
48-782 Design Computation I
Fall Semester 2018 Mini A1 • 6 units • Tuesdays + Thursdays 3.00–4:20 pm (CFA 317)

Open to upper-year undergraduate and graduate students

Prerequisite: At least Junior standing.

Instructors: Ramesh Krishnamurti • ramesh@cmu.edu

 Pedro Veloso • pveloso@andrew.cmu.edu

Office Hours: Tuesdays and Thursdays after class

Syllabus

Course description

This is a fast paced intense half-semester technical introduction to the fundamentals of object-oriented
programming targeted at design students with an emphasis on producing clear, robust, and reasonably
effective code.

We will cover a large subset of the Python programming language including a standard graphics library and
programming paradigms. In order to reinforce the programming topics we will also introduce the generation
and visualization of geometric form with graphics, animation and rule-based systems.

The course consists of lectures, computer cluster instruction and assignments.

This course assumes no prior programming experience.

This course serves as a prerequisite for 48-784 Design Computation II and 48-724 Scripting and Parametric
Design.

Learning outcomes

Upon the successful completion of this course, students will be able to:

• write simple programs in Python to implement solutions to basic computing problems in design
• use sequential, conditional, and loop statements where appropriate in solving a programming task
• understand and use Python strings, lists, tuples, and dictionaries
• understand objects and classes
• understand recursive functions
• write simple event-driven graphics programs
• write simple form generators

References

There is no textbook but the following are useful references.

• Timothy A Budd. Exploring Python. McGraw-Hill. 2009.
• Mark Lutz. Learning Python, 5th Edition. O’Reilly. 2013.
• Marina von Steinkirch (bt3) An introduction to Python & Algorithms, 2nd Edition, 2013.
• Michael T Goodrich, Roberto Tomassia, Michael H Goldwasser, Data Structures and Algorithms in

Python, Wiley 2013.

Other books that are useful:

48-782 DC I 2

• Kenneth Lambert, Fundamentals of Python: From First Programs through Data Structures, 2010.
• Allen B Downey, Think Complexity, Version 2.0.10, Green Tea Press, 2016.
• Jason Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes, 2011.

Online resources

• Python >> general support for programming in Python
• Lynda >> great video tutorials on all things digital. Sign in through CMU for free access

Software platform

Repl, Sublime, …

Repl

All course material will be on Repl.

Canvas

Some additional course material may be placed on Canvas. We will be using Canvas for after class
discussion. The system is highly catered to getting you help fast and efficiently from classmates and the
teaching team.

Course Requirements

Assignments and quizzes

Grading

Grades are based on the six best weekly assignments and two quizzes. Students will receive feedback on
each assignment and quiz. Each week students are given a mix of in-class and out-of-class exercises to
complete. These exercises constitute the weekly assignment.

The breakdown for overall grade is as follows Assignments 90% (6× 15%) Quiz 10%

Grades are based on the following scale:

A: 90% and over B: 80-89% C: 70-79% D: 60-69% R: < 60%

Students are not graded on a curve, however, we will consider the degree of difficulty experienced in the
assignments in determining the final scores.

Example Assignments

The exercises of the course assignments will focus on the topics of programming, on solving problems and
on generating visual compositions. There will be basic exercises focusing on one of these, while a weekly
challenge will contain exercises integrating the different subjects. The following two exercises are examples of
the kind of integrating tasks required in the assignments.

48-782 DC I 3

Example 1: Strings. loops and conditionals

Create the function printImage(image, width, height). You will receive a string image containing a a
grayscale representation of an image. Each character in image is a digit from 0 to 9, representing a value in
gray scale (0 is black and 9 is white). You will use the following ascii characters to represent the colors: " .:-
=+*#%@", from black to white (remember that the background of the terminal is black). The image is
represented as an uni-dimensional sequence of characters, but it has 2 dimensions, width and height. Your
print will have height + 2 lines, because you should add an empty line before and after the image (do not
forget this!). In each line you will have to organize a sequence of width characters separated by " " (the image
does not come with these spaces between characters).

For example, we reduced the resolution of the following image and converted it to grayscale (image on the
right). Your function should be generate the following result:

image =
"7787888888888888887777887766778888887777753222335788887776222244432379997763255455
45422899774256544455661399773466410036554179764555200004666169768855100001665259757
86510000266526975356520000467627986345653224666438988524666556675279988842566666652
5999888731245443258999888886323334799999888889987789999999888899999999999999"
width = 18
height = 18 #but the resulting lines will have 35 characters with the interstitial
spaces
print(printImage(image, width, height))

% # % % % % % % % % % % % % % %
% % # # * * # # % % % % % %
+ - : : : - - + # % % % %
* : : : : = = = - : - # @ @ @
* - : + + = + + = + = : : % @ @
= : + * + = = = + + * * . - @ @
- = * * = . - * + + = . # @
* = + + + : = * * * . * @
* % % + + . . * * + : + @

48-782 DC I 4

+ # % * + . : * * + : * @
+ - + * + : = * # * : # @
% * - = + * + - : : = * * * = - % @
% % + : = * * * + + * * # + : # @ @
% % % = : + * * * * * * + : + @ @ @
% % % # - . : = + = = - : + % @ @ @
% % % % % * - : - - - = # @ @ @ @ @
% % % % % @ @ % # # % @ @ @ @ @ @ @
% % % % @ @ @ @ @ @ @ @ @ @ @ @ @ @

#the empty line above is a result of the print function

Example 2: Recursion and vectors

Implement the recursive function dragon(line, n, isLeft = True). It will develop a general version of the
Heighway dragon Fractal. In the Heighway Dragon, you start from a base line, then replace each segment by 2
segments with a right angle and with a rotation of 45° alternatively to the left and to the right. DO NOT USE
LOOPS.

print(dragon([[0, 0], [100, 0]], 1))
>[[[0, 0], [50.0, -50.0]], [[50.0, -50.0], [100, 0]]]

print(dragon([[0, 0], [100, 0]], 2))
>[[[0, 0], [0.0, -50.0]], [[0.0, -50.0], [50.0, -50.0]], [[50.0, -50.0], [50.0,
0.0]], [[50.0, 0.0], [100, 0]]]

print(dragon([[0, 0], [100, 0]], 3))
[[[0, 0], [-25.0, -25.0]], [[-25.0, -25.0], [0.0, -50.0]], [[0.0, -50.0], [25.0, -
25.0]], [[25.0, -25.0], [50.0, -50.0]], [[50.0, -50.0], [75.0, -25.0]], [[75.0, -
25.0], [50.0, 0.0]], [[50.0, 0.0], [75.0, 25.0]], [[75.0, 25.0], [100, 0]]]

48-782 DC I 5

Prerequisite

None. At least Junior standing. No previous coding or math course is required, however, it is preferable for
students to be familiar with at least introductory level college math and affinity with logic.

Policies

All university academic and student policies as set out in http://www.cmu.edu/graduate/policies/ and
https://www.cmu.edu/policies/student-and-student-life/index.html apply to this course.

Specifically:

• You are expected to be on time at all lecture and lab sessions.
• Please backup your work in the cloud. We cannot accept hardware failure as a valid excuse.
• You may not copy code without citation. Copying code without citation is plagiarism.
• Late work may result in a reduced grade.
• Email should only be used for crucial queries and concerns. Please direct software related questions

to Pedro during office/lab sessions.

Accommodations for students with disabilities

If you have a disability and are registered with the Office of Disability Resources, I encourage you to use their
online system to notify me of your accommodations and discuss your needs with me as early in the semester
as possible. I will work with you to ensure that accommodations are provided as appropriate. If you suspect
that you may have a disability and would benefit from accommodations but are not yet registered with the
Office of Disability Resources, I encourage you to contact them at access@andrew.cmu.edu.

Student well-being and support

Carnegie Mellon University is deeply committed to creating a healthy and safe campus community including
one that is free from all forms of sexual and relationship violence. To that end, University Health Services, the
Office of Community Standards & Integrity, and the Office of Title IX Initiatives have partnered to expand
their educational efforts for graduate students in this domain. There is an educational opportunity for all
graduate students at Carnegie Mellon that reflects its commitment to sexual assault and relationship violence
prevention as well as to your overall safety:

Haven Plus for Graduate Students. For more information follow the link:
https://shib.everfi.net/login/default.aspx?id=CarnegieMellonHavenPlus

Additionally, it is important to take care of yourself and try as best as possible to reduce, preferably avoid,
stress. Do your best to maintain a healthy lifestyle by eating well, exercising, getting sufficient sleep and
taking some time to relax. All of us benefit from support during times of struggle. This will help you achieve
your goals and cope with stress. There are many helpful resources available to all students on campus.
Asking for support sooner rather than later is more often helpful.

If you or anyone you know is experiencing academic stress, difficult life events, or feelings like anxiety or
depression, we strongly encourage you to seek support. Counseling and Psychological Services (CaPS) is here
to help: call 412-268-2922 and visit their website at http://www.cmu.edu/counseling/.

48-782 DC I 6

Consider reaching out to a friend, faculty or family member you trust for help getting connected to the
support that can help. If you or someone you know is feeling suicidal or in danger of self-harm, call someone
immediately, day or night:

CaPS: 412-268-2922

Re:solve Crisis Network: 888-796-8226

If the situation is life threatening, call the police:

On campus: CMU Police: 412-268-2323

Off campus: 911

If you have questions about this or your coursework, please let us know.

48-782 DC I 7

Course Schedule*

* Schedule subject to changes

Weeks Lecture, computer lab and lab challenge Assignment

1
Introduction
and single
data types

 ____ introduction to course
 ____ single data types
• object in Python: identifier and assignments
• core data types / object types (table in Learning Python pp.96)
• number datatypes x binary representation
• number datatypes: int and float

 ____ binary numbers and operations
• ints as binaries
• binary operators

W01 01
W01 02

CHALLENGE

08/28/18

8/30/18

 ____ boolean
• single datatype: boolean
• operators for single types
• checking type: type and isinstance

 ____ control flow: conditionals
• if, elif, else statements
• conditional expressions

W01 03
W01 04

 ____ office hours
strategies for solving W1 exercises

2
Control and
passing

 ____ functions
• information passing: procedural abstraction of functions (black-box)
• structure: argument, body and return
• scope: the source of problems (local, nonlocal and global variables)
 ____ collection: strings
• strings
• string methods and general operations

W02 01
W02 02

09/04/18
 ____ office hours
reviewing exercises in W1

 ____ strings +
• string methods and general operations
 ____control flow: loops
• for loop * – index, iterator and collection loop
• nested loops
• while loop

W02 03
W02 04

CHALLENGE

09/06/18
 ____ office hours
strategies for solving W2 exercises

48-782 DC I 8

3
Lists

 ____ collection: lists
• list methods
• indexing and slicing
• traversing a list

 ____ more on lists

W03 01
W03 02

09/11/18
 ____ office hours
reviewing exercises in W2

09/13/18

 ____ tuples and nd-lists
• lists x tuples: immutability x mutability
• packing / unpacking / simultaneous assignments
• 2d lists • n-d lists

W03 03

CHALLENGE

 ____ office hours
strategies for solving W3 exercises

4
Graphics

QUIZ 1 – Booleans, strings, conditionals, functions, lists W04 01

09/18/18

 ____control flow: list comprehension
• functional programming
• list comprehension
• mapping, filtering … zipping
 ____ graphics: (pygame)

explain template for W04 01b
• draw circles in a grid
• draw lines
• draw patterns

 ____ office hours
reviewing exercises in W3

09/20/18

 ____ grid layout
Do half of the assignment as part of the class.
Leave the other half as exercise
 ____randomness
• random functions
• monte carlo method

W04 02
W04 03

CHALLENGE

 ____ office hours
strategies for solving W4 exercises

48-782 DC I 9

5
Visualizing
Recursion

 ____ control flow: recursion
• russian dolls: idea of recursion
• recursion vs loop
• recursion in maths (fibonacci, list operations, …)
• memoization • dynamic programming

W05 01

09/25/18
 ____ office hours
reviewing exercises in W4

09/27/18

 ____ graphics: (pygame)
• event-based animation

working with animation

W05 02 (is a pygame
template for
animation)

CHALLENGE
 ____ office hours
strategies for solving W5 exercises

6
Sets,
Dictionaries
and Functions

 ____ sets and dictionaries
• efficiency in collections: hash function
• sets notation, methods and general operations
• dictionaries

W06 01
W06 02

10/02/18
 ____ office hours
reviewing exercises in W5

10/04/18

QUIZ 2 – Recursion, hash functions etc. W06 03

CHALLENGE
 ____functions ++
• optional args, kwargs …
• dealing with exceptions and errors
• tests/assertions
• lambda function
• generator functions(?)

 ____ office hours
strategies for solving W6 exercises

7
OOP

 ____ introduction to object-oriented programming
• modularity, abstraction and encapsulation
• self, methods and attributes
• interface

W07

10/09/18
 ____ office hours
reviewing exercises in W6

10/11/18

 ____ object-oriented programming: inheritance
W07

 ____ office hours
strategies for solving W7 exercises

8
READING PERIOD (No Course Meetings) 10/16/18

