
NAVIGATING BETWEEN GENERATIVE SYSTEMS

An educational framework and an experiment with the qGrowth grammar

PEDRO VELOSO1 and RAMESH KRISHNAMURTI2
1,2Carnegie Mellon University
1,2{pveloso|ramesh}@andrew.cmu.edu

Abstract. In this paper, we delineate an educational framework
for the development of new generative systems. It comprehends
eight schemas: unstructured constructive, structured constructive,
variational, improvement, discrete simulation, continuous simulation,
generative learning and behavioral learning. To demonstrate the
application of the framework, we introduce the qGrowth grammar,
an educational generative system that mimics biological growth using
simple quadrilateral shapes and three rules: expansion, division and
elimination. We describe the original formulation of qGrowth in the
unstructured constructive schema, then we customize it with techniques
from structured constructive schema. Particularly, we combine rule
sampling and ordering of the frontier of target quadrilaterals by different
data structures, such as a queue, stack or heap. It results in a structured
qGrowth with easy control of the growth pattern, limiting its design
space to meaningful regions. In the end, we discuss other potential
extensions of the qGrowth using the different schemas of the framework.

Keywords. Generative systems; Classification; Constructive
schema; Rule-based modeling; Shape Grammar.

1. Introduction
Generative systems (GS) is one of the main topics of intelligent and informed 
exploitation in computational design and have been studied for more than five 
decades. Pioneering research in GS incorporated problem-solving techniques from 
Artificial Intelligence to automate the synthesis and allocation of architectural 
spaces - this is known as space planning. The repertoire of generative procedures 
comprises a diverse set of computational techniques such as optimization, 
agent-based models, physics-based simulation, parametric modeling and neural 
networks.

From a theoretical perspective, the field of computational design would benefit 
from a systematic and historical understanding of the different computational 
paradigms available for GS. The historical component emphasizes the existing 
knowledge base in computational design research. In the same way that an 
algorithm course in computer science might refer to canonical algorithms as a

Intelligent & Informed, Proceedings of the 24th International Conference of the Association for 
Computer-Aided Architectural Design Research in Asia (CAADRIA) 2019, Paper 253 (Preprint). © 2019 
and published by the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA) 
in Hong Kong.



2 P. VELOSO AND R. KRISHNAMURTI

base for new developments in the field, canonical generative data-structures and
algorithms provide a common background to support research on GS.

In this paper we introduce a general framework for GS based on a variety of
computational schemas. This framework was developed for a course we teach at
our institution and has resulted in interesting work and insightful feedback from
the students. The framework is intended to support development of custom GS
with an expressive design space and meaningful navigation. We introduce an
exemplar GS used in the course, which combines multiple paradigms depicted
in our framework. The objective is to show how the framework can be used to
investigate the appropriate computational methods for the problems at hand and,
potentially, become a base for novel GS for design.

2. Generative Systems
There is a vast published literature on GS in conferences and courses; see, for
example (Celani and Veloso 2015; Mitchell 1977; Mitchell, Liggett, and Kvan
1987; Coates and Thum 1995; Coates 2010; Terzidis 2006). However, only in
few publications are they defined and categorized. A brief review is given below.

Alexander (1968) is one of the earliest references for GS. He described two
categories of systems: generating system and system as a whole. The former is
a kit of parts, with rules that define how these parts may be combined, producing
the latter, which consists of interacting objects, such as buildings and people.
Alexander’s description supported his later work on Pattern Language (1977),
where each pattern is a semi-autonomous set of generative design rules to deal with
specific problems in the different scales of the environment. Those rules associate
a context, the interaction of its subsystem of forces and the spatial configuration
that ensures the balance between those forces.

Mitchell (1977) used Aristotle’s description of a theoretical system that
produces a variety of animals by the combination of different kinds of organs
as the foundation of GS. Then, he proposed three categories: analogue GS are
composed of analogue elements that enable mechanical operations to change the
state of the system; iconic GS are systems that use movies, models, drawings,
and geometric operations to generate solutions, symbolic GS use symbols and
computational data-structures to represent a solution and rely on arithmetic and
logical operations to change it.

Each symbolic GS operates with discrete steps: the space of related designs
that are visited in the computational process are codified in a directed graph called
state-action graph, which structures the space of all possible designs and available
operations for navigation (Mitchell 1977, pp.46-48). The goal of GS is to navigate
the set of solutions in this state-action graph −which we refer to as the design space
− looking for a subset of solutions that satisfy the design goals. Therefore, GS
are divided in three technical components: (1) a fixed representation of spaces
and locations to host the activities of the building, (2) an explicit criterion to
evaluate the candidates in the design space, (3) a solution procedure that generates
the candidates. Overall, Mitchell’s definition of GS comprehends computational
techniques that can produce a variety of potential space planning solutions that



NAVIGATING BETWEEN GENERATIVE SYSTEMS 3

meets certain specified criteria automatically.
Mitchell and other researchers, such as Henrion (1978), produced

classifications of GS of the time, focusing on space-planning. Their classification
comprehends shape grammars and other methods such as search, optimization,
hybrid and analytical procedures. Ligget (2000) updated their categories with the
use of metaheuristics, such as Genetic Algorithms and Simulated Annealing.

Fischer and Herr define GS as a “(...) set-up based on abstract definitions
of possible design variations capable of displaying or producing design products
(or elements of design products)” (2001, p.3). With the adoption of generative
techniques from a variety of sources in design, they moved away from
the classical AI techniques of space planning and suggested four broader
pedagogical categories: (1) Emergent systems, self-organization (e.g. cellular
automata and swarm modelling); (2) Generative grammars (e.g. L-systems and
shape-grammars); (3) Algorithmic generation and growth (e.g. fractals, re-writing
rules, parametric design, data mapping); (4) Algorithmic (re-) production (e.g.
genetic algorithms, selective procedures).

Recently, with the dissemination of parametric editors integrated with
geometric modelers, GS have been widely used in the development of complex
forms. In this context, Oxman and Oxman (2014) proposed high-level categories
that, instead of emphasizing the computational logic of GS, focused on the
inspiration or the source domain of the generative ideas used in computational
design. More specifically, they provide six categories for form generation
procedures: (1) mathematical: which exploits mathematical formulae for
generative procedures; (2) tectonic, which employs tectonic patterns for form
generation; (3) material: which uses tectonic and assembly patterns, such
as folding, braiding, knitting and weaving, to generate form; (4) natural
or neo-biological, which employs biological principles to generate form; (5)
fabricational, which uses existing patterns of fabrication for design generation;
and (6) performative, which models physical data of the context as the input for a
generative process that satisfy certain objectives.

3. A Framework for Generative Systems
Design space and navigation are crucial features both for the traditional and
computational approaches to design. In the former, designers use heuristics
to reformulate the problem, building expressive design spaces and navigational
strategies to explore solution candidates (Rowe 1987). In a computational setting,
design space and navigation are a consequence of the choice of representation,
analysis and solution procedures embedded in algorithms and models for GS.
Given its potential to mediate traditional and computational design, our framework
for GS uses design space and navigation to define eight schemas (see table 1).

The first six schemas comprehend techniques traditionally used for the
development of GS. The 7th and 8th schemas employ Machine Learning − a
multidisciplinary field concerned with programs that automatically improve with
experience (Mitchell 1997) − to learn a design space or navigation from data,
behavior or knowledge. For example, generative models in Machine Learning



4 P. VELOSO AND R. KRISHNAMURTI

model the distribution of input and output data of a task, so they can synthesize new
data by sampling (Bishop 2006, p.43). In reinforcement learning, agents can learn
what actions to take to maximize a numerical reward in an environment by trial
and error (Sutton and Barto 2018). Additionally, all the schemas in the framework
can be combined to form hybrid GS.

Table 1. Computational schemas for generative systems .

4. qGrowth

Figure 1. Left: sketch with the biological motivation of the qGrowth. Right: three rules for
derivation: (1) expansion, (2) parametric division and (3) elimination.



NAVIGATING BETWEEN GENERATIVE SYSTEMS 5

The qGrowth is a dimensionless shape grammar to mimic a biological growth
process using simple quadrilateral shapes (see figure 1). The growth starts with
a single square of any size and grows by applying successive rules to the current
shapes, which will potentially expand it in multiple directions or even separate
it into multiple clusters of quadrilaterals. The canonical version of the grammar
consists of three base rules: (1) expansion of a new square, (2) parametric division,
and (3) elimination. In rule 1, it is not allowed to generate a square that is inside
or intersects with an existing quadrilateral.

qGrowth is both customizable within its original schema or by transitioning
to different schemas. For customization, qGrowth can be generalized to a
three-dimensional setting with polyhedra. New rules can generate new forms of
divisions, expansions or even re-connections, while new constraints can ensure the
satisfaction of minimum and maximum angles, areas and edge lengths in the new
quadrilaterals. In the sequel we present an extension of the qGrowth grammar in
the structured constructive schema.

4.1. A FULLY STRUCTURED QGROWTH

To translate the qGrowth grammar from an unstructured to a structured
constructive schema, we build its search tree and use algorithms to look for good
paths and states (Russel and Norvig 2010, pp.64-102). Each node of its search tree
is a set of quadrilaterals, resulting in a combinatorial state space that is potentially
infinite. The outgoing edges are instances of its rules (expansion, division and
elimination) applied to a target quadrilateral in a given state. Following the
resulting structure of the tree, a search algorithm will organize a frontier and
explored set, to look for good paths and states (adapted from Russel and Norvig
2010, p.77):
function GRAPH−SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do

if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal then return the solution
add the node to the explored set
expand the chosen node,

add resulting nodes to the frontier
only if not in the frontier or explored set

In one extreme, it is possible to use deterministic transitions to fully structure
qGrowth. In this case, the transitions should combine the three rules, the potential
target quadrilaterals in a state, a discretization of the parameters of rule 2, sides
of the quadrilateral selected for division, and consider the constraints of rule 1
(see figure 1). As the number of quadrilaterals in the state increases, there are
more potential collisions pruning some of the branches, but, still, the potential
derivations grow with the number of quadrilaterals in a state. This combination
results in a variable and large branching factor (see figure 2). This is a proper
formulation for a systematic search over the state space of the qGrowth. However,
as the frontier is too large, it is computationally expensive for standard search



6 P. VELOSO AND R. KRISHNAMURTI

algorithms. The discretization of the division parameters also eliminates large
portions of the state space, which might contain interesting solutions. Even
more critical is the joint formulation of the actions leading to a large and
variable branching factor, which makes it difficult to parameterize and control the
expression of the resulting organism.

Figure 2. qGrowth with fixed branches and p in {1/4, 2/4, 3/4}. Despite the constraints and the
discretization of p, the number of states grows fast. In our implementation, we counted the

following numbers of states per level: 1 (root), 11, 200, 5380, 186552, ...

4.2. A PARTIALLY STRUCTURED QGROWTH

Considering that the original motivation of the qGrowth is to express certain
biological patterns of growth, we can formulate a custom tree for a generative
process, simplifying the transitions and avoiding simple discretizations.

We divided the transitions between states in two parts: the rules are selected
by sampling, while the matching quadrilaterals are ordered and selected by
deterministic datastructures and operations. This changes the formulation of our
state, which is now composed of two distinct sets, one set with the quadrilaterals
already expanded and another with the child quadrilaterals that can still be
expanded, divided or eliminated. For simplicity, the quadrilaterals can only be
expanded from the frontier to the explored set once but are never moved back to the
frontier. We also customized the rules of qGrowth to ensure that their application
to any given quadrilateral will result in a single branch, fixing the maximum
branching factor to three (which can still be pruned by collision detection):

• In rule 1, the quadrilateral from the frontier is added to the explored set and
all the four possible squares added to the frontier. The collision test is applied
between each of the four squares and the explored set.

• In rule 2, the quadrilateral from the frontier is divided in two, which stay in
the frontier. The parameter p is sampled from an uniform distribution in the
interval [0.2, 0.8].

• In rule 3, the quadrilateral is eliminated from the frontier.

In this partially structured implementation, each edge is sampled according to a
probability distribution defined by the user (prules), while the target quadrilaterals
are ordered in the frontier according to a strategy (to be specified in the next
section). Therefore, it combines a random search for the rules with a deterministic
organization of the frontier. Below is the resulting iterative algorithm for a single
sampling.



NAVIGATING BETWEEN GENERATIVE SYSTEMS 7

function GROWTH(initial_quad, rules, p_rules, max_i)
initialize the frontier using the initial_quad
initialize the explored set as an empty set
loop do
if the frontier is {} or reached max_i then return explored
choose current quadrilateral q from the frontier
if q does not collide with the explored set then
sample rule from distribution p_rules
if rule is 1
then add q to the explored set,
derive the new quadrilaterals applying rule 1 to q,
if the new quadrilaterals satisfy constraints
then add them to the frontier

if rule is 2
then sample a parameter p in [.2, .8],
sample a side s of q,
derive two quadrilaterals with rule 2, q, s and p,
if the new quadrilaterals satisfy constraints
then add them to the frontier

With this two-step transition, the ordering strategy generally used for search
can be adapted to control the frontier of the quadrilaterals. In this sense, this
formulation conciliates the stochasticity of the biological growth with a control
over the expression of the resulting organism.

4.3. DIFFERENT STRATEGIES AND EXPRESSIONS

In this section we present examples of strategies applied to the frontier and the
resulting growth patterns. We adopted the following settings:

• an initial square of edge size 34
• prules is [rule 1: 60%, rule 2: 30%, rule 3: 10%]
• a length constraint that only accepts new quadrilaterals if their longest edge

length is larger than 15
• the side for division is sampled by a biased coin parameterized by length - i.e.

longer sides have more probability of being divided
• two static rectangles represent obstacles in the environment

Using the logic of breadth-first search (BFS), the frontier of quadrilaterals is
organized as a queue, so the first element in the frontier is selected first for
expansion (see figure 3). The resulting growth pattern is an irregular flood,
susceptible to accidents of collisions, divisions and eliminations.



8 P. VELOSO AND R. KRISHNAMURTI

Figure 3. qGrowth using a queue to order the frontier. Top: tree. Bottom: growth.

Using the logic of depth-first search (DFS), the frontier is organized as a stack,
so the last element in the frontier is selected first for expansion (see figure 4). The
resulting growth pattern is a folding branch.

Figure 4. qGrowth using a stack to order the frontier. Top: tree. Bottom: growth.



NAVIGATING BETWEEN GENERATIVE SYSTEMS 9

The quadrilaterals of the frontier can also be stored in a heap and ordered
according to a function, such as in Uniform-Cost, Greedy and A* search, which
contains information from the growth or from the environment (see figure 5).

Figure 5. qGrowth using a heap to order the frontier. Top: tree. Bottom: growth. The target
point for the function is indicated by an ellipse.

In our implementation, we defined the Euclidean distance from the center of
the quadrilateral to a target point in the environment as our heuristic function h(s).
The organism will choose quadrilaterals in the frontier that are closer to the target,
moving towards the target and, after reaching it, spreading as a flood fill.

5. Discussion
In the paper, we navigated between two traditional schemas − unstructured and
structured constructive schemas− to create new versions of qGrowth with custom
navigation and design space. This example reinforces the idea that knowledge
accumulated in decades of research in computational design, AI and other related
fields can become an operative knowledge base. Other schemas could also be used
to extend the qGrowth grammar. For example:
1. An improvement procedure can be used to generate a state with n quadrilaterals.

In this case, an optimization could be used to learn the best way to order the frontier
and select actions that satisfies a certain pattern of growth or occupation.

2. Other alternative to learn this behavior is on-line reinforcement learning, where
many trajectories or segments of the trajectories could be sampled to learn a policy
(the probability of choosing each action), given a state. For a discrete approach, a
Monte-Carlo search can be used. Alternatively, a function approximation such as



10 P. VELOSO AND R. KRISHNAMURTI

a neural network could be used to generalize the learning to unknown states.
3. A GAN can generalize the qGrowth rules to a generator able to produce images

with a certain growth pattern.

More than being a template for new computational design courses, our framework
provides a common language to access content spread across a diversity of sources.
It is an initial resource for investigating the appropriate computational methods
for the problems at hand and can become a base for future developments in design
methods. Even in courses without a strong programming background, high-level
investigation about design spaces and navigations can lead to the adoption of
general computational strategies. We hope that this endeavor can expand the
boundaries of design within the discipline of architecture and beyond.

Acknowledgements
We would like to express our gratitude to the Brazilian National Council for
Scientific and Technological Development (CNPq) for granting Pedro Veloso a
PhD scholarship (grant 201374/2014-5).

References
Alexander, C.: 1968, Systems Generating Systems, Architectural Design, 38(12), 605-610.
Bishop, C.M.: 2006, Pattern Recognition and Machine Learning, Springer-Verlag, New York.
Celani, G. and Veloso, P.: 2015, CAAD Conferences: A Brief History, Proceedings of CAAD

Futures 2015, Sao Paulo, 47-58.
Coates, P.: 2010, Programming Architecture, Routledge, London.
Coates, P. and Thum, R.: 1995, Generative Modelling, University of East London, London.
Fischer, T. and Herr, C.M.: 2001, Teaching Generative Design, In Proceedings of the 4th

Conference on Generative Art, Milan.
Henrion, M.: 1978, Automatic Space-Planning: A Postmortem?, Proceedings of Artificial

Intelligence and Pattern Recognition in Computer Aided Design, Amsterdam, 175-196.
Liggett, R.S.: 2000, Automated Facilities Layout: Past, Present and Future, Automation in

Construction, 9(2), 197-215.
Mitchell, W.J.: 1977, Computer-Aided Architectural Design, Mason Charter Pub, New York.
Mitchell, T.M.: 1997,Machine Learning, McGraw-Hill, Boston.
Mitchell, W.J., Liggett, R.S. and Kvan, T.: 1987, The Art of Computer Graphics Programming:

A Structured Introduction for Architects and Designers, Van Nostrand Reinhold Company,
New York.

Oxman, R. and Oxman, R. 2014, From Composition to Generation, in R. Oxman and R. Oxman
(eds.), Theories of the Digital in Architecture, Routledge, New York, 55-61.

Rowe, P.: 1987, Design Thinking, MIT Press, Cambridge.
Russel, S.J. and Norvig, P.: 2010, Artificial Intelligence: A Modern Approach, Prentice Hall,

New Jersey.
Sutton, R.S. and Barto, A.G.: 2018, Reinforcement Learning: An Introduction, The MIT Press,

Cambridge.
Terzidis, K.: 2006, Algorithmic Architecture, The Architectural Press, Oxford.




