Miner & Reder, 1994; Reder, 1987, 
1988; Reder & Schunn, 1996) has labeled this the distinction 
between intrinsic and extrinsic factors. Relating our current 
modeling enterprise to this distinction, feehng of knowing is 
an intrinsic factor that combines with extrinsic factors to 
produce strategy selections (cf. Reder, 1987). For example, 
variables that influence feeling of knowing are integrated 
with other factors such as "strategy X is working weft" or 
"always select retrieve and try to 'beat the clock' when the 
operator is addition" (Reder & Ritter, 1992). Even outside of 
experimental settings, it is likely that people use other 
metarules when making a retrieve--compute decision. For 
example, research has found that people quickly compute 
the answer to n * 0 problems, with the answer time being 
independent of the size of n (Ashcraft, 1982). It is worth 
noting that these examples of other factors influencing 
strategy selection are consistent with the general approach of 
our SAC model that states that features of the problem but 
not of the answer influence strategy selection. Future 
computational work should be directed toward extending the 
SAC model in these directions. 

We believe the primary contributions of the current article 
to be threefold. First, using data from Experiments 1 and 2 to 
rule out several very plausible alternative explanations, we 
have provided much stronger evidence for the claim that 
people typically make retrieve--compute strategy decisions 
on the basis of familiarity with the question or problem 
statement. Second, we have provided a mechanistic account 
of how such a decision process might work. Finally, we have 
demonstrated that it is possible to provide a detailed, 
quantitative account for individual participants' strategy 
selections and feeling-of-knowing decisions. 
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