48-I75
 Descriptive Geometry

Basic Concepts of Descriptive Geometry

Descriptive geometry

is about
manually solving problerns in three-dimensional geometry
by generating two-dimensional VIEWS

What do we see in these directions?

where do the roof planes meet?
where does the chimney meet the roof?

Descriptive geometry

is about
manually solving problems in three-dimensional geometry
by generating two-dimensional VIEWS

View

is a two dimensional picture of geometric objects.
not any old picture, but, more precisely, a 'PROJECTION' of geometrical objects onto a planar surface.

Projections

are MAPPINGS of 2- or 3-dimensional figures onto planes or 3dimensional surfaces
(for now we consider) an 'association' between points on an object and points on a plane, known as the PICTURE PLANE
this association - between a geometric figure and its IMAGE — is established by LINES from points on the figure to corresponding points on the image in the picture plane these lines are referred to as PROJECTION LINES

Line Family - a set of parallel lines

UNIQUENESS - for any line family and any given point P, there is exactly one line in the family that passes through that point.

PROJECTION OF A LINE ONTO

ANOTHER - is a I-I correspondence between the points on one line and
 the points on the other
P^{\prime} is the image of P and vice versa
m is the projection of I and vice versa
more on projections

$A^{\prime} B^{\prime}=A B$
ingles formed
$P A^{\prime} / P A=P B^{\prime} / P B$
intersection boints are identical in measure parallel projections multiplies distances by a constant factor (could be I)

$$
\begin{array}{rrl}
A C+C B & =A B & A C+C B
\end{array}=A B
$$

parallel projections preserves between-ness
the sum of the projections of segments of a polyline onto a line equals the projection of the segment between the first and last end-points of the polyline

Dividing and extending a segment into an arbitrary number of given ratios 4:2:3 and 2:4

a I-I mapping between points on planes

- preserves between-ness between points and parallelism, concurrence and ratio of division between lines.
- distances are presefved only when the planes are parallel

* IMPORTANT *

The image of a parallel projection in a plane onto another plane is the line common to both planes

(THE LINE OF INTERSECTION OFTHE PLANES)

```
Parallel projection between two planes maps
lines on lines, segments on segments, rays on rays etc.;
that is, it maps linear figures on linear figures of the same
type AND it maps
parabolas on parabolas, hyperbolas on hyperbolas,
circles or ellipses on circles or ellipses, and,
more generally,
curves of degree n on curves of degree n
```


A parallel projection of a figure onto a plane is an ORTHOGRAPHIC PROJECTION if the projection lines are NORMAL (perpendicular) to the plane (also called the PICTURE PLANE)

Line of sight is perpendicular to the profile projection plane Horizontal and frontal planes seen as edges

Line of sight is perpendicular to the horizontal projection plane
Frontal and profile planes seen as edges

Line of sight is perpendicular to the frontal projection plane

Horizontal and profile planes seen as edges
Edge of the profile plane \quad Edge of the frontal plane

two orthographic views obtained from two perpendicular picture planes are called ADJACENT

Orthographic views, in architecture or other fields, are generated for a
purpose, and the selection of the features to be shown may vary with that purpose

A FLOOR PLAN of a building is the top view of a portion of a building below a picture plane cutting horizontally through the building. It shows the parts of the building underneath this plane as : seen when we view the picture plane from above.

All the projections that come into play in such a drawing use the same family of projection lines normal to the cutting plane (and this family is unique)

A SECTION is developed in the same way using a vertical cutting plane that cuts through the building

ELEVATIONS are developed with vertical picture planes that do not intersect the building

plan and side elevation are adjacent views

It is conventional to depict lines differently depending on their visibility

Here the hidden edge is shown dashed

Given two lines in two adjacent views, neither line perpendicular to the folding line, that meet at a point, X, in at least one view, t, determine which line is in front of the other (relative to t) at the intersection point.

There are two steps.
I. Draw the projection line through X_{t} into view f.
2. If the lines meet also at a point on a in f, the lines truly intersect.

Otherwise, determine the spatial relation between the lines at X_{t} from the relative positions of their intersections with a in f : the line that intersects a at a point closer to the folding line than the other line is closer to the picture plane of f at that point; consequently, it is in front of the other line at X_{f} in f.

- A primary auxiliary view is a view using a picture plane perpendicular to one of the coordinate planes and inclined to the other two coordinate planes.

A secondary auxiliary view is an auxiliary perpendicular to a primary auxiliary view.

Given two adjacent views, a view using a picture plane perpendicular to the picture plane used in one or other view is an auxiliary view

Planes 2,3,4,5 and 6 are all elevations as each is perpendicular to the horizontal projection planes

Observer's line of sight remains
horizontal when viewing elevations

Given a point, X, in two adjacent views, t and f, construct an auxiliary view of
X using a picture plane perpendicular to the picture plane of t.

There are three steps.
I. Call the auxiliary view a , and select a folding line, $t \mid a$, in t (any convenient line other than $t \mid f$ will do).
2. Draw the projection line, I_{x}, through X_{t} perpendicular to $t \mid a$.
3. Let d_{x} be the distance of X_{f} from folding line $t \mid f$.
X_{a} (that is, the view of X in a) is the point on I_{x} that has distance d_{x} from the folding line $t \mid a$. The distance d_{x} is called a transfer distance

view \#4 - aux. inclined projection plane

