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Working Memory: Activation Limitations on Retrieval*

JoHN R. ANDERSON, LYNNE M. REDER, AND CHRISTIAN LEBIERE

Carnegie Mellon University

Two experiments which require subjects to hold a digit span while solving an equation
and then recdl the digit span are performed. The size of the memory span and the
complexity of the equation are manipulated as well as whether the subject is required to
subgtitute items from the digit span for congtants in the equation. As either task (digit
span recal or equation solving) gets more complex there are performance decrements
(accuracy or latency) not only in that task but also in the other task. It is also shown that
the mgjority of the errors are misretrievals. These results are consistent with the proposal
that working memory load has its impact on retrieval from memory. These results are fit
by the ACT-R theory (Anderson, 1993) which assumes that there is a limit on source
activation and that this activation has to be divided between the two tasks. As either task
increases in complexity thereisless activeation for retrieva of information from declarative
memory. Subjects misretrievals of associaively related information could be predicted
by assuming a partial matching process in ACT-R.  © 1996 Academic Press, Inc.

As Baddeley (1992) notes there are several senses in which the term work-
ing memory has been used. The paper will be concerned with two of these
senses. One is associated with the tradition that defines working memory in
terms of paradigms which require the subject to maintain a memory load
while performing atask (e.g., Baddeley & Hitch, 1974; Daneman & Carpenter,
1980). The second is associated with production system theories (e.g., Newell,
1991) where working memory is taken to be the currently available informa-
tion against which production rules match. We are interested in relating these
two senses because the ACT theory (Anderson, 1976, 1983, 1993) is associ-
ated with both. The ACT theory is associated with the first because of its
strong roots in the human memory literature. It is associated with the second
becauseit is a production system theory. ACT is abit peculiar as a production
system theory in that it does not have a working memory as that term is
usually understood in production systems. Rather, the concept of capacity
limitations is carried by the concept of activation. Elements in declarative
memory have activation levels associated with them and access to these
elementsis a function of their level of activation. Roughly, working memory
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can be equated with the portion of declarative memory above a threshold of
activation. Up until now we have never explored in detail how experimental
mani pul ations of working-memory load would impact ACT’ s activation-based
performance.

We have speculated about the role of working-memory load in studies of
the effects of task complexity on skilled performance (Anderson & Jeffries,
1985; Anderson, Reder, & Ritter, in preparation). We have found that certain
errors occur more frequently in the presence of greater complexity. For in-
stance, Anderson et a. examined the frequency of errors while solving alge-
braic equations that varied in complexity. Consider the pair of errors below:

X+6=9->x=9+6
X+ 6/5=9/4—->x= 94+ 6/5.

Both errorsreflect the failure to change the sign when taking a constant across
an equation. This error occurred more frequently in the second case involving
fractions even though logically the fractions are irrelevant to this transforma-
tion. We argued that the extra working-memory load associated with repre-
senting the fractions increased the rate of errors. However, we did not actually
provide a mechanism for producing this error. This paper will provide a
mechanism.

The example above is a case where the load in dealing with one aspect of
a task (fractions) impacts on performance of another aspect of the same
task. It is more typical to do experiments where working-memory load is
manipulated in a separate task often requiring the subject to maintain some
sort of span (e.g., Baddeley & Hitch, 1974). There are a number of current
theories about how working-memory load impacts performance of such tasks.
Baddeley (1986) has argued for a number of separate working memories
(phonological loop, spatio-visual sketchpad) and that maintaining a span will
impact target performance only if the span is so large that it will overflow
into a central executive. Just and Carpenter (1992) argue that thereisacertain
amount of activation for performing atask which permits only so many things
to be done. Their loading tasks are more cognitive in nature, but they too argue
for separate spatial and linguistic capacities (Miyake, Shah, Carpenter, & Just,
1994). Our concept of working-memory limitations will be more continuous
than either of these with task performance gradually degrading as load in-
creases. Also, we will specifically localize the effect of load on retrieval from
long-term memory.

THE ACT-R THEORY

ACT-R (Anderson, 1993) is a model of human cognition which assumes
that a production system operates on a declarative memory. It is a successor
to previous ACT production-system models (Anderson, 1976, 1983) and con-
tinues the emphasis on activation-based processes as the mechanism for relat-
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Fic. 1. A network representation of an ACT-R chunk.

ing the production system to the declarative memory. Different traces in
declarative memory have different levels of activation which determine their
rate and probability of being processed by the production rules. ACT-R is
distinguished from the prior ACT theories in that the details of its design
have been strongly guided by the rational analysis of Anderson (1989). Essen-
tialy, ACT-R is a production system tuned to perform optimally given the
statistical structure of the environment.

According to the ACT theories, knowledge is divided into declarative
knowledge and procedural knowledge. In ACT-R, declarative knowledge
is represented in terms of chunks (Miller, 1956; Servan-Schreiber, 1991)
which are schema-like structures, consisting of an isa slot specifying their
category and some number of additional slots encoding their contents.
Figure 1 is a graphical display of a chunk encoding the addition fact that
3+4=17.

According to ACT, procedural knowledge, such as mathematical problem-
solving skill, is represented by productions. For instance, suppose a child
was at the point illustrated below in the solution of a multicolumn addition
problem:

531
+ 248

9

Focused on the tens column, the following production rule might apply from
the simulation of multicolumn addition (Anderson, 1993):



224 ANDERSON, REDER, AND LEBIERE

PROCESS-COLUMN

IF the goal is to write out an answer in column cl
and d1 and d2 are digits in that column
and d3 is the sum of d1 and d2
THEN set a subgoal to write out d3 in cl.

The first clause in this production matches the current goa to process the
tens column; the second clause matches the digits in the tens column; and
the third clause matches a fact or chunk from long-term memory. According
to the ACT-R theory, an important component of the time for this production
to apply will be the time to retrieve the long-term memories required to match
the production rule. So, in this case where 3 and 4 are in the current column,
the time to match the last clause will be determined by the level of activation
of the chunk encoding 3 + 4 = 7 in Fig. 1. We explain how activation
determines match time in the next subsection.

Activation

Activation of declarative structures has always been an important concept
in the ACT theories. Basically activation determines how available informa-
tion will be.! The activation of a chunk is the sum of source activation it
receives from the elements currently in the focus of attention. Formally, the
eguation in ACT-R for the activation of element i is

A = ZV\/JSI! (1)

where W, is the salience or source activation of element j in the focus of
attention, and S; is the strength of association from element j to i.> For
instance, in the context of retrieving the chunk that 3 + 4 = 7 in response
to seeing 3 and 4 in a column, the W's would be the source activations of
the elements 3 and 4 in the column and the §; would be the strengths of
association from these elements to the chunk encoding 3 + 4 = 7. Figure 1
illustrates these quantitiesin the network encoding of the chunk. It is assumed
in ACT-R, in contrast to early versions of ACT (such as in Anderson, 1976)
but asin ACT* (Anderson, 1983), that these activations levels are achieved
rapidly and that time to ‘*spread’’ activation is not a significant contributor
to latency. However, unlike ACT* there is no multilink spread of activation.
Rather, activation is simply a direct response to source elements like j. As
such, the theory is much like the SAM model (Raaijmakers & Shiffrin, 1981,

* According to the ACT-R theory the activation of a chunk reflects a preliminary estimate of
how likely it is to match to a production at the current point in time. More precisely, activation
reflects the log odds that the chunk will match to a production.

2The ACT-R theory allows each chunk to have a base level activation but we will simply
assume that is zero.



WORKING MEMORY 225

Gillund & Shiffrin, 1984) except that our activations are like logarithms of
SAM familiarities since they add rather than multiply. It will prove important
to keep conceptually separate the quantities A, and W,. The former are activa-
tions, which control retrieval from declarative memory, while the latter reflect
the salience or attention given to the cues® The W,'s are referred to as source
activations.

The levels of activation determine the odds that a chunk will be retrieved
and the time to perform that retrieval. These measures are described by
eguations of the form

Odds = Ce™ )
Be A, 3)

Time

where A is the level of activation of the chunk i, and C, c, B, and b are
constants mapping A; onto the two performance measures.* The underlying
model is one in which chunks are retrieved as candidates to match a chunk
pattern in a production until one is matched (producing a latency) or until a
give-up time is reached (producing an error). The exponential functions in
Egs. (2) and (3) alow for the kind of nonlinear mapping of activation onto
behavior required in many activation models (e.g., McClelland & Rumelhart,
1986; Rumelhart & McClelland, 1986). For a justification of the exponential
assumption in ACT-R, see Anderson (1993).

Working-Memory Limitation

It remains to specify a theory of working-memory limitation that can be
related to manipulations of task complexity. In the context of the current
theory, the natural assumption is that there is some limitation on total source
activation. Formally, this limitation is

> W = Constant. 4
]

This reflects alimitation on the amount of attention one can distribute over
source objects. This is a new assumption, not specified in Anderson (1993).
This paper will explore how well we can account for working-memory phe-
nomena by making this assumption.

This resource limitation has some similarity to the ideas introduced by
Kahneman (1973) and has quite a bit of similarity to the Just and Carpenter
(1992) CAPS theory which interprets working-memory limitation as alimita-
tion on the total amount of activation available in a production-system archi-

3The W, can be interpreted as measures of the validity of using that cue as a predictor of
what will match to a production condition.

4 The full ACT-R theory allows for a modulating effect of production strength but thisis being
ignored for sake of simplicity.
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tecture. However, there are differences with the CAPS theory. Activation in
the CAPS theory spreads by production firings rather than associations directly
from sources to memory structures. Also the ACT-R limitation is not directly
a limitation on activation but rather on the sources of activation. The total
activation (A’s in Eq. (1)) is afunction of the strengths §; as well as the W,.
Finaly and most important, our capacity limitation impacts retrieval from
long-term memory.

Summary

It is worth reviewing the significant claims of this anaysis of working-
memory limitation;

1. The fundamental limitation is on amount of source activation (Eq. (4)).

2. This will impact on the activation of individua memory chunks
(Ea. (1))

3. Thisin turn will impact on probability and speed of successful retrieval
(Egs. (2) and (3)).

The unique aspect of this analysis of working-memory limitation is its
localization of the limitation as impacting retrieval from declarative memory.
We report research consistent with this localization. However, we do not
mean to imply that there might not be other capacity limitations such as the
rehearsal limitations in Baddeley’s (1986) theory.

EFFECTS OF WORKING-MEMORY LOAD

One of the implications of the proposed extension (Eqg. (4)) to the ACT-R
theory is that there is a limited resource which is source activation. This
would imply that two competing tasks, each of which required some source
activation, would interfere with one another. This has been explored in experi-
ments which require subjects to maintain a memory span concurrently while
performing a primary task. Baddeley and Hitch (1974) found an interaction
between memory span and complexity of the primary task (a reasoning task)
such that there was a greater effect of primary task complexity at higher
memory spans. Halford, Bain, and Maybery (1984) report such an interaction,
both for performance of the primary task (an algebra-like task) and recall of
the memory span. However, such interactions have not always been found
(e.g., Evans & Brooks, 1981; Klapp, Marshburn, & Lester, 1983).

Carlson, Sullivan, and Schneider (1989) reported an experiment relevant
to the issue of what determines whether there is aworking memory interaction
between a primary task and a concurrent memory load. We designed our
experiments after their paradigm. During part of their experiment they pre-
sented their subjects with a memory span of three or six elements. The
memory span involved the presentation of assignments of binary values to
variables. In the three-span case subjects might begiven A=1,B=0, C =
1. While holding this memory span subjects were required to predict the
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output for alogic gate given a particular set of input values. Then they were
probed for their memory of the span by being presented with a question of
the form A = 0 which they had to judge as correct or false. A critica
manipul ation in this experiment involved the rel ationship between the memory
span and the judgment of the logic gate. In the irrelevant condition there
was no relationship. In the other two conditions subjects knew they might
need the information in the memory set to judge the gates. In the access
condition, rather than seeing binary input to the gates subjects saw two vari-
ables and had to retrieve the values of these variables and predict what the
gate would do for these values. In the expect condition, subjects thought they
might see variables but in fact saw 0's and 1's as input.

Carlson et al. (1989) found little effect of size of memory span on irrelevant
or expect trials but a large effect on access trials. The effect of three versus
six memory load was 35 ms in the nonaccess conditions and 296 ms in the
access condition. Also subjects were about 800 ms slower overal in the
access condition. We were intrigued with this task for a number of reasons.
First, Anderson (1989) argued that the large effect of access occurred because
information in the memory span had to be used in the logic-gate task. In-
creased memory span would lower the activation of the individual elements
in the memory span (as a fan effect) which would impact on the rate with
which they could be used in the logic task. Thus, in effect, Anderson’s
argument was that there were separate working-memory limitations in the
digit span and logic-gate tasks and the only way to get an effect of memory
Span was to integrate the memory span into the logic-gate task. This contrasts
with Eqg. (4) which proposes a single resource limitation.

We were also interested in the Carlson et a. (1989) manipulation because
we thought this was a good way to explore the effects of working-memory
load on a problem-solving task like algebraic equation solving. As we noted,
rather weak effects of memory span have often been found on primary tasks
(e.g., Klapp et al., 1983). The access condition of Carlson et a. seemed like
a paradigm that was much more sensitive to effects of memory load. Carlson
et a. did not report data that indicated whether complexity of the primary
task interacted with the memory span task. The ACT* theory predicts such
an interaction and one reason for the current experiment was to test this
prediction.

While these were the motivations for choosing the paradigm, we should
say at the outset that the results turned out to be rather different than we
anticipated. As such, they proved more relevant to assessing and developing
the ACT-R theory than the ACT* theory.

EXPERIMENT 1

We adapted the Carlson et al. (1989) paradigm to atask involving algebra
problem solving in which we manipulated the complexity of the algebra task,
the size of the memory set, and whether there was a requirement to access
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TABLE 1
Example Problems Used in Experiment 1

No substitution Substitution

One transformation 3xX=6 ax=>b
X3 =6 xla=b

3+x=9 a+x=»hb

3—-x=9 a—-x=b
Two transformations 3xX+2=8 ax+ b=11
XxX-2=7 ax—2=Dhb
X3+2=28 xa+b=11

XI3-2=17 xX3—a=Dhb

the memory set in performing the algebra task. Table 1 illustrates the 16
types of material that were used. Half of the problems required one algebraic
transformation to solve and half required two transformations. There were
four basic types of one-transformation equations, involving multiplication,
division, addition, or subtraction from both sides. The two-transformation
eguations consist of one multiplication or division and one addition or subtrac-
tion, giving four possible combinations. In the no-substitution condition, inte-
gers appeared in the equations whereas in the substitution condition the letters
a and b replaced two of the integers. In the one-transformation condition both
integers were replaced while in the two-transformation condition a random
pair of the three integers were replaced. In the substitution condition, the
subject was to substitute the first two digits from the digit span for aand b
in the equation. This is the condition that requires subjects to integrate the
contents of their digit span into the algebra problem-solving task. Crossed
with these 16 types of materials, subjects were responsible for digit spans of
two, four, or six digits. Thus, there were aways two digits that could be
integrated into the problem.

Method

Materials and procedure. Equations were randomly generated subject to the constraints that
the constants all be one digit, that the intermediate result in the two-transformation equations be
one digit, and that the final answer be an integer. All constants in the equations were greater
than zero; also, when a constant was explicitly given as a coefficient of x, it was greater than
1. There were 48 problems required to realize all combinations of the 16 basic equation types
in Table 1 and the three memory set sizes. The experiment consisted of five blocks of trias. In
each block all 48 conditions were realized. Thus, there were 240 trias in all. The presentation
of problems was random within a block. After each block there was a possibility for a break.

The problems were generated first and then the memory spans were randomly generated by
the computer from the integers 0—9 with the constraint that in the substitution condition the first
two digits had to come from the problem. Individual problems were presented in a different
random order for each subject.

The experiment was administered by an IBM PC. Each digit string appeared on the PC screen
for a time determined by its length (1.5 + 0.5n s, where n is the number of digits) after which
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Fic. 2. Percentage of strings correctly recalled in Experiment 1: (a) Data; (b) Simulation; (c)
Predictions of mathematical model.

it was replaced by an algebra problem. The subject solved the equation without benefit of paper
and pressed a button when a solution had been reached, at which time the equation disappeared
from the screen. Then the subject typed in the answer followed by the digit string. Immediate
feedback was provided for both the answer and the digit string.

Subjects. The subjects were 15 CMU undergraduates, graduates, and staff who participated in
the experiment either as part of a requirement of the introductory psychology course or for pay
($10). The experiment lasted about 2 h.

Results

The computer program recorded solution times, solution accuracy, and
accuracy of string recall. Each of these dependent variables was subjected to
a2 x 2 x 3anaysis of variance where the factors were equation complexity,
whether substitution was necessary, and memory span.

Figure 2a displays the results for the percentage of memory spans
perfectly recalled. There were significant effects of size of memory span
(F(2,28) = 6.02, p < .01) and of equation complexity (F(1,14) = 9.19,
p < .01). The effect of substitution was not significant (F(1,14) = 0.77),
nor were there any significant interactions. The effect of two versus four
digits was not significant (t,s = 0.12) but the effect of four versus six
was highly significant (t,s = 2.94, p < .01). The difference between these
two effects was marginally significant (t,s = 1.70, p ~ .05). Thus, it
seems with respect to digit recall we need to account for the following
facts:

1. There was a larger effect of four versus six digits in the memory span
than two versus four.

2. There was a complexity effect of number of transformationa steps.

3. There was no effect of substitution.

Figure 3a displays the results for percentage equations correctly solved.
There were significant effects of equation complexity (F(1,14) = 5.73, p <
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Fic. 3. Percentage of eguations correctly solved in Experiment 1: (a) Data; (b) Simulation;
(c) Predictions of mathematical model.

.05), memory span (F(2,28) = 4.96, p < .05), and substitution (F(1,14) =
7.66, p < .05). There were no significant interactions. The effect of two
versus four digits was not significant (t,s = 0.43) but the difference between
four and six digitswas (t,s = 2.59, p < .05). The difference between the two
effects was marginally significant (t,s = 1.52, p < .10). From the figure, it
appears that the effect of complexity is larger than the effect of substitution
and a contrast testing for this was significant (t,, = 1.78, p < .05). The only
interaction that was even marginally significant was that between complexity
and span (F(2,28) = 2.26, p = .12). The effect of span appears somewhat
larger in the case of complex equations. A specific contrast testing whether
the curves are steeper in the case of complex equations was significant (t,g
= 1.89, p < .05). Thus, with respect to accuracy of equation solving, we
need to account for the following facts:

4. There was an effect of memory span which may be greater for complex
equations.

5. There was a complexity effect of humber of transformational steps.

6. There was an effect of substitution but this effect was smaller than the
complexity effect.

Figure 4a displays the results for time to solve the equations. There were
significant effects of equation complexity (F(1,14) = 41.71, p < .001), mem-
ory span (F(2,28) = 33.65, p < .001), and substitution (F(1,14) = 137.23,
p < .001). The effects of equation complexity and substitution are approxi-
mately equal. There was also a significant interaction between memory span
and substitution (F(2,28) = 4.00, p < .01) such that the effect of memory
span was greater in the case of substitution. This replicates the access effect
found by Carlson et a. (1989). The increase with memory span was only
marginally significant in the case of no substitution (t, = 1.49, p < .10) but
quite significant with substitution (t;o = 5.93; p < .001). The overall difference
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Fic. 4. Time to solve equations in Experiment 1: (a) Data; (b) Simulation; (c) Predictions of
mathematical model.

between two and four items in the span was significant (t,s = 3.31, p < .01)
as was the difference between four and six items (t,3 = 4.91, p < .001). The
difference between the sizes of the two effects was not significant (t,s =
0.92). Thus, with respect to latency of equation solution, we need to account
for the following facts:

7. The effect of memory span was larger in the case of substitution.

8. There was a complexity effect of number of transformational steps.

9. Therewas an effect of substitution which isequal to the effect of number
of transformational steps.

The equal effect of number of transformational steps and substitution in
Fig. 4a allows us to rule out certain interpretations of two other aspects of
the data. First, the interaction between memory span and substitution (point
7 above) is not simply a result of larger effects of memory span at longer
latencies. The interaction is nicely displayed in these two overlapping curves.
The one-step, substitution curve is significantly steeper than the two-step,
no substitution curve (t,s = 2.03, p < .05) although both conditions have
approximately the same latency. Second, the equal time effects of these vari-
ables affects our interpretation of the result that only equation complexity
affected retrieval of the digit string (Fig. 2a). It means that the poorer recall
of the memory span after solving two transformation equations could not be
dueto the greater el apsed time because substitution, which produced the same
time increase, did not have an effect on span recall.

ACT-R Model

We developed an ACT-R simulation to account for equation solving and
digit recall performance. The model for the equation solving involved produc-
tions to recognize the appropriate transformations to apply, solve the arithme-
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TABLE 2
Productions Applying in the Solution of an Equation from Experiment 1

Initial state: x’a — b =4

Substitute for a:
IF the goal is to solve an equation
and ‘‘a’’ appears in the equation
and f is the first element of the memory set
THEN substitute “‘f** for “‘a’’

Resulting state: X3 — b = 4

Substitute for b:
IF the goal is to solve an equation
and ‘‘b'"’ appears in the eguation
and s is the second element of the memory set
THEN substitute *‘s”” for *‘b”’

Resulting state: /3 — 2 = 4

Invert-transformation:
IF the goal is to solve an equation of the form ‘‘term opl ¢ = d”’
where ¢ and d are constants
and op2 inverts opl
THEN transform equation to the form ‘‘term = d op2 ¢’

Resulting state: /3 = 4 + 2

Collect-sum:
IF the godl is to solve an equation that contains ‘‘c + d”’
and sisthe sum of cand d
THEN replace ‘‘c + d"’ by *‘s”

Resulting state: /3 = 6

Invert transformation:
IF the goal is to solve an equation of the form ‘‘term opl ¢ = d”’
where ¢ and d are constants
and op2 inverts opl
THEN transform the equation to the form ‘‘term = d op2 ¢’

Resulting State: x = 3[6

Collect-product:
IF the goal is solve an eguation that contains *‘cCd’’
and p is the product of c and d
THEN replace ‘‘c[d’’ by “‘p”’

End State: x = 18

Type-out:
IF the godl is to solve an equation of the form ‘‘x = ¢’
and c is a constant
THEN press the button and type c
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tic relationships, substitute the correct values, and type out the answer. Con-
sider the most complex case which involved solving equations of the form

xla—b=4

witha = 3and b = 2. Table 2 gives the sequence of productions that applies
in this case. Basically, thereis one production for each operation in producing
the answer. Our model for the recall of the memory span simply involved
productions that encoded the incoming digits into successive seria positions
and then retrieved from those positions.

Smulation

We ran a simulation of ACT-R which assumed fixed capacity for source
activation which had to be divided between the terms in the equation and the
terms in the digit span. This capacity was set at one unit.® We assumed that
the capacity was equally divided among all of the symbols of the equation
and the memory load. In the case above, there were seven symbols in the
eqguation: x, /, a, -, b, =, 4. Thus the total number of elements was 7 + s
where sisthe size of the digit span. Therefore, in the case of atwo-transforma-
tion equation, the total activation of any element was 1/(7 + ). In the case
of a one-transformation equation, this element activation was 1/(5 + s) be-
cause there were only five symbols in the equation.

Figures 2b, 3b, and 4b show the predictions from 125 Monte Carlo simula-
tion runs per condition for the data in Figs. 2—4 using the parameters ¢ = 8,
b=2 C=1,and B = 1 for Egs. (2) and (3). The two one-step curves in
Fig. 3b are, by chance, identical.® The time scale in Fig. 4 is arbitrary and
could be changed by changing the constant B. These simulations were run
assuming the only time spent was in the retrieval involved in matching condi-
tions. There is no cost for the action sides of productions. These simulations
reproduce some of the qualitative appearance of the data; however, it is
difficult to assess the goodness of this fit or to understand why the model fits
in some places and misfits in other places.

One of the sources of complexity in understanding the simulation is that
the activation levels vary with the strengths §; among elements (see Eq. (1))
which are afunction of the exact connectivity among elements (see Anderson,
1993, for details). Also, there is a random component such that the results
are only Monte Carlo approximations to the pure ACT-R predictions. In
order to generate more precise predictions of the simulation, we produced a

% Since ¢ and A multiply in Eqg. (2) and b and A multiply in Eq. (3), the exact setting of total
source activation is not important since any change in it can be compensated by proportional
changes in b and c.

6 Since there are only 125 simulating runs, it is possible for conditions which are theoretically
different to post the same percentage correct.
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mathematical model of its application to this task and then optimized the fit
of the mathematical model to the data. This is described below.

Mathematical Model

Retrievals from long-term memory are an important determiner of accuracy
and latency in the ACT-R theory. Therefore, in developing a mathematical
analysis of its predictions, it isimportant to identify which productions require
retrieval from memory and how memory load impacts retrieval . Each produc-
tion except type-out requires an long-term memory retrieval. That is, the
substitute productions require retrieval of the digit from the memory span,
the productions collect-sum and collect-product each require retrieval of an
arithmetic fact, the production invert-transformation requires retrieval of an
algebraic transformations such as ‘** + inverts ="’ or *‘* inverts /"’ which are
used to undo the operation. Thus, in general, the number of retrievals for a
problem is one less than the number of productions.

To determine the amount of activation arriving at a to-be-retrieved element
i, we need to know the strengths of association, S;, in Eq. (1). It turned out
in the simulation that if a memory span element was to be retrieved, there
was only one source j of activation associated with that element. This was
the span element itself and its strength of self-association was approximately
5. Thus, the source activation was multiplied by 5. In the case of retrieval of
arithmetic facts like 3 + 4 = 7 there were two sources of activation (e.g., 3
and 4) and their strength of association to the target fact was about 2.5. Thus,
the source activation was effectively multiplied by 2.5 + 2.5 = 5.7 So, all
elements had the source activation multiplied by about 5. In effect, since the
total source activation was 1 and it was multiplied by 5, the net activation
for any to-be-retrieved element was 5/(d + s) where d is the number of
symbols in the equation and s is the span size. This is the value of A used
in the equations below and allows us to avoid considering the §; values.
According to the ACT-R theory, A should be related to time to retrieve by
the equation

Tr = Be ™, (5)

whichisbasicaly arepeat of the earlier Eg. (3), and to probability of retrieval
by the equation

Ce™

Pr= ——,
R7 1+ ce™

(6)

”In ACT-R, the default is to set the strength of self-association proportional to the log of the
number of chunks in the database. With respect to an association from j to i the default is to set
that strength to the difference between the log of the number of chunks and the log of the number
of associations involving j. See Anderson (1993) for a discussion. The fact that the strength of
self-association is equal to two j—i associations reflects the fact that the number of items associated
to j turned out to be approximately a square root of the number of items in the database.
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which is based on the earlier Eq. (2). The parameters B, C, b, and ¢ were
free to be estimated.

The time to complete a tria (solve the equation) is the sum of the amount of
time associated with production firings, Tp, plus the component retrievas, Tk.

T(Solution) = mT, + nTg, @)

where mis the number of productions and n is the number of retrievals. In the
examplein Table 2, m = 7 and n = 6. Only the component T will be affected by
memory span and activation. The component Ty reflectsan *‘ average’” estimate of
the time to do the other (non-long-term memory retrieval) matching of the
production’s condition and to execute the production action.

Asfor accuracy, we assumed that all errors are caused by failure to correctly
retrieve information. Thus, the probability of a correct answer is the product
of the probabilities of correct retrievals:

P(Solution) = PR, ©)

where n is the number of retrievals. Pg will be impacted by activation which
will in turn be a function of equation complexity and memory span. This
assumes that no errors were due to systematic bugsin the subjects’ procedures.
This seems a reasonable assumption given the high level of performance of
all subjects on all equations.

Finally, we assumed memory span accuracy would simply reflect the accu-
racy of retrieval of the digits:

P(String) = P3, 9

where S is the number of digits in the span. Note that it is the same Py in
Egs. (8) and (9). Thus, the same basic effect is predicted for accuracy in
equation solution as in digit span.

The model requires the estimation of five parameters. B, the scaling factor
for retrieval latency; C, the scaling factor for retrieval odds; b, the exponent
for latency; c, the exponent for accuracy; and T, the non-retrieval time for a
production. We fit 36 data points—12 for solution latency, 12 for solution
accuracy, and 12 for string accuracy. We minimized a x? statistic defined as

z (Obs — Pred)?/S3ys,

where Obs are the observed means, Pred; is the model’s prediction, and
S, is the variance of the means taken from the analysis of variance tables.
S, is obtained from the overall interaction between subjects and conditions
for that dependent measure. With 36 data points and five parameters, there
were 31 degrees of freedom. The minimum x? statistic obtained was 26.95
which indicated no significant deviations overall. The parameters estimated
wereB = 1.88s, C =373, b=316,c =596 T, = 0.74 s.

Figure 2c displays the predicted accuracy of string recall. We have col-
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lapsed over the substitution factor because the model predicts no effect of
substitution on string recall, replicating the third fact noted under Results.
The model also predicts an effect of complexity of the appropriate size (fact
2). The mean effect of equation complexity in the data is 3.7% while it is
2.9% in Fig. 2c. The model also predicts the curvilinearity such that the effect
of two digits versus four digits in the span is smaller than the effect of four
versus six but the effect does not appear as dramatic as in Fig. 2a. Thus, the
effect for memory span is partialy reproduced by the model. It is worth
noting why the model predicts increasing growth in error rate with larger
span. As span increases two things happen—Ievel of activation of the span
elements goes down and more elements have to be recalled. To some degree
these effects ‘*multiply’” in this error scale, producing the accelerated error
rate. While the theory produces an accelerated error rate, it does not produce
the apparently flat error rate from two to four digits. It is hard to know
whether to attribute this deviation from prediction to chance (since it is not
statigtically significant). However, to the extent that it is real, we think it may
reflect differential allocation of effort between the span and equation solution.
A number of subjects report ‘‘trying harder’’ for the larger digit spans.

Figure 3c displaysthe predicted accuracy in equation solution. It reproduces
al three main effects found in the data—effect of memory span (fact 4),
effect of number of steps (fact 5), and the smaller effect of substitution (fact
6). The effect of substitution occurs because of potential errors in retrieval
of the digits. The effect of number of steps occurs both because of potential
errors in the extra memory retrievals (of an algebraic transformation and an
arithmetic fact) and because of increased memory span (more symbols in
equation). It also reproduces the greater effect of memory span for more
complex equations because the two extra memory retrievals for complex
equations will be impacted by the memory span.

Figure 4c displays the predicted latency in equation solution. It again repro-
duces all three effects found in the data. The effect of memory span is larger in
the case of substitution (fact 7) because retrieval of the digits is dower for larger
spans. However, the effect of subgtitution on the memory span effect is not as
large asin the data. Asfor the data, in the case of no substitution, the difference
between two and six items is 0.47 s while in the case of subgtitution it is 1.77
s. Asfor the predictions, the effectsare 0.76 sand 1.19 s. There are approximately
equal effects of number of steps (fact 8) and subgtitution (fact 9) and the size
of the effects is very smilar to the data.

All in al, the fit of the model is quite good in terms of significance of
deviation with 36 data points defined on three dependent measures and in
terms of accounting for the nine basic phenomena in the data. It is worth
emphasizing that it achieves its success by localizing the capacity limitations
in the retrieval of chunks from declarative memory to match production
conditions. In this way it explains the effect of the substitution interaction
with span which Carlson et a. (1989) found and we replicated. The effect of
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substitution occurs because it requires extraretrievals in solving the equation.
However, we expect and find effects of span even when there are no substitu-
tions. This is because other retrievals are required in equation solving. It is
reasonable to conjecture that no retrievals other than substitution were re-
quired in the Carlson et a. task. Therefore, they found no effect of span in
the no substitution condition.

Sensitivity Analyses

Given the good fit of the model it becomes interesting to inquire as to what
aspects of the model are responsible for the fit and how the model would
behave under aternative assumptions. There are four structural parameters
of the model and five estimated parameters. The structural parameters are d
(the number of digitsin the span), s (the number of symbols in the equation),
m (the number of productions), and n (the number of memory retrievals).
While identifying d with the number of digitsin the span is hard to question,
there is room for questioning the other parameter assignments. Certainly, one
could have produced production rule sets that involved different numbers, m,
of productions. Since T; is an estimated parameter in Eqg. (7), the model is
not sensitive to the exact number of rules, only the relative proportion of
them in various conditions. In fact, we tried a fit where Tr was constrained
to zero and got a x? value of 28.72 which is only dightly larger than the
unconstrained x? of 26.95. Thus, the mode! fit is not particularly sensitive to
any assumption about the number of productions. For similar reasons the
model is also not sensitive to the exact value of n, the number of retrievals.
However, here it is critical for the behavior of the model that there be twice
as many retrievals in the case of complex equations as simple, which seems
a reasonabl e assumption. Perhaps, the most substantial structured assumption
was to identify s with the number of symbols in the equation. It seemed
reasonable to us that subjects should have to process each symbol in the
equation, but one might defend a model in which subjects had to process
only the numbers which would mean s = 2 for simple equations and s = 3
for complex equations. We tried fitting this model and it did not fit as well
(x? = 32.80). The reason for this is that the equation solving under these
assumptions about s does not impose the same interference to the digit span.
Therefore, in setting s = 5 for simple equations and s = 7 for complex
equations we are establishing a certain critical trade-off between loads for
the two tasks, i.e., requiring more of the activation to go to the equation
representation and less to the digit span representation. This is not to deny,
however, that some of our assumptions about symbol activation may only be
approximate—for instance, that all symbols receive equal activation.

We also explored what would happen to the goodness of fit if the estimated
parameters Tp, B, b, C, and c took on different values. What we did was to
fix one of these parameters at 50% more or less than their best fitting values
and then to estimate best fitting parameters under this constraint. Table 3
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reports the results of these explorations. As can be seen, the quality of fit did
not suffer much under these settings as compensating values could be esti-
mated for the other parameters. The one exception was that the quality of fit
decreased perceptibly when Tp was set to be 50% higher. The reason why
these fits were so good generally is because B and b can trade off for latency
and C and ¢ can trade off for accuracy.? Larger values of the time scale
parameter B can compensate for larger values of the exponent b and larger
values of the odds scale parameter C can compensate for smaller values of
the exponent c. It was apparent from this exploration that we could have a
four-parameter version of this model in which the exponents are constrained
to be the same (b = ¢) which is also reported in Table 3.

In summary, we think the model fits are sensitive to those aspects that were
expected—the digit span (d), the symbolic complexity of the equation (s), and
the relative number of memory retrievals (n) required for simple versus complex
equations. With respect to the estimated parameters, the scale parametersB and
C are being estimated to produce the average values observed of the latency and
accuracy dependent measures. The exponents b and ¢ are being estimated to
produce the mapping of changes of activation onto changes in performance.
Basicaly, the dataare a function of how much the load produced by the combined
tasks impacts the memory retrieval required in each task.

A Separate Capacity Model

We thought it would be informative to see how a model which assumed
one capacity for digit span and a different capacity for equation solving would
do at fitting these data. Thus, the activation available for doing the eguation
was 5/s and for the memory span 5/d. Such amodel without elaboration does
poorly at fitting the data (x* = 62.80) since it fails to capture the task interac-
tions. However, a reviewer pointed out to us that there was a fairly simple
way to elaborate the model to produce some of the task interactions. There
are two ways that the digit span might impact upon the equation solving
despite the lack of shared capacity. First, in the case of substitutions, two
retrievals from the span are required which will be impacted by the span
activation. Second, it is possible that subjects were covertly rehearsing the
span while solving the equation. (Although our subjects did not report doing
this, research has shown it is rather difficult to assess implicit rehearsal;
Reitman, 1974). More time would be taken away from equation solving for
each digit that had to be rehearsed. Therefore, we estimated a mean time, r,
for each second of equation solving that a subject would give to rehearsing
adigit. Thus, if it took T sto solve the equation without a span and the span
had d digits it would take T*(1 + dr) s to solve the equation.

8 Essentially what the exponent determines is how quickly changes in activation result in
changes in time and accuracy, with larger values producing steeper functions while the scale
parameters determine the average values of these functions.
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Equation solving slowed the time before recall of the digits began and one
might imagine that the activation of the digits decayed over thistime. Assum-
ing exponential decay, if it took T units to solve the equation, the activation
would have decayed by an amount a” where a is the fraction decayed each
second. Thus, the parameter a becomes another parameter of the model.

We fit this seven parameter model to the data and achieved best fitting
estimates of r = 0.06 s, a = 0.95 T, = 0.26, B =084 s, b = 0.11, C =
14.16, and ¢ = 1.83. The x? statistic was 36.14 which is about 10 larger than
the original model which had two fewer degrees of freedom. This model has
a major difficulty in explaining the effect of equation complexity on digit
span. Aswe aready noted with respect to Figs. 2 and 4, conditions with nearly
identical latency in equation solving are showing considerable differences in
digit accuracy depending on the complexity of the equation.

This effort is by no means definitive proof that some separate capacity model
might not be capable of accommodating the data. A different framework might
produce a different conclusion. A problem is that there is not a separate capacity
model which is equivaently explicit in its predictions for this task as our version
of ACT-R and we were l€eft to transform our existing model into a separate
capacity model.

The Predicted Three-Way Interaction

The theory does make predictions about other interactions with memory span
which, while they tended to bein theright direction, were generally not significant
in the data. As Figs. 3c and 4c illustrete, the effect of memory span is predicted
to be gstronger with either subgtitution or two-transformation equations. And
indeed, there is a three-way interaction predicted such that the effect of span
should be strongest in the case of two-transformation with substitution. Both
subgtitution and complexity increase the span effect because subdtitutions or
more complex equations require more retrievals, each of which will be impacted
by the decreased activation with larger memory span. ACT-R predicts a three-
way interaction because equation complexity lowers the source activation for
performing the memory retrievals required by substitution. However, the com-
plexity manipulation was rather weak, adding only two symbols to the equation.
In Experiment 2 we decided to investigate amore substantial variation in equation
complexity. We also used a greater variation in span size.

EXPERIMENT 2

The results from Experiment 1 were encouraging with respect to the ACT-
R theory’s analysis of the effects of memory load. We decided to see how it
would apply to equations like those in the Anderson, Reder, and Ritter (in
preparation) study where we found that the presence of fractions rather than
additional transformations also increased the frequency of algebraic errors.
This proves to be a much more substantial manipulation of the number of
symbols in the equation. So, if our analysis localizing the effect of equation
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TABLE 4
Example Problem Used in Experiment 2
No substitution Substitution
Simple X=7 ax=D>b
3+x=7 a+x=Db
Complex —3l4x = 7/2 —(a/d)x = b/2
34+ x=-72 a4 + x = b2

complexity in number of symbolsis correct, we should see larger interactions
with equation complexity.

Table 4 illustrates the eight types of material that we used. All the problems
werejust one a gebrai ¢ transformation removed from a solution. That transfor-
mation could involve either subtraction from both sides or division of both
sides to isolate the variable. The arguments in the equation could be either
simple positive integers or complex signed fractions. The fractional equations
involve additional symbols for numerator, denominator, fraction bar, and
number signs. Finally, the arguments could be numbers or the letters a and
b. In the case of letters, the subject was to substitute the first two digits from
the digit span for a and b in the equation. This is the condition that requires
subjects to integrate the contents of their digit span into the algebra problem-
solving task. On a given trial, subjects were responsible for remembering
two, four, six, or eight digits. Digit span was crossed with the eight types of
materials.

Method

Materials and procedure. Sixteen instances were created of each of the eight problem types
illustrated in Table 4. Four instances were randomly assigned for each subject to each of the
four lengths of digit string. Digit strings were randomly generated by the computer with the
constraint that in the substitution condition the first two digits had to come from the problem.
Individual problems were presented in a different random order for each subject.

The experiment was administered by an IBM PC. Each digit string appeared on the PC screen
for a time determined by its length (1.5 + 0.5n where n is the number of digits) after which it
was replaced by an algebra problem. The subject signaled by pressing a button when a solution
had been reached and then typed in the answer and the digit string. Immediate feedback was
provided for both the solution and the digit string.

Subjects completed the experiment in two sessions, ranging in length from 40 to 75 min.
Breaks were offered athough most subjects preferred not to take them.

Subjects. The subjects were 20 CMU undergraduates and graduate students who participated
in the experiment either to help satisfy a requirement of the introductory psychology course or

for pay.

Results

The computer program recorded solution times, solution accuracy, and
accuracy of string recall. Each of these dependent variables was subjected to
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a2 x 2 x 4 analysis of variance where the factors were equation complexity,
whether substitution was required, and memory span.

Figure 5a displays the results for percentage memory spans recalled. There
were significant effects of size of memory span (F(3,57) = 35.87, p < .001)
and of eguation complexity (F(1,19) = 46.75, p < .001). The effect of
substitution was not significant in this experiment asin Experiment 1 (F(1,19)
= 0.46). However, there was a substitution by complexity interaction (F(1,19)
= 9.03, p < .01) such that subjects were 2% less accurate when they per-
formed substitution for simple equations and 4% more accurate when they
performed substitution for complex equations. The substitution effect for
complex equationsis significant (t;o = 2.4, p < .01). Thereisalso asignificant
span-by-substitution interaction (F(3,57) = 2.87, p < .05) such that the substi-
tution advantage is mainly for small spans. There were no other significant
interactions. There is again a curvilinear trend in the effect of span: The
decrease from two to six digitsis significant (ts;; = 2.21, p < .01) but signifi-
cantly less than the decrease from six to eight (ts; = 3.53, p < .001). Thus,
with respect to digit recall we need to account for the following facts:

1. There is an advantage of the substitution condition for complex equa-
tions with short spans.

2. There is an effect of equation complexity.

3. Thereis a larger effect of six versus eight digits than two versus six.

Figure 6a displays the results for percentage of equations correctly solved.
There were significant effects of equation complexity (F(1,19) = 47.85, p <
.001) and substitution (F(1,19) = 20.00, p < .001). The effect of memory
span was marginally significant (F(3,57) = 2.56, p < .10). A specific contrast
for alinear trend was significant (ts; = 2.53, p < .01). Since Experiment 1
found an effect of memory span, it seemed likely that there would be one
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in this experiment too. This experiment also found a significant three-way
interaction of complexity and substitution with memory span (F(3,57) = 5.91,
p < .005). The data are definitely noisy but fitting linear functions reveals
no effect of span in the case of simple, no substitution and a 1.24% increase
in error rate per item in the digit span in the case of the complex, substitution.
This is the predicted three-way interaction that failed to be significant in the
first experiment. Thus, with respect to accuracy of equation solving we need
to account for the following facts:

4. Thereis a weak effect of memory span which is largest in the case of
complex equations with substitution.

5. There is an effect of equation complexity.

6. Thereisan effect of substitution but smaller than the effect of equation
complexity.

Figure 7a displays the results for time to solve the equations. There were
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significant effects of equation complexity (F(1,19) = 4169.33, p < .001), of
memory span (F(3,57) = 10.65, p < .001), and of substitution (F(1,14) =
110.27, p < .001). There was aso a significant interaction of memory span
and substitution (F(3,57) = 5.74, p < .01) such that the effect of memory
span is greater in the case of substitution. This replicates the interaction found
by Carlson et a. (1989). The increase in latency with increased memory span
was only marginaly significant in the case of no substitution (ts; = 1.61, p
< .10) but quite significant with substitution (ts; = 3.16, p < .001). The two
experiments both found marginal effects of span in the case of no substitution.
Combining the two experiments, the effect is significant (z = 2.19, p < .01).
Thus, unlike Carlson et a. we conclude that there is an effect of span on
latency in the absence of the substitution requirement. In this experiment all
the other interactions were significant as well—complexity by substitution
(F(1,19) = 38.85, p < .001); complexity by memory span (F(3,57) = 6.55,
p < .001); and complexity by substitution by memory span (F(3,57) = 4.89,
p < .001). This again is the predicted three-way interaction that failed to be
significant in the previous experiment. In particular, the effect of memory
span increases from simple, no substitution (slope = 0.33 s per item) to
simple, substitution (0.70 s per item), or complex, no substitution (0.69 sec
per item) to complex, substitution (1.88 s per item). It is true that the effect
of span tends to be larger in conditions with longer latency; however, this
effect cannot be simply an artifact of larger effects for conditions with larger
base RTs: the complex, no-substitution condition has the same slope as the
simple substitution condition, yet the former has a much higher base RT.
Thus, with respect to solution time, we need to account for the following
effects:

7. The effect of memory span is larger in the case of substitution or in the
case of complex equations.

8. Thereis an effect of complexity.

9. There is an effect of substitution but it is smaller than the effect of
complexity.

The nine effects reported above substantially correspond to the results from
the first experiment. Equation complexity, manipulated by use of fractions,
produced effects similar to the effects of equation complexity, manipulated by
number of transformations. Complexity in this experiment, though, produced
larger effects particularly on the time to solve equations where subjects took
almost five times longer to solve the complex equations.

Finally, amost as an aside, we note that there may be something of a
speed-accuracy trade-off in the condition of solving complex equations with
no substitution. This is the condition that produced the greatest deviations
from monotonicity in Figs. 6 and 7. What is striking about these data is that
they mirror each other—every time there is a dip or rise in accuracy (Fig.
6a), there is a compensating dip or rise in latency (Fig. 7a).
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TABLE 5
Productions Applying in the Solution of an Equation from Experiment 2

Initial state: x + 3/4 = —7/6

Invert-transformation:
IF the goal is to solve an equation of the form ‘‘term opl ¢ = d”’
where ¢ and d are constants
and op2 inverts opl
THEN transform the equation to the form ‘‘term = d op2 ¢’

Resulting state: x = —7/6 — 3/4

Collect-two negatives:
IF the goal is to solve an equation that contains *‘ —a—b'"’
THEN replace ‘* —a—b'" by ‘‘—(a + b)"”

Resulting state: x = —(7/6 + 3/4)

Collect-sum-fraction:
IF the goal is to solve an equation that contains ‘‘a/b + c/d”’
THEN replace “‘a/b + c/d’’ by *‘(ald + bCt) + bd"”

Resulting state: x = —((7C4306) ~ 64)

Collect-product:
IF the godl is to solve an equation that contains ‘‘cfd”’
and p is the product of c and d
THEN replace “‘'c Od"" by ‘“‘p”’

Three applications of the above production produces
Resulting state: x = —((28 + 18) + 24)

Collect-sum:
IF the goal is to solve an equation that contains ‘‘c + d”’
and s is the sum of c and d
THEN replace ‘‘c + d’’ by ‘s’

Resulting state: x = — (46 + 24)

Simplify-fraction
IF the goal is to solve an equation of the form ‘‘x = sign (a +~ b)”’
and a = x(t
and b = xd
THEN encode this as ‘‘x = sign c/d”’

End state: x = —23/12

Type-out:
IF the goal is to solve an equation of the form *‘x = ¢’
and c is a constant
THEN press the button and type ¢
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ACT-R Model

We extended the ACT-R model from Experiment 1 to account for these
data. The same sequence of production rules was used for the simple equations
but a different and more complex set of productions was used for the complex
equations to do the fractional arithmetic. Table 5 illustrates the sequence of
productions that would be required to solve a problem involving addition of
fractions.

This sequence for addition of fractionsin Table 5 involves nine productions
and six memory retrievals of arithmetic facts and one retrieval of an algebraic
fact (invert-transformation) yielding seven memory retrievals. The corre-
sponding sequence for multiplication involves seven productions and five
memory retrievals (ignoring substitutions). In contrast, for smple equations
there are always three productions and two retrievals for both addition and
multiplication asin the past experiment. This contrast implies subjects should
take longer to solve addition problems than multiplication problems for the
complex equations but not for the ssimple equations. Indeed, there was an
interaction between complexity and type of operation (F(1,19) = 38.85, p <
.001). Inthe case of simple equations there was no difference between addition
and multiplication (6.25 versus 6.35 s) while addition took much longer in
the case of complex equations (35.39 versus 23.29 s).

We ran the ACT-R simulation of this task 160 times per condition and the
average data are illustrated in Figs. 5b, 6b, and 7b.° For the sake of brevity,
we will proceed directly to describing the fit of the mathematical model of
the application of the ACT-R theory to this task. In calculating activation
sources, we assumed that each term in the eguation plus each digit in the
memory span was an element. Setting a bound on source activation of 1, as
in Experiment 1, meant that each to-be-retrieved chunk had an activation of
5/(5 + s) in the case of simple equations and 5/(11 + s) in the case of complex
equations where s was the number of digitsin the memory span. Each fraction
term required four symbols to represent the sign, the fraction bar, and the
denominator as well as the numerator. This contrasted with the simple equa-
tions which required only one symbol per integer. Thus, with two fractions
in a complex equation, there were six more symbols than in the simple
equation. The other parameters of the model were the same as those in the
previous experiment and were estimated to be B = 5.82s, C = 3.70, b =
2.72, ¢ = 5.36, and Tp = .48 s. With five estimated parameters and 48 data
points, the x? measure of goodness of fit had 43 degrees of freedom and had

 The simulation code can be found at http://sands.psy.cmu.edu/ by following the paths ** ACT-
R architecture,”” ‘*ACT-R software,’”’ ‘‘models,’”” and ‘‘algebra’’ It can aso be obtained by
ftping to ftp.andrew.cmu.edu and logging in as anonymous, in the directory /pub/act-r/ftp/models/
algebra.
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the value 79.3. This indicates a good fit but there is significant residual
variance not predicted.

The fit of the mathematical model is shown in Figs. 5¢c, 6¢, and 7c. Figure
5c displays the predicted accuracy of string recall. The major discrepancy
involves fitting the effect of the memory span. While the model does produce
accelerated drop off with span size, it does not capture the magnitude of the
acceleration. For instance, the data show a drop of 26% from span 6 to span
8 while the model predicts only a 12% drop. It is also the case that the model
fails to predict the interactions with substitution noted in the results section.
If we ignore the span recall, the overal fit of the model to the equation
solving data is adequate (x%; = 34.33, p > .05). We discuss memory span
performance further in a later section.

Figure 6¢ displaysthe predicted accuracy in equation solution. It reproduces
al three results found in the data—effect of memory span that varies with
complexity and substitution (fact 4), large effect of complexity (fact 5), and
the smaller effect of substitution (fact 6). Figure 7c displays the predicted
latency in equation solution and should be compared with Fig. 7a. It aso
reproduces all three results found in the data. The effect of memory span is
larger in the case of substitution or complexity (fact 7). The model reproduces
this because increased span slowsretrieval of the digitsin the case of substitu-
tion and of the arithmetic facts in the case of fractional complexity. Thereis
an effect of complexity (fact 8) and a smaller effect of substitution (fact 9).

By way of summary, except for the memory span data (Fig. 5) the ACT-
R model seems to be capturing all the significant effects in the data. Even in
the case of the span data, it is capturing much of the effects (the R? between
observed and predicted indicates that the model is predicting 85.4% of the
variance for even these data).”® Again this supports the localization of work-
ing-memory limitations in memory retrieval.

Other Analyses

As in Experiment 1, we also fit the separate capacity model to these data.
This model fit with a comparable x? of 79.7 but it required two additional
parameters. The best fitting values of the parameters werer = 0.03 s, a =
094, T- = 0.00s, B=534s b=098 C= 1011, and c = 2.16. The
reason that this model was relatively more successful in this experiment than
in the previous experiment was that the ssmple and complex equations were
sufficiently separated by time that one could use time-decay of activation to
fit the effect of complexity on span recall. However, the first experiment did
cast doubt on time as the correct explanation for this effect. We obtained
substantial differences between simple and complex equations even when
there was not a time difference.

1 And 93.1% for equation accuracy and 96.8% for equation latency.
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Also as we did in Experiment 1, we performed a sensitivity analysis of
our model. This is reported in the lower half of Table 3. As can be seen, the
model isagain relatively insensitive to the actual parameters estimated, trading
off Tp, b, and B for predicting time and trading off ¢ and C for predicting
accuracy. Again, the model fits reasonably well with the constraint that the
exponents b and ¢ be equal.

The actual values estimated for these parameters are quite different in
the two experiments. However, the trade-offs that exist suggest that we
could constrain these estimates to be the same between the two experiments
with relatively little effect on overall goodness of fit. We were able to fit
the data of both experiments with the same set of parameters except that
we needed to estimate two values of B, the time scale parameter. To see
why this is necessary, consider performance on the simple equations with
spans of 2 through 6 which were the common conditions in both experi-
ments. For these comparable conditionsthereislittle differencein accuracy
between the two experiments: subjects solved 97% of the equations in
Experiment 1 and 96% in Experiment 2; they recalled 95% of the spans
in Experiment 1 and 96% in Experiment 2. On the other hand, there was
a large difference in latency with subjects taking 4.1 s to solve these
equations in Experiment 1 but 5.7 s in Experiment 2. Perhaps because
Experiment 2 required a greater variety of facts to be retrieved, the time
to retrieve any one fact was lower due to the less frequent repetition. We
fit the experiments allowing two time scale parameters B, and B,. The
best fitting parameters were T, = 0.73 s, B, = 1.92 s, B, = 6.0l s, b =
3.16, C = 2.87, and ¢ = 6.06. The x? values for this 6 parameter model
is 121.8 which compares with 106.7 for the full 10 parameter model. This
is arelatively modest increase in the misfit for a substantial reduction in
number of parameters.

Memory Span Performance

It isworth comparing performance of subjects in our experiment with other
reports of percentage recall of strings of various lengths. Our subjects recalled
over 90% of six digit strings when solving simple equations and almost 75%
when solving complex equations. Other reports have subjects recalling only
75% of six digits without a dual task (Crannell & Parrish, 1957). The very
high performance of our subjects may reflect those who choose to select to
be in an experiment that so heavily emphasized mathematics.™

Generally, research has found results that agree with our model’ s predic-
tion of a gradual drop off in percentage correct reproduction for the entire

™ To recruit subjects for this experiment, we advertised on a Carnegie Mellon electronic
bulletin board with the title ‘‘test your math prowess”’ and noted that (unlike many experiments)
one did not have to be a native speaker of English.
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span with span size. For instance, Crannell and Parrish (1957) found a
gradual drop off in accuracy as the digit span increases from 4 (nearly
100%) to 10 (nearly 0%). Unlike frequent popular characterizations, there
does not appear to be a discontinuous ‘‘drop-dead’’ size. Indeed, typical
span recall looks very much like that predicted by our model for the simple
eguations.

Because of their dual-task structure our experiments are not ideal if
one’sreal goal wasto study the nature of the memory span. Aswenoted in
the previous experiment there is the possibility that subjects systematically
allocate more of their capacity to the span and away from equation solving
as the span gets larger. This would produce a flattening of the curve until
high spans. There are other complications in the span task not accounted
for by our model. These include effects of acoustic confusion (minimal
for digits), time-based forgetting, and confusion among serial positions.
The next section will show that serial position confusion was a significant
factor in our experiment. Thus, our model for the span task in no way
captures all of the complexities of what is occurring. The model is just
complicated enough to accommodate the basic interactions between the
processing demands of the two tasks.

We suspect that time-based forgetting was behind the interactions with
substitution that we found in this experiment. Complex equations were taking
on the order of 30 s to solve. Substitution offers an opportunity to rehearse
the part of the span and this may have significant benefit in bridging this
interval. This benefit would be greatest for short spans where substitution
served to rehearse a significant fraction of the span. This may be why subjects
showed a substantial advantage in Fig. 5 when they had to substitute from a
short span for a complex equation.

NATURE OF ERRORS

The model as described so far has treated errors as resulting only from
afailure of retrieval. One might assume that such failures would be just
omissions. However, this assumption does not fit well with the observed
errors. Subjects almost never failed to enter an answer to an equation
and many of their failed recalls in the memory span were of correct
length. Thus, these were errors of commission rather than errors of omis-
sion. Of course, these errors could just reflect guesses on the subjects’
part; however, the significant observation was that subjects’ errors were
systematic.

We developed an automatic analysis program for classifying errors in the
algebra task. The program considered an error to be a substitution error if it
could be produced by substituting a digit incorrectly recaled in position 1
or 2 of the span for a or b in the equation. If the error was not so classifiable,
it was classified as a transformation error if it could be produced by one of
the following eight transformation templates:
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tem+a=b-te'm=b + a
teem —a=b-ote'm=b — a
a*term = b —» term = a*b
term/a = b — term = b/a

term + a = b — term = b/a

term — a = b - term = b*a
a*teem=b—->term=b — a
term/a = b — term = b*a.

If an error could not be classified as one of the above, it was classified as
an arithmetic error if it could be produced by transforming a true addition
facta + b = cor atruemultiplication a*b = cinto afalse fact by incrementing
or decrementing one of thea, b,orcby 1 (eg.,, 3+ 4 =8; 3 x5 = 12).
In our opinion this classification underestimates the frequency of systematic
errors since some appeared to result from multiple slips of this sort. Errors
classified by our scheme occurred much more frequently than chance. We
calculated chance by the following procedure: For each experiment, we took
al the problems for which subjects made errors and randomly permuted
assignment of wrong answers to the problems. Then we applied our categori-
zation program to these permuted wrong answers. In Experiment 1 actual
subject errors could be classified by this scheme 72% of the time compared
to 20% of the permuted errors. In Experiment 2, 64% of the actual errors
were systematic in Experiment 2 compared to a 5% chance level.

The most common transformation errors were

tem+a=b—-teem=b + a
or
tem—a=b—-teem=b — a

This *‘trangposition’” error occurred for 3.0% of the problems in Experiment 1
and 2.0% in Experiment 2. (In both experiments it was applicable on hdf the
trias)) All other transformation errors occurred 0.5% of the time in Experiment
1 and 1.5% of the time in Experiment 2. Arithmetic errors occurred 0.5% of the
timein Experiment 1 and 4.1% of thetime in Experiment 2. The greater frequency
in Experiment 2 reflects the larger number of opportunities for making arithmetic
errors with fractions. Substitution errors occurred in 0.1% of the problems in
Experiment 1 and 0.9% of the problems in Experiment 2.

Many errors in the digit span task were also errors of commission. Some
of these errors were systematic. Subjects showed a tendency to recall a digit
from a near position in the span producing a generalization effect (Nairne,
1992). We aggregated the data for the digit-span of 6 from Experiments 1
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and 2 to provide arepresentative illustration of these effects. Forty-six percent
of the errors involved omission of the target digits. Such an omission could
occur in a number of ways. Sometimes subjects did not recall the string at
al, sometimes they recalled a fragment of the string, and sometimes they
recalled a full six digit string but did not include the target digit. However,
the other 54% of the time, the digit was recalled in the string but not in the
right position. Figure 8 provides the data to show that these were not wild
guesses and graphs the frequency of misplacements for each target position.
As can be seen, there are positional uncertainty gradients such that subjects
are most likely to misplace the digit in an adjacent position.

Partial Matching and Errors of Commission

The facts that error frequency was impacted by memory load and errors
were misretrievals reinforces the localization of working-memory limitations
in memory retrieval. The question remains of whether we can account for
the exact nature of these errors in ACT-R. In ACT-R the most elegant way
to account for these errors of commission is to allow chunks which are quite
active but only partially match to be retrieved instead of the correct ones.
Partial matching has received support, both empirically and computationally,
in recent work of Reder (Kamas, Reder, & Ayers, in press, 1994; Reder &
Cleeremans, 1990; Reder & Kushit, 1991; Reder & Ritter, 1992; Reder,
Schunn, Nhouyvanisvong, Richards, & Stroffolino, in preparation). There is
a straightforward modification to ACT-R that will enable it to accept partial
matches: Rather than simply rejecting a chunk if it matches we lower its
match score. The initial match score of a chunk i isjust its activation A; but
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thisis decremented for each mismatch. Thus, if achunk 3 + 5 = 8 isretrieved
as an answer to a pattern for 3 + 4 = ?, its match score is its activation
minus a measure of the mismatch between 5 and 4. The degree of mismatch
will be a function of the similarity between 4 and 5.

This scheme can be justified from a rational perspective if we alow that
things do not have to match perfectly to be useful. Certainly, in matching
real world things like faces which can vary in their dimensions and grow
objects like mustaches, this makes sense. Only in highly formal domains like
mathematics do things have to match perfectly to be used.

To get some variability in the responding we then added Gaussian noise
to the activation levels. The odds formula in Eq. (2) was aso based on the
assumption of a Gaussian noise added to activation values which would cause
them to sometimes fall below a threshold activation. In the current version,
the Gaussian noise will occasionally cause the activation of the correct chunk
to fall below the activation value of a distractor.

Let us first see how this mechanism can account for the pattern of arithmetic
errors. When retrieving the sum of 2 and 5, both numbers are made sources and
contribute activation to the correct fact: 2 + 5 = 7. Many other facts also receive
activation from these and other sources and might gather more activation because
of a Gaussian noise in the activation values. To favor close matches, similarity
values between numbers are set to reflect their absolute difference’ Therefore,
the pendty for 2 + 6 = 8 matching 2 + 5 will be less than the penalty for 2
+ 1 = 3, because 6 is more similar to 5 than 1 is. All things being equal, the
former will be more active than the latter and will have a better chance of being
retrieved (if a misretrieva occurs), which explains the predominance of close
matches. Thiswill produce the pattern of arithmetic errors documented by Siegler
(1988) and which we saw in our algebraic mistakes.

To see how this mechanism accounts for algebraic transformation errors,
recall that transformations are all produced by the production invert-transfor-
mation. Faced with the equation

Xx—3=4
it should retrieve the fact that ** + inverts —’ and transform this to
X=4+3
However, if it retrieved ** — inverts 4+’ the following transposition error will
be produced:
X=4-3
Since the memory chunk for *‘ — inverts +’’ receives a mismatch penalty, it

should be retrieved only infrequently, when a large random fluctuation in
activation levels occurs which favors it.

2 Specifically, the similarity between i and j is exp(—|i — j|).
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TABLE 6
Distribution of Errors (ACT-R Predictions in Parentheses)

Algebra task Experiment 1 Experiment 2
Transformation errors 61% (55%) 26% (23%)
Arithmetic errors 8% (7%) 31% (24%)
Substitution errors 2% (2%) 6% (6%)
Unclassified errors 29% (37%) 36% (47%)

ACT-R predicts the interaction observed between such errors and memory
load. The strength of association, S;, between **—'" and the erroneous *‘ —
inverts +'’ is not as strong as that between ** —'" and ** + inverts —'’ because
“*—"" is not as predictive of the erroneous chunk. Therefore, the erroneous
chunk receives less activation than the target chunk. The amount of activation
either receives is determined by the product of the source activation, W, and
strength, S; (see Eq. (1)). Thus, theinitial difference between the two (before
the mismatch penalty) is greater in the case of smaller memory load.

Table 6 compares the distribution of error classifications in the two experi-
ments and the results of an ACT-R simulation augmented to allow errors of
commission. The correspondence is quite good. The position effect in the
digit-span recall task can be explained in the same way asthe arithmetic errors:
since each memory is accessed by its positional index, small differences in
position will carry a lesser penalty than large ones.

Note that the error mechanism producing the predictions of the mathemati-
cal model in Figs. 2c, 3c, 4c, 5¢, 6¢, and 7c is one that assumes error of
omission resulting from failure to retrieve in a fixed interval. This is similar
to but different from the current proposa where an incorrect production
instantiation beats out a correct instantiation. The simulation with errors of
commission produces patterns of data similar to those in Figs. 2—7. However,
we have yet to find a mathematical form of it to fit to the data.

GENERAL DISCUSSION

These experiments have looked at the interaction between the complexity
of an algebra task and the size of a concurrent memory span. Basically,
manipulations of the complexity of either task impacted on the performance
of the other. Thus, we have created a situation where performance is limited
by what would traditionally be considered working-memory capacity. There
were several pieces of evidence consistent with localizing the impact of these
capacity limitations in memory retrieval. First, the impact of span size on the
algebraic task was greater when substitutions were required, consistent with
the results of Carlson et al. (1989). Second, there were three-way interactions
among span size, substitution, and complexity in the algebra task which were
predicted by this view. Third, the errors were primarily errors of misretrieval.
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Finally, we achieved good fits to the data within the ACT-R model which
localizes the effect in memory retrieval.

In ACT-R the limitation isin source activation (Eq. (4)). Thisin turn limits
the ability to get declarative chunks sufficiently active so that they can be
retrieved or reliably discriminated from partially matching chunks. If we take
working memory to mean the amount of declarative memory that ACT-R
can reliably and quickly access, then limitations on source activation imply
limitations on working memory. The ACT-R concept of working memory is
rather nontraditional for production systems where working memory is nor-
mally thought of as some fixed set of information. The graded character
of the effects in these experiments is clearly consistent with the ACT-R
conception.

In addition to fitting the performance measures of error rate and latency,
an extension of the ACT-R model was shown capable of accounting for the
gualitative pattern of errors. Most of these errors were errors of commission
and could be explained by incorrect retrieval of memories which were similar
to the target memory and which were active in the experimental context.

It is interesting to try to characterize the implications of this research for
Baddeley’s (1986) model of working memory. One might try to map the
separate-capacity model described earlier onto this theory, identifying the
digit capacity with the phonological loop and the equation capacity with the
visuo-spatial sketchpad. If one accepts this mapping, the results would not
be very favorable for Baddeley’ s model because the separate capacity model’s
fit to our two experiments does less well with more parameters. Moreover,
we view the assumptions required to get even this good a fit as somewhat
strained. Subjects do not report the use of covert rehearsal while equation
solving which was how the model produced an impact of digit span on
eguation time.

However, we do not think that these identifications are the appropriate ones
for the Baddeley model. It seems more likely that all of our tasks were tapping
what Baddeley calls the central executive. The delays were too long to be
mediated by a 2-s phonological loop even with occasiona covert rehearsal.
Certainly, algebra equation solving does not seem like an activity that can
be supported by a peripheral dave system. So perhaps the best view of these
data is that they are not relevant to Baddeley’s theories of the phonological
loop and spatio-visual sketchpad which have received the most attention.
Rather, they are really concerned with the central executive where the notion
of a single limited resource might be reasonable. The research in our paper
shows that the activation limitations have an important impact on long-term
retrieval. Just and Carpenter (1992) have similarly emphasized activation as
the capacity limitation corresponding to Baddeley’s central executive.*®

3 Interestingly, Miyake, Shah, Carpenter, and Just (1994) argue for a separate spatial and
verbal working memory.
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Finally, we want to comment on the research strategy reflected in this
paper, which is to develop a simulation of a phenomenon, determine that it
reproduces the basic qualitative character of the data, find a mathematical
model of that simulation, and then optimize the fit of that model to the data
to determine just how well the theory accounts for the results. We fed this
reflects a powerful research strategy which is emerging in anumber of efforts
to test and develop large scale theories (e.g., McClelland, 1991). There is a
real need to develop an integrated theory which is capable of accounting for
a broad range of phenomena (Newell, 1991). Such theories offer the only
real hope of transferring results from the laboratory to the real world where
phenomena are not packaged into neat laboratory categories. On the other
hand, there is a need to have such theories address the details of empirical
phenomena that are the traditional tests of theoretical accuracy. By starting
with a general-purpose simulation such as ACT-R, we achieve the desired
broad generality. By producing a simulation for a specific task we achieve a
detailed mapping of the theory to the experimental situation. By developing
amathematical model, we facilitate calculation of goodness of fit and identify
the essential aspects of the large theory responsible for accounting for the
phenomena in the experiment at hand.
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