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Abstract

Over the decades, computational models of human cognition have advanced from
programs that produce output similar to that of human problem solvers to systems
that mimic both the products and processes of human performance. In this paper,
we describe a model that achieves the next step in this progression: predicting
individual participants’ performance across multiple tasks after estimating a
single individual difference parameter. We demonstrate this capability in the
context of a model of working memory, where the individual difference parameter
for each participant represents working memory capacity.  Specifically, our model
is able to make zero-parameter predictions of individual participants’ performance
on a second task after separately fitting performance on a preliminary task. We
argue that this level of predictive ability offers an important test of the theory
underlying our model.
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A Source Activation Theory of Working Memory:
Cross-task Prediction of Performance in ACT-R

Over the decades, computational models of human cognition have advanced from programs that
could produce output similar to that of human problem solvers to systems that mimic both the
products and processes of human performance.  Indeed, the fidelity of recent computational
models has increased to the point where models can reproduce multiple dependent measures
collected across several variations of a task. These models have matched both aggregate
behaviors and individual differences within a given task.  In this paper, we describe a model that
achieves the next step in this progression: predicting individual participants’ performance across
multiple tasks after estimating a single individual difference parameter. We demonstrate this
capability in the context of a model of working memory, where the individual difference
parameter for each participant represents working memory capacity.  Specifically, our model is
able to make zero-parameter predictions of individual participants’ performance on a second task
after separately fitting performance on a preliminary task.  This level of predictive ability has not
been attained by other computational models, and yet we argue that it offers an important test of
the theory underlying any computational model.

The paper is organized as follows. In the next section, we present a brief historical sketch
of how computational models have attained better and better fits to observed data while
accounting for more and more features of the data.  We then provide an overview of important
working memory phenomena, highlighting three requirements that a model of working memory
must exhibit in order to fully capture these phenomena.  One of these requirements involves
representing an individual’s working memory capacity in such a way that the representation
captures the similarities in that individual’s performance across multiple tasks. Next, we present
the details of our working memory model. Finally, we describe several experiments we
conducted to test our model, and we show that the model meets the most stringent of our stated
requirements.

Progress in Computational Modeling
Since the early demonstrations that computers could simulate intelligent behavior, there has been
enormous progress in the computational modeling of human cognition. Some of the earliest work
in this area, completed in the 1960’s, is presented in the volume Computers and Thought , edited
by Feigenbaum and Feldman (1963). There, papers like that by Newell, Shaw and Simon (1963)
describe programs that could play chess and solve logic and other problems—tasks previously
considered to be only in the human domain. Other famous examples from that era include
demonstrations that the output of computers could be confused with human performance.  For
example, ELIZA (Weizenbaum, 1966) was an “artificial intelligence” program that simulated
therapists interacting with patients.  Some Rogerian therapists were fooled into believing that the
simulations were actually other therapists responding at the other end of a terminal.

The challenges for models of human intelligence became stiffer in the 1970’s when
researchers began adding the requirement that these programs not only produce output similar to
humans’ problem-solving products but also reproduce patterns of behavior consistent with the
processes believed to enable human performance.  For example, the general problem solver
(GPS) was a computer program designed to solve problems in a manner consistent with a
problem-solving heuristic used by humans (Newell & Simon, 1972). This model and others from
its era were tested against human data by evaluating the degree of match between the
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intermediate steps taken by the model and those taken by humans tackling the same problems.
Thus, the mode of comparison was generally qualitative (e.g., Do the model’s steps indicate the
same processes used by humans?) rather than quantitative.

Following the successes of these models, researchers in the 1980’s aimed to attain even
more stringent fits to the observed data by getting their models to match quantitative measures
such as accuracy or latency data. For example, Seidenberg and McClelland (1989) implemented
their theory of visual word recognition in the form of a connectionist model and showed that the
model provided a good fit to the data from several experiments.  In this case, the model’s fit was
assessed by correlating a quantitative measure collected in the experiments (reaction time) to a
corresponding but different quantitative measure produced by the model (squared error). A
similar level of model fit was achieved by Anderson’s (1983) activation-based model of the fan
effect.  Here, the model was able to fit participants’ response latencies for various kinds of
memory-verification stimuli.  In these two cases as in others from the 1980’s, the processing
speed of computers available enabled modelers to automatically search the space of free
parameters and present the results from the best fitting parameterization of their model.  Hence,
models of this era were generally evaluated based on their ability to fit a relatively large number
of data points with a fixed number of freely varying parameters; when such models were fitted
across experiments, independent sets of parameters were typically used.

The move toward correlating models’ quantitative predictions with corresponding data
made it much easier to rigorously evaluate the fit of a given model as well as to compare the fit
of different models (e.g., by correlation or goodness-of-fit statistics).  However, with numerous
free parameters and only univariate data to be fit, multiple models implementing very different
theories could potentially produce fits of equivalent quality.  Hence, the race was on to
demonstrate a model’s quality of fit in additional ways. In the 1990’s, researchers applied extra
requirements for their models to meet.  For instance, models in this era were often evaluated
based on the quantitative fit of multiple dependent measures. An example of this is given in
Anderson, Bothell, Lebiere, and Matessa (1998), where a model of list memory was fit to
participants’ latency and accuracy data simultaneously across several conditions that varied the
list size and recall order.

In other cases, models were extended so they could go beyond fitting aggregate data;
these models were designed to be able to vary their performance (e.g., by continuously varying
one or more parameters) in order to capture variation across a population. Many of these
modeling efforts achieved good fits to data from various subgroups of participants in the
population (e.g., Just & Carpenter, 1992; Byrne, 1998).  More rare was the attempt to capture
particular individual participants’ behavior (e.g., Nosofsky & Palmeri, 1997; Ratcliff, Van Zandt,
& McKoon, 1999).  For example, Nosofsky and Palmeri (1997) collected data from three
participants performing a color classification task and then showed that their model of the task
was flexible enough to match each individual’s pattern of performance by allowing six model
parameters to vary.

Note that in each of the above cases from the 1990’s, researchers were improving their
models in ways suggested (and tested) by the data. Multiple measures, variability in a dataset,
and subgroups’ or individuals’ patterns of performance are all aspects of the data that can be
used to guide model development.  And yet, no model is perfect; it is only an approximation of
the true processes under study.  So, the more computational models being advanced, the more
these extra data-based constraints helped by limiting the space of candidate models to those best
able to simulate the desired processes in as many ways as possible.
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Yet another extension to computational modeling that was advanced in the 1990’s
involved developing models within cognitive architectures (e.g., ACT-R: Anderson & Lebiere,
1998; EPIC: Meyer & Kieras, 1997a, 1997b; Soar: Newell, 1990).  A cognitive architecture is a
computational system that specifies a particular way of representing information and a fixed set
of cognitive mechanisms for processing that information. Modeling within a cognitive
architecture provides a different source of constraint—one that does not come from the data to be
fit (as in the extensions presented above) but rather one that is imposed “top down” by the theory
of the given cognitive architecture. Specifically, any model built within a cognitive architecture
must use the same representations and mechanisms regardless of the task being modeled, just as
the brain presumably employs a common set of information-processing mechanisms across a
variety of tasks. What differs across various models built within a given architecture is the task-
specific knowledge with which each task model is endowed.  In sum, the goal of this
“architectural” modeling approach was to develop models of a variety of different tasks under a
single architecture and to show that, while using the same set of information-processing
mechanisms, these models all fit their respective datasets. This goal has been achieved to varying
degrees by researchers working within the cognitive architectures mentioned above.

Although the above modeling accomplishments show enormous progress, there are still
areas where the full potential of computational modeling has not yet been achieved. One such
area involves the modeling of individual differences in cognitive processing, i.e., processing
capabilities that differ among individuals but that are relatively constant within individuals as
they work on a variety of tasks. Just as the human brain allows for the performance of many
tasks using a set of mechanisms that are presumably shared by many individuals, it also allows
for considerable variation among individuals in the quality and speed of task performance.
Computational models need to be able account for both the commonalty among individuals’
processing (e.g., a common set of mechanisms for learning and performance, regardless of the
task or the person) as well as the variation in individuals’ processing (e.g., differences in the
fundamental processing capacities with which these shared mechanisms are run). For example,
cognitive models have not yet been developed that predict the performance of individual
participants across tasks and along multiple dimensions, even though their performance is related
across those tasks. Ideally, such a modeling effort would be able to predict individuals’
performance in a new task with no new free parameters,  presumably after deriving an estimate
of each individual’s processing parameter from previous modeling of other tasks. We take this as
a challenging but feasible goal that may help bring computational models to the next step in their
progression.

Computational Modeling and Working Memory
Working memory is one area of cognitive processing where systematic individual differences
have been found experimentally and where computational models have already made some
progress toward the above goal of predicting individual performance. Working memory is the set
of mechanisms used in human cognition for retrieving and maintaining information during
processing (Baddeley, 1986, 1990). For example, to compute the proper amount to tip in a
restaurant, working memory resources are required to hold the original bill amount and any
intermediate results in memory while working toward the final answer. Because working
memory resources are limited, performance suffers when the working memory demands of a task
exceed the available supply. Indeed, prior research has demonstrated that as the working memory
demands of a task increase, people’s performance on the task decreases (e.g., Anderson &
Jeffries, 1985; Anderson, Reder, & Lebiere, 1996; Baddeley, 1986; Burgess & Hitch, 1992;



5

Engle, 1994; Just & Carpenter, 1992; Navon & Gopher, 1979; Salthouse, 1992). Salthouse, for
instance, had participants perform four different tasks at three levels of complexity. He found
that as task complexity increased, performance decreased. Salthouse also found individual
differences in performance such that the decrease in performance with increased task complexity
was greater for older adults. Other researchers have also found that people differ in their
sensitivity to the working memory demands of a task, regardless of their age (e.g., Cantor &
Engle, 1993; Carpenter, Just, & Shell, 1990; Conway & Engle, 1994; Engle, 1994; Just &
Carpenter, 1992). Moreover, these individual differences in working memory capacity appear to
explain a substantial amount of the commonalty in an individual’s performance across tasks.
Engle (1994), for example, reported that an individual’s working memory capacity (as measured
by performance on a specially designed task) correlates well with performance on a variety of
other tasks including reading, following directions, learning vocabulary and spelling, notetaking,
and writing. Engle interprets this correlation as evidence that all of these tasks require use of a
common resource, the individual’s working memory, which influences performance. In sum,
working memory capacity, it seems, is a resource that limits performance on highly demanding
tasks, differs in amount across individuals, and helps predict individuals’ performance across
different tasks. Any complete model of working memory must produce all three of these
phenomena.

Several approaches have been taken to model working memory. Some theorists have
used statistical methods (e.g., factor analysis) to look for clusters of abilities that tap working
memory (e.g., Carrol, 1993; Kyllonen, 1995) while others have offered qualitative descriptions
of proposed working memory mechanisms (e.g., Baddeley, 1986; Salthouse, 1996). Still others
have offered computational models of working memory performance. For example, Burgess and
Hitch (1992) developed a connectionist model of Baddeley’s (1986, 1990) articulatory loop, a
component of working memory hypothesized to hold verbal stimuli for a limited amount of time.
In their model, item-item and item-context associations are learned via connection weights which
propagate activation between memory items and enable sequential rehearsal through a list.
Because these weights decay with time, more demanding tasks (e.g., those requiring the
maintenance/rehearsal of longer lists or lists of longer words) tend to propagate less activation to
the memory items, leading to more errors. Another connectionist model of working memory
takes a different approach: O'Reilly, Braver, & Cohen (1999) have proposed a biologically
inspired model in which working memory functions are distributed across several brain systems.
In particular, their model relies on the interaction between a prefrontal cortex system, which
maintains information about the current context by recurrently activating the relevant items, and
a hippocampal system, which rapidly learns arbitrary associations (e.g., to represent stimulus
ensembles). Both systems’ excitatory activation processes, however, are countered by inhibition
and interference processes such that only a limited number of items can be simultaneously
maintained. This limitation leads to decreased performance in complex tasks. Both of these
models have been fit to aggregate data. That is, they have captured one of the main working
memory results, namely, that performance suffers as the working memory demands of a task
increase.

Another approach to working memory is taken by EPIC, a production-system architecture
(Kieras, Meyer, Mueller, & seymour, 1999; Meyer & Kieras, 1997a, 1997b). Here, an
articulatory loop is implemented via the combined performance of an auditory store, a vocal
motor processor, a production-rule interpreter, and various other information stores. Performance
of the model is governed by production rules which implement strategies for rehearsal and recall
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and which, in turn, draw on the capabilities of the other components. Working memory
limitations stem from the all-or-none decay of items from the auditory store (with time until
decay being a stochastic function of the similarity among items) and from the articulation rate
attributed to the vocal motor processor. As the vocal motor processor takes the prescribed
amount of time to rehearse a given item (re-adding that item to the auditory store), other items
have a chance to decay (disappearing from the auditory store), thereby producing subsequent
recall errors. This model also accounts for the performance decrease with increased working
memory demands, and it does this within a cognitive architecture.

These models have accounted for a wide range of working memory effects at the group
level (i.e., aggregated across participants). As noted previously, however, individuals differ in
their working memory capacity. These capacity differences can result in very different patterns
of performance by individual. A complete theory of working memory should, therefore, be able
to capture not only aggregate working memory effects but also the differential sensitivities of
individual participants to working memory demands, i.e., the second working memory result
mentioned above. Just and Carpenter (1992) developed a model called 3CAPS that was able to
capture the different patterns of performance in subgroups of participants with low, medium, or
high working memory capacity.  Their model accounted for these differences by assuming
different caps on the total activation propagating through the system,  Thus, the 3CAPS model
accounted for individual differences in working memory capacity at the sub-group level.

An ACT-R Model of Working Memory
In this section, we trace the development of a computational model of working memory built
within the ACT-R architecture. As the current implementation of ACT-R stands (cf. Anderson &
Lebiere, 1998), it already offers an account for the working memory result that participants’
aggregate performance degrades as tasks become more demanding. To account for the other two
critical working memory phenomena, which both deal with individual differences in working
memory, we extend the theory.  Specifically, we posit that the continuously valued parameter W
represents an individual’s working memory capacity. In our extended model, then, the value of
W can be varied to produce the different patterns of performance that are observed for different
individuals, i.e., the second working memory result mentioned above. More importantly,
however, we show that by using the model parameter W as a measure of an individual’s working
memory capacity, we can predict that individual’s performance on a new task without otherwise
tailoring the model. This is an example of the third working memory result from above that
states there is a common working memory resource influencing an individual’s performance
across tasks. Thus, our model satisfies all three requirements of a good working memory model
while, at the same time, fitting multiple dependent measures at a fine-grained level of detail.

ACT-R Fundamentals
ACT-R (Anderson & Lebiere, 1998) is a cognitive architecture and, as such, it provides the basic
mechanisms for how computational models built within it control cognitive processing and store
and retrieve information. ACT-R models of individual tasks specify the declarative and
procedural knowledge required to perform a specific task, but that knowledge is always
processed, stored, and retrieved according to the fixed set of ACT-R mechanisms. Moreover,
declarative and procedural knowledge are each represented in a particular way, determined by
the ACT-R architecture. Declarative knowledge is represented as schema-like structures called
chunks. A single chunk consists of a node of a particular type and some number of slots that
encode the chunk’s contents. Figure 1 represents the memory for the fact that seven is the item in
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the first position of the current trial.
Retrieval of such a chunk is based on its
total activation level. This level is
determined by the chunk’s base-level
activation (derived from its history of use)
and the amount of source activation it
receives from elements currently in the
focus of attention (representing contextual
effects). Chunk activation is given by:

      Ai = Bi +
W

nj =1

n

∑ Sji

Equation 1
where Ai is the total activation of chunk I, Bi is the base level activation of chunk I, W is the
amount of available source activation (to be discussed in more detail below), and n is the number
of elements in the focus of attention. Each Sji is the strength of association between chunk j in the
focus of attention and chunk i in declarative memory. In Figure 1, S7,i represents the link between
the concept 7 and the memory of seven in the first position of the current trial. As this link
becomes stronger, more source activation will be spread to the memory chunk should seven
become the focus of attention.  This in turn makes it easier to access and use that memory chunk
in processing. In general, a chunk will be more active the more often it is used (increasing Bi)
and the more strongly related it is to items in the focus of attention (higher Sji’s).

The exact value of a chunk’s total activation (AI) is important because it determines the
probability of the chunk being retrieved, as given by the following:

               Probability of retrieving chunk i =
1

1 + e-(A i -τ )/s Equation 2

where Ai is, as before, the total activation of chunk i, τ is the retrieval threshold, and s is a
measure of the noise level affecting chunk activations.

If a chunk’s total activation (plus added noise) is above the threshold τ, the chunk is
retrieved and its latency of retrieval is given by the following:

               Latency to retrieve chunk i = Fe -fA Equation 3
where F and f are constants mapping Ai onto latency.  If the total activation falls below
threshold, the model commits an error of omission. Errors of commission are produced by a
partial matching mechanism that is described in more detail in Anderson and Lebiere (1998).

In recent work, Anderson, Reder, and Lebiere (1996) suggested a computational
approach to working memory within ACT-R that builds on the work of Just and Carpenter
(1992). While Just and Carpenter proposed that the total activation within the cognitive system is
limited, Anderson et al. (1996) suggested that working memory limits occur because source
activation (the parameter W in Equation 1) is limited (see Cantor & Engle, 1993 for a similar
account). Source activation is a type of attentional activation that is divided equally among the
items in the current focus of attention. It spreads from these items to related chunks that are
necessary for task performance and in this way maintains those task-relevant chunks in an
available state relative to the rest of declarative memory. Because the amount of source
activation is limited to the quantity W and because this quantity is divided among the various
items in the current focus of attention, the more items in the focus, the less source activation each
can spread to its related chunks.  For example, increasing the complexity of a task (which
increases the number of items in the focus of attention) implies that each item in the focus of

scurrent,i

sfirst,i

trial

position

current

first

Memory i

item

seven
s7,i

Figure 1. Graphic representation of a chunk
encoding the fact that seven was the first item in
the current list.
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attention has a smaller share of source activation to spread to task-relevant chunks. Similarly,
when a person is dividing attention between two concurrent tasks (which places more items in
the focus of attention than would be for either task alone) there will be less source activation
spreading from each item in the focus to task-relevant chunks. In both cases,  the task-relevant
chunks are less activated than they would be in a simple, single task, and so performance suffers
as a result.

Anderson et al. (1996) supported this conceptualization of working memory by
demonstrating that an ACT-R model with a limit on source activation provided a good fit to their
participants’ data. In their study, participants were required to hold a digit span in memory while
solving an equation. Both the size of the span and the complexity of the equations to be solved
were manipulated. Also, half of the equations included extra variables such that participants had
to substitute the first two values from the digit span for these variables before solving. Results
showed that when the equation-solving task was made more complex (i.e., more operations were
required to solve), performance on both tasks decreased.  When the span task was made more
complex (i.e., more digits to hold in memory), performance on both tasks also decreased
whenever the equation required substitution from the digit span.

Extending the ACT-R Theory
Like Anderson et al. (1996), we assume a fixed limit on W from Equation 1. This assumption
accounts for the first of the three characteristics of working memory outlined above, namely, that
working memory resources, represented by W, are inherently limited. Note that a limit on W will
affect the performance of any ACT-R model where task performance relies on retrieval of
declarative chunks.  This is because declarative chunks are influenced by the amount of source
activation (W) spreading from the current focus of attention (Equation 1).

To account for the second working memory phenomenon— that these resources differ in
amount across individuals— we extend the idea of a fixed “cap” on source activation, W.
Specifically, we assume that the limit on W is not the same for each individual, i.e., that different
participants will have different W values. Moreover, we expect that the distribution of these W
values across a population follows a normal distribution centered at 1.0. In this way, different
versions of an ACT-R model can be endowed with different amounts of source activation to
represent different individuals. The higher the value of W, the higher task-relevant chunks’ total
activations will be relative to the rest of declarative memory (Equation 1). These activations in
turn will impact the probability and speed of successful retrieval of the task-relevant chunks
(Equations 2 and 3). Hence, our working memory model predicts that an individual with a larger
value of W will be able to retrieve task-relevant information more accurately and more quickly
than will an individual with a smaller value of W. Moreover, a high value of W (making W/n
large) will only lead to degraded performance (let activation A fall below threshold τ) when the
task is sufficiently complex (n is sufficiently large), whereas a low value of W will lead to
degraded performance at much lower levels of complexity.1 This allows the model to produce
differential sensitivity to the working memory demands of a task.

Finally, to account for the third working memory characteristic, namely that an
individual’s performance profiles across different tasks will be related because of his or her
particular level of working memory resources, we take total source activation (W) to be
relatively constant within each individual—even across different tasks. Because source
activation spreads the same way in any ACT-R model, our view of working memory can produce

                                                
1 This is assuming all else equal (e.g., τ, s, Sij, Bi, etc.)
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the above effects (e.g., differential sensitivity to working memory demands) across tasks. It is, of
course, possible that an individual’s W will vary with variations in the individual’s level of
interest, degree of practice, or with fatigue, but we take these variations to be smaller than the
variability among individuals.

Testing the Model
In this and the next section, we document how we have tested the above model of working
memory in the context of two particular working memory-dependent tasks. Before doing so,
however, we carefully selected those tasks and then specified the knowledge required for
performing each. This task-specific knowledge was represented in terms of ACT-R’s declarative
chunks and production rules. Then, ACT-R’s general mechanisms—including our extension
regarding how to represent individual differences in working memory—was applied to each task
model in order to generate specific predictions for how participants would perform that task. We
then compared these predictions with the data from our participants, both at the aggregate and
individual level.

Challenges to Modeling Working Memory
Selecting a task that will enable estimation of an individual’s working memory capacity is
challenging because performance on a given task can be affected by a number of other factors,
including prior knowledge of relevant procedures and possession of related facts. A suitable
working memory task should limit the inter-participant variability on these other factors. In
traditional memory span tasks, participants are presented a sequence of stimuli (i.e., digits,
letters, words) one at a time and then are required to repeat the sequence. Successive sequences
are lengthened until the participant can no longer repeat them accurately. Working memory
capacity is taken as the longest sequence that a participant can accurately report. Such tasks,
however, do not allow for very accurate measures of working memory capacity because the use
of compensatory strategies (i.e., chunking, mnemonics) has been shown to differ among
participants, and such differences in strategies can seriously contaminate measures of working
memory capacity derived from such tasks (Turner & Engle, 1989). A further concern is the
influence of task-relevant factual knowledge on performance of such tasks. To cite an extreme
case, Chase and Ericsson (1982) described a participant with a digit span of more than 80 digits
(compared to a normal span of approximately 7 items). This feat was accomplished in part
because the participant, a runner, was able after extensive practice to recode the digits into
groups based on personally meaningful running times. Thus, his super-high memory span has
been mainly attributed to variation in knowledge and experience rather than to variation in
working memory resources alone. In sum, to obtain valid measures of working memory capacity
it is critical that we find tasks that can be completed in only one way and are equally unfamiliar
to all the participants.

One way to deal with the challenge of minimizing differences in compensatory strategies
and prior knowledge is the use of modified span tasks in which participants perform some other
activity concurrently with the test of memory span (e.g., Daneman & Carpenter, 1980; Turner &
Engle, 1989; Yuill, Oakhill, & Parkin, 1989). Modified span tasks put a greater continuous load
on working memory and tend to preclude participants from inventing and using different
strategies that could obscure differences in working memory capacity. Lovett, Reder, and
Lebiere (1999) developed and refined a modified digit span (MODS) task that is a variant of one
developed by Oakhill and her colleagues (e.g., Yuill, Oakhill & Parkin, 1989).
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In the MODS task, each trial consists of a
sequence of strings, presented one character at a time
on the computer screen. Each string contains a variable
number of letters and ends in a digit (see Figure 2).
Participants read each character aloud as it appears,
and they must maintain the string-final digits in
memory. Trials vary systematically in the number of
strings (i.e., digits to be recalled), called the set size,
from three to six.  At the end of each trial, a recall
prompt appears, indicating that the participants should
enter the digits from that trial in the exact order they
appeared.  Participants’ performance then is evaluated
according to their accuracy in recall.

The MODS task fulfills both of our criteria for
a suitable working memory task. First, the characters

in each string are presented at a rapid pace (two characters per second), so the requirement to
read these characters aloud as they appear essentially prevents participants from engaging in
various strategies that might differ among participants. The requirement that participants respond
verbally also acts as a type of articulatory suppression, which prevents rehearsal within each
string (Baddeley, 1986). Second, we can assume that all of our participants are equally familiar
with letters and numbers and that the rapid pace of the task prevents recoding that would make
use of idiosyncratic chunking (e.g., recoding the digits as local telephone exchanges). As a result,
this task is expected to yield relatively pure estimates of working memory capacity.

Empirical Support for Our Model—Task #1
Lovett, Reder, and Lebiere (1999) developed an ACT-R task model of the MODS task that
contains the facts and procedures required for performance.  For example, Figure 1 depicts our
representation for a single memory element.  The required procedural knowledge includes the
various skills involved in this task, e.g., reading letters and digits aloud, storing the current digit
as a chunk, and recalling stored chunks in order according to their positions (See Lovett et al.,
1999, for more details). This model was then run under ACT-R’s general mechanisms, including

the new working memory
model described earlier.

Figure 3a shows, for
each set size, the average
proportion of trials recalled
correctly by the 20
participants who performed
the task.2 To generate an
initial set of model
predictions, Lovett et al. ran
20 simulations to correspond
to these 20 participants,
without optimizing the

                                                
2 The Lovett et al. study used a finer breakdown of conditions by crossing two other factors with set size. Although
our model captured the variation across the additional conditions, we present the collapsed fits here for simplicity.
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parameters to fit the data.  In particular, each simulation had W set at its default value of 1.0.
Figure 3b shows that the model’s performance, averaged over these 20 simulations, follows a
decreasing trend similar to the participants’ aggregate performance data. However, these 20
simulations all had the same W value. To account for the variability in working memory capacity
across participants in the sample, Lovett et al. ran an additional 20 simulations, but this time the
value of W for each run was allowed to vary around the value 1.0. These separate W values for
each simulation were not optimized to the data in any way; they were merely allowed to vary
randomly from run to run. Figure 3c shows that, with these varying W’s, the model’s average
predictions produced an even better fit to the aggregate data. This change in the absolute level of
the predictions occurred because of the nonlinear effects of W on performance: Varying W
across simulation runs changed not only the variability in the model’s performance (notice the
standard error bars in Figure 3c compared to those in 3b) but the absolute level of performance
as well.  Finally, Lovett, et al. were able to fit the data of individual participants  by allowing W
to take on particular values chosen to maximize the fit to individual participants’ performance.
This last result suggests that our model – even when constrained to let only one parameter vary
among participants – is flexible enough to capture individual differences in performance.

In two recent experiments involving the MODS
task, Daily, Lovett, and Reder (1999) have used this same
modeling approach to capture individual differences in
working memory.  Replicating the results of Lovett et al.
(1999), Daily et al. found that running the model with W
varying about the default value of 1.0 produced a good fit
to the aggregate data (Figure 4).  Moreover, by leaving all
parameters fixed except for estimating a best-fitting W
value for each participant, the model was able to capture
the particular pattern of performance exhibited by each
individual. Figure 5 shows individual participant fits for
four participants chosen to represent a range of W values.

Going beyond the Lovett et al. results, Daily et al.
tested their model’s ability to predict each participant’s serial position curves. Without changing
any additional parameters of the model, they generated, for each participant, the model’s
predictions of the proportion of trials in which a given memory position in a given set size would
be recalled correctly. For example, on what proportion of trials of set size three were the first,
second, and third digits recalled correctly? Figure 6 shows these model fits for set size six for the
same four participants as in Figure 5. (Set size 6 is only included here to avoid too many
overlapping curves in each panel.) It is clear from these plots that the model can capture detailed
differences in participant performance of the MODS task using W as the only free parameter.

These results demonstrate that our model is able to capture human performance in a
working memory task at three levels: set size effects averaged across participants, set size effects
within individual participants, and serial position effects within individual participants. Further,
to the best of our knowledge, this is the first demonstration of a computational model predicting
individual participant performance using a single parameter to capture individual differences.

Cross-task Prediction of Performance
Above, we showed that our working memory model’s single individual difference parameter can
capture individual participants’ patterns of performance in the MODS task. In this section, we
demonstrate that, in addition, estimates of W derived from individual participants’ performance
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Figure 4. Model fit to the aggregate

data in Daily et al (1999).
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on the MODS task lead to accurate predictions of their individual performance on a second
working memory task (with all other parameters held constant).  This adds to the support for W
as a measure of working memory capacity and offers the first demonstration of modeling
individual differences with a single free parameter within the first task and no free parameters in
the second task.

Issues in Choosing Task #2
The second task we chose for this cross-task prediction of individuals’ performance is the n-back
task (e.g., Braver et al., 1997; Cohen et al, 1994; Gevins, et al., 1996; Gevins, Smith, McEvoy, &
Yu, 1997). In this task, participants are presented with a long sequence of letters and are required
to indicate whether the current letter matches some previous letter in the sequence. For instance,
in a 1-back condition, the participant is told to respond positively when the current letter matches
the immediately preceding letter in the sequence. In a 2-back condition, the participant is told to
respond positively when the current letter matches the second letter before the current one, etc.
Thus, as the number of items “back” increases, the participant must keep track of a greater
number of items in order to respond accurately. In addition, a 0-back condition is often included
in which participants must indicate whether the current letter matches a fixed letter. The usual
finding in the n-back task is that response latency increases and accuracy decreases as memory
load (i.e., the value of “n”) increases (Braver et al., 1997; Cohen et al, 1994).

For our purposes, we collected data from 20 participants performing both the MODS task
(as described earlier) and four conditions of the n-back task (0-back, 1-back, 2-back, and 3-
back). Our modeling approach then involved fitting individual participants’ data from the MODS
task to estimate individual W values and then using these W values to generate individualized
predictions for these same participants’ nback data.

Note that the n-back task is qualitatively different from the MODS task in several
respects. Unlike the MODS task, which requires recall of the memory set items, the n-back task
involves recognition of previously presented items. Further, successful performance of the n-
back task requires continual updating of a stream of to-be-remembered items whereas the MODS
task involves maintenance of a separate list of to-be-remembered items for each trial. Finally, the

Figure 6. Fits to the serial position data for 4
typical subjects (largest set size only). Filled
symbols are subject data, open symbols are the
model's predictions.
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Figure 5. Model fits for four representative subjects
from Daily et al. (1999). Filled symbols are subject
data, open symbols are the model's predictions.
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memory load involved in the n-back (three items at most) is somewhat smaller than the load in
the MODS task (varies from 3 to 6 items). Given these differences, our working memory
model’s ability to make cross-task predictions based on a single individual difference parameter
suggests that there is something general about the impact of source activation (W) on
performance.

Perhaps more important than the n-back task’s differences from the MODS task is its
status regarding our two criteria for a suitable working memory task. Our original assumption
was that participants would not differ in terms of prior knowledge relevant to this task nor in the
strategy they used for task performance. To test these assumptions, we included a questionnaire
asking participants how they performed the n-back task.  Participants’ responses suggested that
they were equally unfamiliar with the task, i.e., participants did not differ in relevant prior
knowledge. Contrary to our expectations, however, participants indicated using one of two
qualitatively different strategies. In the first (which we named the activation strategy),
participants responded to each letter based on its familiarity: if the item seemed familiar it was
called a match. The second strategy (which we named the update strategy) involved actively
maintaining a list of the prior letters and updating that list after each letter was presented.
Presumably, working memory resources would not be involved in the first strategy as no
maintenance is involved. These resources would, however, be required for the maintenance and
updating of the lists in the second strategy.  Therefore, we chose to model the nback data from
the update group only by developing an ACT-R model to implement the update strategy.

Empirical Results for Task #2
We divided the participants into two groups based on their
self-reported strategy and compared the performance of the
two groups (see Siegler, 1987). Participants’ proportion
correct as a function of memory load is shown in Figure 7.
These data were entered into a 2 (Group) by 4 (Memory
Load) analysis of variance. The effect of group was
marginally significant, F(1, 18) = 2.86, p = .108, MSE =
0.01. The update group tended to be more accurate than the
activation group. The effect of memory load was
significant, F (3, 54) = 142.98, p < .001, MSE = 0.18.
Participants were less accurate as load increased. Finally,
the interaction between group and memory load was also
significant, F (3, 54) = 2.84, p = .046, MSE = 0.003. While
accuracy decreased for both groups as load increased, the decrease was smaller for the update
group than for the activation group. This difference in performance suggests that the differences
in the strategies adopted by the two groups are not trivial and that the strategies have a real affect
on performance.

As mentioned earlier, we expected that working memory resources would not be
involved in the activation strategy but would be in the update strategy. To garner some
preliminary evidence for this distinction before modeling the data, we divided the participants
into two groups according to their stated strategy and, separately for each group, tested the
correlation between W, as estimated from participants’ MODS performance (see below) and
their overall n-back accuracy. Consistent with our expectations, we found that that there was no
relation between W and n-back accuracy in the activation group (r = 0.04, p = .92) and a
marginally significant relation between W and accuracy  in the update group (r = .56, p = .12).
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Figure 7. Accuracy in the n-back task as a function
of the strategy adopted by subjects.
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Although this second result is not highly significant, it is still consistent with our expectations.
This is because our working memory model does not predict a stictly linear relationship between
W and performance; rather, the relationship is nonlinear and likely involves the complexity of
both direct and indirect effects.  Thus, some degree of correlation was sufficient encouragement
to proceed with the modeling of the update group.

One concern, however, was that this selection of the update group might have restricted
or shifted the range of working memory capacities to be modeled. To explore this we compared
the two groups of participants in terms of their estimated W values and found no difference: Both
groups had a mean W of 0.97 with standard deviation 0.09, suggesting that participants’ choice
of strategy does not relate to working memory capacity.

Modeling Results for Task #1
Individual W estimates were computed from
each participant’s MODS data using the same
model and the same parameters as in Daily et al.
and merely estimated a new W value for each
participant in our new sample. Individual
MODS data and model fits from four
representative participants, chosen to represent
a range of W values, are shown in Figure 8. As
in Daily et al. (1999), these fits are quite good.
In addition, we used our MODS model with the
same set of individually estimated W values to
generate predictions of individual participants’
serial position curves. Figure 9 shows the data
and model predictions for the set size 6 serial
position curves for the same participants as in
Figure 8. Given the quality of these individual
participant fits, we moved on to modeling
participants’ nback data.

Aggregate Modeling Results for Task #2
As mentioned above, we developed an ACT-R
task model for the nback task that included all the declarative and procedural knowledge
necessary for performing this task according to the update strategy.  In this model, each stored
letter was represented as a declarative chunk indexed according to how many letters back it was
from the current letter. The procedural knowledge included a set of rules for reading the letters
on the screen, updating the positions of the letters currently being maintained, and testing
whether the current letter matched the memory for the nth-back letter.

Figure 10 shows that this ACT-R task model was able to fit the aggregate nback data
(“update” participants only). For this fit, most of ACT-R’s global parameters were left at their
default values (see Anderson & Lebiere, 1998). Activation noise (the s in Equation 2), which has
no default value in ACT-R, was pre-set at the arbitrary value of 0.04 (the same value used in the
MODS model). Retrieval threshold (τ in Equation 2) was the only parameter estimated to
optimize the fit to the observed data. Its optimal value was 1.80. The fit shown in Figure 10 is
quite good with R2 = .99.

Figure 8. Fits of the MODS model to data from
4 representative subjects. Global ACT-R
parameters for these fits were set in Daily et al.
(1999).
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Predicting Individuals’ Performance in
Task #2 from Modeling Task #1
The real question in fitting these nback
data was whether the W values estimated
for each participant from the MODS task
would predict those participants’
individual performance data on the n-back
task. To answer this question, the W value
for each participant (estimated from
fitting to the MODS task model) was
simply plugged into the n-back model to
obtain predictions of that participant’s n-
back performance. That is, no new
parameters were estimated to fit these
individual participant data.  The model’s
predictions for four representative
participants are presented in Figure 11. As
with the individual participant fits for the
MODS task, these fits are quite good.
Over all participants’ individual nback
data points, the model fit has R2=.79. This
quality of fit is as good as that obtained
from predictions produced by optimizing

an entire new set of W values to fit the individual
nback data themselves. This suggests that the W
values estimated from the MODS data are
capturing the important systematic variation in the
nback data, i.e., that W captures a common
working memory resource. In contrast, if we fit
each participant’s nback data with ACT-R’s default
W of 1.0, the corresponding model fit has a lower
R2 value of .68.

We want to emphasize that these fits were
obtained in a three step process with only one free
parameter per participant in the first step, one
additional global free parameter in the second step,
and zero free parameters in the third step. For the
first step, we used our previously tested model of

the MODS task to fit the MODS data of our new participants.  The model and its global
parameter settings were used unchanged; we only estimated one new W value for each new
participant. For the second step, we fit our new nback model to the aggregate nback data.  Here,
we fixed W at 1.0 and only estimated one free global parameter, the retrieval threshold. For the
third step, we fixed the retrieval threshold at this optimal value and used the nback model with
the MODS-based estimates of each participant’s W value to generate predictions for each
participant’s nback data. Specifically, we fit these individual participant data using only
parameters that were either set at their default values or estimated in a previous step, i.e., zero
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W = 1.0

Subject 623
W = 1.1

Figure 9. Individual serial position fits
(largest set size only) for the same subjects
shown in Figure 8.
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additional parameters.This
procedure constitutes a type of
generalization test (see Busemeyer
& Wang, in press): parameters
estimated from one task are used to
make a priori predictions
concerning new experimental
conditions, providing a test of the
model’s ability to accurately
extrapolate.  In sum, focusing on
the nine participants for whom we
modeled both MODS and nback
performance data, we estimated a
total of 10 parameters to fit a total
of 72 data points across two tasks.

Discussion
We have presented a theory that
conceives of working memory
capacity as a limit on source
activation, a specific kind of
activation used to maintain goal-
relevant information in an available

state. As the demands of a task increase (i.e., the number of items that must be maintained
increases), this limit results in degraded performance. The key element to our theory is the
hypothesis that the amount of source activation varies among individuals and that these
differences account for differences in performance of working memory tasks, provided that prior
knowledge of task-relevant facts and procedures are controlled. We implemented this theory in a
computational model built within the ACT-R cognitive architecture (Anderson & Lebiere, 1998)
and demonstrated that we could capture different patterns of performance exhibited by individual
participants by varying only ACT-R’s source activation parameter, W. Further, we showed that
source activation could be estimated from one task and used to produce accurate zero-parameter
fits to individual participant data from a second, qualitatively different task. The findings
presented here strongly support this new, mechanistic view of working memory and provide
evidence that our general approach is feasible.

Comparison to Other Working Memory Models
Our conceptualization of working memory as source activation is closely related to other
resource-based views of working memory capacity (e.g., Engle, Kane, & Tuholski, in press; Just
& Carpenter, 1992; Shah & Miyake, 1996). There are differences among the various resource-
based views, however. Our theory, for example, postulates a limit on source activation, a specific
kind of dynamically changing activation linked to the current focus of attention. In contrast, Just
and Carpenter model working memory capacity as a limit on the total activation in the system.
Another difference among these resource views involves the degree to which working memory is
considered a general resource (e.g., Engle, 1994; Engle et al., in press) or a set of separate
modality-based or representation-based resources (as in a separate resource for maintaining
spatial versus verbal materials, Baddeley & Logie, 1999; Shah & Miyake, 1996). Our model of
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working memory takes source activation as a general resource whose limits should affect
performance on all sorts of tasks. There are, however, patterns of performance within individuals
that suggest a verbal-spatial distinction.  Working memory models that postulate separate
modality-based resources can account for these results directly.  Instead, we offer a separate,
experience-based explanation based on the idea that different people likely differ in their relative
use of spatial versus verbal information.  According to ACT-R, these differences would be
reflected as different base-level activations (Bi’s in Equation 1). Different base-level activations,
like different values of W, affect performance (via Equations 2 and 3), but the base-level
activation differences can vary systematically across information type whereas an individual’s W
value would have a general effect.  Moreover, the effects of W vary with base-level activations;
when base-level activation is high, the modulating effect of W is small. Conversely, when base-
level activations are low, the effect of W is large. Thus, our view of working memory as a single
resource still admits a variety of modality- and representation-based differences in within-
individual performance.

Other Sources of Individual Differences
It should be emphasized that our arguments regarding individual differences do not claim that
source activation, W, is the only thing that explains differences in people’s performance on
laboratory tasks or on everyday tasks. As noted above, individual differences in prior knowledge
and strategies can significantly influence task performance (Chase & Ericsson, 1982; Ericsson &
Kintsch, 1995). However, we have argued that when those other sources of variability in task
performance are reduced, differences in source activation (our model’s representation of working
memory capacity) can largely explain differences in an individual’s task performance. We have
taken two approaches to reducing the influence of prior knowledge and strategies. The first
approach, used in the MODS task, involves designing the task in such a way as to use knowledge
presumed to be constant across participants and to eliminate the use of all but the most
rudimentary strategy. The second approach, adopted for the n-back task, used participants’ self-
reports to determine which strategy a participant used and to include in our modeling only those
participants who used a common working memory dependent strategy. The fact that W was able
to accurately capture different patterns of performance in both of these tasks provides converging
evidence that we were able to reduce other sources of variation, thereby highlighting the effects
of individual differences in working memory capacity.

Conclusions
In describing working memory phenomena, we identified three important characteristics that any
computational model of working memory must be able to produce: (i) working memory
resources limit performance on highly demanding tasks, (ii) working memory resources differ in
amount across individuals, and (iii) these differences help predict individuals’ performance
across different tasks. Our source activation theory possesses all of these characteristics and
accurately captures working memory effects at both the aggregate and individual levels. We
believe, therefore, that it provides a workable account of individual differences in working
memory capacity. Though previous research has highlighted that individual differences exist,
these differences have not been modeled at the level of the individual participant nor has the
performance of a participant on one task been used to provide fine-grained predictions of that
participant’s performance on another task. That we were able to do so speaks to the power of our
approach and to the generality of the ACT-R architecture.

In terms of computational modeling more generally, our approach parallels that of other,
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current efforts by achieving the following: (1) fitting aggregate data with multiple measures
(generally with global parameter values taken from previous work), (2) accounting for the
variability of the aggregate data (by varying only one model parameter to account for the range
in participant performance), and (3) matching the performance patterns of individual participants
(by estimating a single W value per participant we account for the fact that performance drops
off under increased load more quickly for low W than for high W participants). Moreover, we
have accomplished this with the additional constraints of (4) building our models within a
cognitive architecture and (5) varying relatively few parameters to achieve our model fits. Most
importantly, however, we have also demonstrated the ability of our model to (6) predict
individual participants’ performance across tasks using a single parameter estimated from one
task to predict performance on the second. This is the first such demonstration of these
capabilities and strongly suggests that computational models may be fruitfully employed in the
investigation of individual differences.
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