SGI: An Interpreter for Shape Grammars

by

Ramesh Krishnamurti

Centre for Configurational Studies
Design Discipline

The Open University

Milton Keynes MK7 6AA

ENGLAND

Abstract

N Poat ot ot ol 1t 108

The design of the computer program SGI (pronounced sigi)
for the generative specification of shapes using the shape
grammar formalism (Stiny, 1988) is outlined. ‘'The program
interprets commands from the SGI language. The commands which
are described in detail allow for shape grammars to be defined
interactively, and for shapes defined by these shape grammars
to be generated via user-specified sequences of shape rule
application. The program has graphics capability which permits
line drawings of shapes to displayed on the screen and drawn on
the graphics plotter. Examples of shape grammars defined using
this program, and plotter line drawings of shapes generated by
the grammars are illustrated.

Introduction

N I b ot 2 ot ot P

This paper outlines the design of an interpreter for shape
grammars (Stiny,198f). The interpreter, SGI (pronounced sigi),
provides a computational framework for languages of shapes to
be defined using the shape grammar formalism, vhereby shapes
can be constructed by applying rules rather than be described
point by point or 1line by line as is the case with current
computer programs. SGI is primarily intended as a research

and/or teaching tool.

SGI takes the form of an interactive computer package with
graphics facilities. ‘The package:

{a) accepts any shape grammar definition and any subsequent
on-line modifications;

(b) applies any user specified sequence of rule applications
and has backtrack capability;

() provides graphics (visual displays), hard copy (plotter
drawings) and line printer descriptions of any partial or
complete shapes generated at any stage of rule application;

(d} stores any shape or shape grammar defined at an interactive
session and retrieves any shape or shape grammar so stored

later in the session or at any later sessions.

Instructions to the computer program are specified through
commands from the SGI interpreter language.

The present version of SGI is restricted to 2-dimensional
shapes and shape grammars. This does limit its use in practical
computer aided design. It is hoped that SGI will be extended,
and if necessary upgraded, to enable 3-dimensional shapes and

beyond the scope of this paper. It is sufficient to state that
solutions to these problems are numerical rather than spatial.

SGI is implemented in Fortran and runs on the VAX 11/784.
The shapes are displayed on a ‘Tektronix 4¢27 colour graphics
terminal and bhard copy of the line drawings are obtained using
the Tektronix 4663 graphics plotter. Colour photographs of the
displayed shapes are obtained using the Calcomp3l (Dunn) colour

graphics system.

It should be remarked that the graphics facilty provided
for the program has been kept simple and that it satisfies the
basic requirements for any shape grammar interpreter. However,
enhancements and/or modifications to the graphics routines, to
suit the particular needs of potential users, can be easily

implemented.

The rest of this paper is organized as follows. First, a
brief review of shapes and shape grammars is presented, and the
relevant terms are stated in a form suitable for implementation
on a computer. Second, the data structures used by the program
to house the shapes are described. Third, the SGI language (or
command sets) and the structure of the program are described.

Last, examples of shape grammars run using SGI are illustrated.

A good concise introduction to shape grammars is given in
(Stiny, 198@). Still, it is worthwhile to restate some of the

concepts in a form suitable for computer implementation.

A labeled shape congists of two parts: a shape made up of

lines and a set of labeled points made up of symbols.

A shape is given by its set of maximal lines. A line is
is described by its end points each of which is associated with
a pair of coordinates in a two dimensional cartesian coordinate
system. A line 1 contains another line m if the end points of
m coincide with points on 1. A line in a shape is maximal if

no other line in the shape contains it.

The program stores and permits references via line numbers
to only the meximal lines in a shape, though any line can be
described to it. The program checks whether the specified line
is maximal or not. In the event that the line is not maximal,
it will be combined with one or more maximal lines in the shape
to form a longer maximal line. This new maximal line replaces
all the lines that have been combined. Thus, specifying a line
to the program may decrease the number of maximal lines that

are required to represent the shape.

A labeled point is described by a pair of coordinates and
its associated set of labels. 1In general, a label may be any
symbol from a specified alphabet. ‘The program only accepts
labels chosen from the letters in the set {A,...,Z} with the
following restriction: each label associated with a labeled
point must be distinct. Thus, a labeled point cannot have, for
example, the label Aa, In this case, the program treats it as
the labeled point with the label A. The labeled points are

referenced by their point numbers.

The label alphabet is the set made up of just those labels

in the shapes in a shape grammar.

Labeled points are shown on the display screen with their
labels arranged in 1lexicographical order. For example, if a
labeled point has a label SYMBOL, it is displayed as a labeled
point with label BIMOSY. Moreover, if two labeled points with
distinct labels are specified to the program, and the labeled
points share the same coordinates, the program regards them as
a single labeled point whose label set is given by the union
of the two label sets. For example, if a labeled point has the
label A and another has the label B, and if they share the same
coordinates, the program regards them as a single labeled point
with the label 2B,

A point p is rational iff each of its coordinates can be
expressed as the ratio of two integers. A labeled point p:L,
vhere L denotes it label set, is rational iff p is rational. A
line 1=<t,h>, where t and h are the end points of 1 is rational
iff both t and h are rational. A labeled shape is rational iff
each of its maximal lines is rational and each of its labeled
points is rational. ‘The program accepts only definitions for
rational labeled shapes.

A labeled shape may bave no lines or no labeled points. A
null (or empty) labeled shape contains no lines and no labeled
peints. Where convenient, a labeled shape will be referred to,

simply, as a shape.

A shape iz a subshape of a shape if each maximal line in
the first shape is contained in a maximal line of the second
shape, and if for each labeled point in the first shape there
is a labeled point in the second shape which shares the same
coordinates and whose label set contains the label set of the
first labeled point,

The transformations of translation, rotation, reflection,

scale and finite compositions of these are referred to as the
euclidean transformations, and denoted by T. A transformation

T can be described as the pair of transformations:

T = <T T,

and represents the coordinate-coordinate mapping:

T : <x,y>———»-<Tk(x,y),Ty(x,y)>.

Both T, and Ty can be expressed as linear polynomials over the
rationals (see Krishnamurti, 1980), having form:

ax+by+c.

The coefficients a,b and ¢ are dependent on T.

The transformation T of a labeled shape v, © = <3, P>,
where s is the shape and P is its set of labeled points, is the
labeled shape T(o) = <T(s),T(P)> which is obtained by changing
the spatial disposition and/or size of o. More precisely,
T(o) 1is defined as follows. Let p = <x,y> denote a point.,
Then,

T(p} = <Tylx%ey) s Ty(X,y)>

T(s) = { <T(P,) ,T(P,)> is a maximal line in T(s) | <p, p,> is a
maximal line in s }

T(P) = { T{P):A is a labeled point in T(P) | p:A is a labeled
point in P}

In other words, T takes each point, maximal line, and labeled
point in the labeled shape o to a corresponding point, maximal
line, and labeled point in T(o).

,Wm\\\\

A shape grammar is an algorithm described in terms of
labeled shapes. In its standard form it consists of some shape
rules and an initial shape. A shape rule: ¢ ——= 8 consists
of two shapes: a , the left side shape _and B, the right side

shape. The shape rule can be used to change a given shape,

the current shape Y , into a new shape yY* , whenever there is a
similarity transformation T, that makes o a subshape of the
current shape. In this case, the subshape is replaced by the
same transformation of B. ‘That is, Y* is given by the shape

expression:
Y¥<— ¥ - T(a) + T(B)

The shape rules are applied to the initial shape and to shapes
produced from it. In this way, the language of shapes defined
by the shape grammar, is obtained by generating its individual

members.,

Each shape rule is type classified according to the total
number of distinct labeled points and points of intersection of
the maximal lines in the left side shape, o . ILet this number
be denoted by N. A shape rule is of type:
l1: if N > 2 and the points form a triangle;

2: if N > 1 and the points are all colinear;

3: if N =1 and the point is not coincident with any maximal
line in ¢ or its extension; o

4: if N =1 and the point is coincident with all the maximal
lines in a or their extensions;

5: if N = 4.

The shape rule type plays an important role in rule application

(see Krishnamurti, 1981).

In general, shapes can be constructed on any 2-dimensional
rational cartesian plane. However, for computational reasons
it is necessary to restrict the region in which the shapes are
defined. The finite region on the rational cartesian plane is
referred to as the user window. The progrém expects all shapes

to be defined within this region.

The user window is mapped directly onto the display screen
and each shape, defined with respect to this window, is mapped
onto its corresponding line drawing on the display screen by

the same transformation.

The user window can be redefined at any stage in thg
program. ‘There is no restriction on the size of the window
except that it be finite. At the outset, the user window has
the same coordinates as the graphics display screen, which in
the case of the Tektronix 4827 is (d,8) to (619,41%9). That is,
the origin is situated at the left hand bottom corner of the

sCreen.

Figures 1 through 3 provide examples of shape grammars
that can be defined using the program. MNotice that the grammar
in Figure 1 employs the symbol . as a label instead of a letter
and the grammar in Figure 2 employs the shape as a "marker"
which serves the same function as a labeled point, namely, to
guide the generation process., In latter case, the euclidean
transformations also apply to these marker shapes. These shape
grammars will be considered later in the paper as examples of
shape grammars that can be defined using the program.

Initial Shape

—.’.
Shape Rule 1

...___..-—.._’..
Shape Rule 2

Figure 1: A simple shape grammar that inscribes
squares within squares (from Stiny, 198%)

-1

e — Xq
n
i E— - <J
! i : | |
¥ I | H !
i 1 i f }
: i i I i
b S— —— <l
2
M ——— - <
1 .
oo ——— J
2 m

Initial Shape : An (m,n) rectangular grid

Figure 2: A shape grammar to generate rectangular
shapes (from Earl, 198#)

.

)
— 4
|

: t
B——2 LAE— b L >~
l
g gl
©
)

~
v
A

5 i 11 AR
&

6 . 12 27 —
K4

{a)line erasing rules (b)Marker erasing rules

+

s¢ denotes the emply shape

Figure 2 (continued)

c B

-] 2

Shape Rules:

A c A
—
Cc
‘ X
A
—ipe.
B D
i
Y
B
r——

A shape grammar to generate

~-13~

c
5
D
6
C Cc
D
c C
Y
c
© DX
c
- XY

Figure 3 (continued)

b

] d—

Shape representation

Lt S R P WP gt S ieshein

The data structures employed by the program, to store the
shapes and shape grammars and to drive the shape algorithms for
the boolean operations and relations on shapes are detailed in

(Krishnamurti, 198¢, 1981).

A shape is represented by a pair of list structures, one
to represent the maximal lines and the other to represent the
labeled points. Each list structure is arranged according to
some prescribed "key" wvalues. The general arrangement of the
lists take the form shown below:

from preceding "key" node

"key" w1 list of elements
with given "key"

to succeeding "key" node

Consider first the maximal lines. The lines are arranged

in increasing order of their slope-intercept values. If two

lines are colinear =~ that is, they share the same slope and
intercept values - they are arranged according to the {X,y)~

coordinate values of their tails (Krishnamurti, 1986). For two
colinear lines, 1,= <ty,h;> and 1,= <ty ,h>, 1; precedes 1, iff
(,y) 4] < (x,y)[t,]. For any maximal line 1 = <t,h>, vhere
h ig the head of the line, (x,y)[t] < {(x,v}[h]l. Since colinear
maximal lines are disjoint, (x,¥} {hy] < (x,y) [t,].

The slope-intercept values are arranged in a linked list,
each of whose nodes represents a distinct glope—intercept. The

~15-

nodes contain two link fields, one which points to the "next"
slope~intercept node in the list and the other which points to
a linked list that represents the colinear maximal lines with
the given slope and intercept. ‘The list of maximal “lines may
have a "header" node which contains additional information. The
node representing a line 1=<t,h> contains one link field which
points to theﬂ"next“ line in the list and two fields that point
to t and h respectively. The lines are numbered according to
their position in the 1list structure. The data structure for

the lines is shown below:

slope~ .| header .| maximal s max imal

intercept “) line line

Now consider the labeled points. These are represented by
two complementary list structures, one to display the labeled
points and the other is used by the shape algorithms. The list
structure for display purpose consists of a linked list each of
whose nodes represent the coordinates of a point and contain a
a pointer to the list of labels associated with the point. The
labeled points are arranged in increasing value of their (x,y) -
coordinates. The labeled points are numbered according to their
position in the list. 'The data structure is shown below:

{x,y) coordinate >t label —» »se —d label

—)].6~

For the list structure used by the shape algorithms, the
label alphabet is represented by a linked list, each of whose
nodes represents a label. Each node contains a pointer to the
list of coordinates of labeled points in which the given label
occurs. The labels are arranged in increasing lexicographical
order. The list of coordinates may have a "header" node. The

-data structure is illustrated below:

label | header of) L] Y
] value value

The data structures for the labeled points cross-refer to
each other. The display list structure for the labeled points
is created only when reqguired except for certain shapes which

are displayed frequently.

Rational numbers are stored as pairs of integers reduced
to their primitive form (Krishnamurti,198@). Since most of the
rational values used by the Program occur in pairs such as the
(x,y) coordinates of a point or the glope-intercept value for a
line, an array with four integeral fields is employed by the
program. Thus, for example, if a list node represents a maximal
line, its two information fields, one for the tail of the line
and the other for the head of the line, contain references to

entries in this array.

Transformations are represented by nodes with three fields
each of which points to a pair of rational numbers. FEach field
represents two coefficients, one for the x—coordinate transform

—17=~

T, and the other for the y-coordinate transform Ty . [Recall
that the linear polynomial form for both transformations each
contain three coefficients.] That is, the transformation,

T = <Tx = <ag,by,o>, Ty = <ay,by,cy>>

is stored as the triple of pairs: <(ax,ay),(bx,by),(cx,cy)>.

The program has predefined limits on the amount of memory
made available to store the shapes, pairs of rational numbers,
labeled points, shape rules, and transformations. These limits
are given by to the maximum numbers: of list nodes available to
to store the list structures and transformations; of data nodes
available to store the pairs of rational numbers; and of rule
nodes available to store the shape rules. ‘These limits can be
- easily altered (though this requires recompiling the program)
to suit the requirements of users who wish to work with large
shape grammars. If these limits are exceeded, the program will
initiate an error recovery procedure which enables the user to
save on disk, any shape grammar that [s]he has constructed thus

far.
~~~~~~~~~~~~~~~~~

An overview of the program is diagrammed in Figure 4. The
Program has two phases (monitor states} which are indicated in
the diagram by rectangles.A The shape grammar is constructed in
the first phase, which is the start-up monitor state. When the
program is in this phase, the user is prompted by the string:
"SGI>". The shapes are generated in the second phase. In this
phase, the program prompts the user using the string: "“GEN>".
These two phases are referred to as the 5GI phase and the GEN
phase respectively. Each phase has its own set of commands,



its own set of commands some of which are shared by both sets.,
The commands have a simple structure as shown below:

<command> <command pParameters>

[\~—*—dependent upon command

a single letter from the set {A,..,7}
that represents a valid command

that may be required. Once a shape grammar hasg been defined,
typing a G commang will place the Program in the GEN phase. In
this phase, the user can apply any Sequence of shape rules.



system monitor

run SGI Q

SGI PHASE:
interactive definition
of shape grammars

G rules 0

GEN PHASE:
interactive generation

of shapes "“-“——~\
A

P device R,

F Y

print plot or generate next

photograph : current shape
current shape

Figure 4: An overview of the program structure




P

in the grammar construction phase (referred to in Figure 4
as the SGI phase) there are three display shapes which the user
has at his disposal to work with. These are:

1. The initial (or current) shape;
2. The left side shape;
3. The right side shape.

The initial (or current) display shape is used both as the
starting shape and the current shape for the shape generation
process., The left and right display shapes are employed in the
construction of the shape rules and are referred to as the rule
shapes. Any one of these digplay shapes can be activated by
typing an A command (see the section on the command sets). The
activated shape is the shape that is currently displayed on the
Screen and that the subsequent commands affect. ‘The activated
display shape is referred to as the active shape. Initially,
each of the display shapes is empty.

Usually, the first step in defining a shape grammar is to
set up the user window. ‘This is done by typing in the X and Y
commands.

The commands affect either the lines or the labeled points
depending upon the mode the program is currently viewing. ‘The
mode can be set by typing in a V command.

Commands are available to add or delete lines or Jlabeled
points. The lines and labeled points are numbered, any one of
which may be chosen as the current line or point, by typing a C




-]

command. It is this line or labeled point that is altered by
the commands to move, rotate, enlarge, shrink, fasten, label
and unlabel (see the section on the command sets).

it should be noted that any command that invelves a line
Or a point operation that results in a line or a point falling
outside the user window, will not be carried out. If such a
sitvation should occur, the user window has to be redefined by
typing the X and/or Y commands.

In order to define a shape rule, the left and right side
display shapes have to be constructed with the aid of the above
mentioned line or point commands.  Once the sides of a shape
rule have been constructed, a copy of (the active shape or) the
left and right side rule shapes can be entered as a {side of a)
shape rule by typing an E command. Each shape is associated
with a rule number, The shape rules may be defined in any

arbitrary order.

The shape rules are arranged in the standard form, namely,

as the pair: <a,B >. .

Existing shape rules can be replaced or erased. Often,
shape rules may share the same left or right side shape. Also,
the left side shape of some shape rule may be identical to the
right side shape of another shape rule. The F command fetches
a copy of (a side of) a shape rule onto (the active shape or)

the left and right side rule shapes.

A shape or shape grammar can be saved on disk using the W
command and subseguently reinstated using the R command.



-2 0w

When all the shape rules and the initial shape have been
constructed, the user can enter the generation phase (described

in the next section) by typing a G command.

When the user wishes to terminate an interactive session,

typing a Q command, returns the program to the system monitor.

Interactive generation of shapes

P Pk Bt Pp ot 1 ot ok Doy ot g O Pk o o b Gt PSP kP gt £t Wt gt ik

In the shape generation phase (referred to in Figure 1 as
the GEN phase) the user can apply any of the shape rules in the
shape grammar to construct a new shape from the current shape.
To enter the GEN phase from the SGI phase, the user must type
in a G command. ‘'The program first examines if:

(1) the initial shape is non-empty;

(2) the shape rules have non-empty left sides.

If neither condition is satisfied, the user is not allowed to
enter the GEN phase, In the event that some shape rules have
empty right sides, the program will enquire if the user wishes

to proceed with the generation phase.

Shape rules can be applied in two ways, by typing an A or
an R command:
(1) Rules can be applied to the first subshape instance found;
(2) Each subshape instance is examined and when the program has
found one, enquires from the user if [s]lhe wishes:

{a) to apply the rule to the given subshape instance;

{b) to reconsider the subshape instance after all possible
instances have been examined - that is, when all the
subshape intances have been considered, the program
will "roll" through the list of subshape instances that



P Jm

have been marked for reconsideration until the user has
exercised one of other three options;

{c) to discard the subshape instance;

(d) to quit - that is, the shape rule is not applied to any
of the subshape instances.

The algorithm for shape rule application is described in
(Krishnamurti, 1981).

When a shape rule has been applied, a record of the rule
application is noted in a rule stack, which the user can access
at any subsequent stage in the shape generation process, This
provides the user with the means to backtrack to an earlier
stage in the generation process, which he can do by typing a B

command .

In the event that a shape rule application results in the
replacement shape extending beyond the boundary of the user
window, the program will automatically scale the window by an
appropriate quantity so that the generated shape fits into the
new window, the coordinates of which are reported to the user.

In order to determine a subshape instance, the program
_attempts to compute an euclidean transformation such that the
transformation of the left side of the shape rule is a stubshape
of the current shape. If, in the event that there are two such
transformations with different coefficients which give rise to
identical subshape instances with identical shape replacements,
the program will regard the two transformations as equivalent.
That is, the program determines the equivalence classes of the
transformations under the operations of rotation, reflection or
compositions of these, where each equivalence class determines



-2

a distinct subshape instance.

When a shape has been generated, the user can, by typing a
P command, obtain a line printer description or a hard copy

line drawing of the shape.

In the GEN phase, the shape rules are rearranged in their
reduced form (Krishnamurti, 1981)., That is, each shape rule is
given by the 4-tuple: <o, o ~B, f~ a;' a .B>. The components
of the 4-tuple serve the following purpose. The 1-st component
is used in the determination of the subshape instances. The
2-nd and 3-rd components are employed in shape rule application
algorithm. The 4~th component is required to recover the shape

rule to the standard form.

A digplay of a shape rule in both its standard and reduced
forms can be obtained by typing an S command.

When the user has generated the shapes he requires, he can

return to the SGI phase by typing a Q command.

: It should be noted that in the GEN phase, the active shape

is always the current shape.

The command sets

St o el P S RS e

Each valid command type is represented by a single letter
from the set {A,..,Z}. Some command types consists of several
commands, each of which is specified by an additional command
parameter. For example, the T command represents an euclidean
transformation, and the command TS indicates that the transform



25—

is a scaling. Each phase has its own set of commands, and some
commands are common to both phases. These shared commands have
identical formats. The command sets for the SGI and GEN phases
are summarized in Tables 1 and 2 respectively. The parameters
described within square brackets ([ ]) are optional. Note that
the commands listed in Table 2 are just those commands which
are either exclusive to the GEN phase, or result in a different
action to that in the SGI phase. For a complete description of
the SGI and GEN phase commands, the reader is referrred to the

SGI user manual {Krishnamurti, 1982).

The parameters, other than those that specify a particular
command, can be supplied either with the command string or when
the program prompts the user to supply them. Moreover, where
possible, the program is forgiving in that incomplete command
strings or parameter information can be specified. In such
situations, the program will, by prompting the user, attempt to
complete the command. For instance, if the program expects the
coordinates of a point, and the user has supplied only the x-
coordinéte, the program will prompt for the y-coordinate. 1In
order to ensure that unexpected things do not occur, the user
has the facility to terminate any command prematurely, simply
by typing a blank input to a pregram prompt. ‘The program will
not carry out a command until it has received all the relevant

information.

v

Some of the commands are repetitive. That is, the program
will, after executing each instance of the command, prompt the
user for the parameters for a fresh instance of the command.
Such commands are terminated by typing in a blank input to a

program prompt.



—26—

Command Parameters Description
A display shape Activate and display the

indicated shape. The
subsequent commands refer
to this active shape

B reset the deBugging switch

C line/point no. select the indicated line
(or point) as the Current
line (or peint)

D [line/point no.] Delete the current lor
indicated] line/point and
renumber if necessary

E [rule no.] Enter a copy of the active
shape as a side of the
indicated shape rule. If
no rule number is supplied,
increment the highest rule
entered by 1 to give the new
rule number

ER {rule no.] Enter a copy of the left and
right rule shapes as the
indicated shape rule

F - [side] Fetch a copy of. the indicated
[rule no.) side of the indicated shape
rule onto the active shape.
If no side is supplied, the

entire shape rule is fetched

onto the rule shapes. If no

rule number is supplied, the

last rule entered is fetched

G production rules enter the Generation phase.
The indicated production rules
are the only shape rules that
can be referenced in the
generation phase

Table 1: Summary of the commands available for constructing
- shape grammars




D

Command

H or u*

J (line
mode)

J (point
mode)

K or KD

KC

Table 1

Parameters

command (s)

status key

position
to line no.
position

point ne.

graphics element
and colour map

{(continued)

Description

Help -~ provide a brief (and
if * is supplied, a complete)
description of the indicated
SGI phase command (s)

Help - provide the requested
SGI phase status informaticn

re~Initialize the program to
the original state

Join — move the current line
along the X- and/or Y-
directions so that the
indicated position on the
current line coincides with
with the indicated position
on the indicated line, and
renumber if necessary. The
positions are specified as
shown in Figure 5

Join - delete the current
point and union its labels
with the labels of the
indicated point and renumber
if necessary

draw a clean version of the
active shape. If the D
parameter is supplied, reset
user—accessible variables to
their default wvalues; that
is, the program is placed in
line mode and no current line
is defined, and the display
of the line/point numbers
gwitched off

change the colour associated
with the indicated graphics
element to the indicated
colour




2

Command

L (line
mode}

L {point

mode)

MX or MY

N (line
mode)

N {point
mede)

Table 1

Parameters

position
add/remove symbol
label (s)

add/remove symbol
label (s)

on/off symbol
on/off symbol
from coordinates

to coordinates

coordinates
label (s}

{pair of rule
nos.}

device
shape (=)

{continued)

PDegcription

Label - add to or remove from
the indicated pesition on the
current line, the indicated
label (s)

Label ~ add teo or remove from
the current point, the
indicated label (s)

Mark {(display) or ummark the
numbers assigned to the
lines/points

Mark or unmark the coordinate
axes

create a New line from the
indicated point to the
indicated point. (This
command is repetitive)

creates a New labeled point

at the indicated coordinates
with the indicated label set
(This command is repetitive)

Order rules - if no parameter
is supplied, the nonempty
shape rules are renumbered
from 1 consecutively. This
command may alter the number
of the highest rule and the
last rule entered.

Otherwise, interchange the
numbers associated with the
indicated shape rules

Print, Plot or Photograph
the indicated shape(s)

The shape{s) can be either
i)the active sghape, or

ii) (a side of) a shape rule




~20-

Command

TX

TI

Table 1

Parameters

file name

file nhame

[side]
rule no.

x-coordinate
and y~-coordinate
transformations

angle
[M] {line mode)

scale factor

distance

distance

axis
(M] (line mode)

{continued)

Description

Quit -~ terminate program
and return to system monitor

Read the indicated shape from
disk and add to active shape

Read in a new shape grammar
from disk

Show (display) the [indicated
side of the] indicated shape
rule

Transform - apply the user
supplied transformation to
the current line/point

Rotate the current line/point
through the indicated degrees
counterclockwise. If the
parameter M is supplied, the
point of rotation is the mid-
point of the current line

Scale the current line/point
by the indicated scale factor

move the current line/point
along the X—direction by the
indicated distance

move the current line/point
along the Y—direction by the
indicated distance

Invert {(reflect) the current
line/point about the
indicated axis, which if the
parameter M i1s supplied,
passes through the mid-point
of the current line




=3 -

Command

PH

W,

Table 1

Parameters

comment (s)

mode

file name
file name
minimum and
max imum
coordinates
minimum and
max imuom

coordinates

set

(continued)

Description

Print help - provides a
listing of the user manual

writes User's comment (s) onto
comments file (This command
is repetitive)

View - switches the program
into the indicated mode,
namely, lines or points.
The subseguent commands
affect the elements in the
current mode

Write active shape onto disk

Write current shape grammar
onto disk

reset the X—coordinates of
the user window to the
indicated values

reset the Y-coordinates of
the user window to the
indicated values

Zap the indicated set, namely,
lines or labeled points from
active shape




-3l

Command Parameters Description
A selection rule 2pply the indicated shape

rule to the first subshape
instance found, if any, to
vield a new current shape

B Backtrack to the previous
current shape in the
generation process

D ' reset the Debugaing switch
H or H* command () as in Table 1 but refers to
the GEN phase commands
H. status key Help - provide the requested
GEN phase status information
P device as in Table 1 except that
shape (s) shape rules can plotted or

photographed in both their
standard and reduced forms

Q Quit —~ terminate and return
to the grammar definition
phase

R selection rule apply the indicated shape

: Rule to a specified subshape
instance (if any). When a
subshape instance has been
determined, the program will
enquire if the user wishes to
apply the rule. If not, the
program continues to search
for other subshape instances

=) {side] Show (display) rule - as in
rule no. Table 1 except that the user
has the choice of seeing the
indicated shape rule in both
the standard and reduced
forms

Table 2 : Summary of some commands available for generating
shapes .




39—

In the event that a command or parameter string cannot be
~ properly decoded as result of some error, the program reports
an error message., All program messages are designed to be as
instructive and helpful as possible. Of course, the ultimate
judge of whether the program is successful in this objective is

the user himself.

The commands can be entered free formatted. MNo separators
are required between pararameters except between numeric tokens
in which case the program expects at least one blank space.

There is no case distinction for the character set. That
is, the program does not distinguish between lower and upper

case characters.

Any input string to the program c¢an be terminated by a
semicolon (;). Any character string that follows a semicolon

is treated as a comment.

Each command can be classed as belonging to one of the
following command categories:
1. Switch
2. Graphics
. Rule
. Input/Output
. Termination
. Aid

[SATNN V2 B - T}



-3

1. Switch commands

A switch command enables the user to set or reset certain
program variables. Consider first the SGI phase commands.

The A (activate) command sets the specified display shape
to be the active shape which the subsequent graphics commands

affect. The active shape is displayed on the screen.

The G {generate) command switches the program to the shape
generation phase. This command has an integral parameter, say
N, wvhich indicates that shape rules 1 through N are to be used
as the production rules in generating the shapes. This number
N can be less than the number of shape rules defined in the SGI
phase,

The M (mark)} commands set or reset the display of either
the coordinate axes, or the line or labeled point numbers.

The V (view) command sets the program mode which defines
vhether the graphics commands affect the lines or the labeled

points in the active shape.

The X (X-axis) and Y (¥Y-axis) commands respectively define

the new x- and y-coordinate axes for the user window.

The I (initialize) command sets the program to the default
initial state. All information resident in the program is lost
except the current coordinates for the user window and colour

maps for the graphics elements.

P

In the GEN phase the commands available are M, V, X and Y.



~34-

2. Graphics commands

et

These commands perform graphics type actions on the lines
and points in the active shape. The commands affect either the
lines or the labeled points depending upon the mode the program

ig in.

The C (choose current) command selects the indicated line
or labeled point as the current line or point on which graphics
type operations can be performed.

The D (delete} command removes from the active shape, the
indicated line or labeled point. This line or labeled point

can be the current line or point.

In line mode the J (join) command fastens the current line
to another line in such a manner that two specified positions,
one on the current line and another on the second line, share
the same coordinates. That is, the current line is moved along
the X~ and Y-directions until the specified positions coincide.
Any position on (or outside) a line is specified, by tvping an
end point of the line and a fraction (which can be negative).
The fraction is the ratio of the distance of the position from
the indicated endpoint and the length of the line. For example
the position specifier 1/5 L denotes a position 1/5-th of the
line length away from the left hand end point line. Figure 5
gives examples of positions on a line and their specifiers. In
point mode, the J commmand uniong the current labeled point
with the specified labeled point. In other words, the current
point is deleted and its labels are unioned with those of the
specified labeled point.

A



35—

I/5 L =4/5R

=1/2R

M= I/21

—i/2R

3/2L

line

Horizontat

7/108B

|
=
3

line

ions on a

t

Specifying posi

Figure 5




—36—

Line with positive slope

A

e

L)
©
~
w
i
wd
o
~
™)

TR S,

2
@
o2l
@
£

Fu

=
S
@
=

-

Figure 5 (continued)




-37-

The L {{un]label) command adds labels to or removes labels
from, the current point if the program is in point mode, and
the indicated position on the current line if the program is in

line mode.

The N (new) command creates in the active shape, new lines
or new labeled points. This command is repetitive in that the
the program prompts the user for more lines or labeled points.
A blank input to one such prompt terminates the command. When
a line is entered, the program first determines whether it is a
maximal line, If it is not, it is combined with maximal lines
in the active shape to form a new maximal line. When a labeled
point is entered, the program first determines if there is a
labeled point already present at the specified coordinates. If

so, the command is equivalent to a label (L) command.

The Z (zap) command removes either the lines or the label-

ed points from the active shape.

The T (transform) command does an euclidean transformation
on the current line or labeled point. 'The specific transforma-
tion is described.by the single character that follows *he "T".
For example, TR is a rotation; TS performs a scaling; TX and TV
are translations along the X- and Y-axis respectively; and TI
represents axial inversion (or reflection) =~ TIX performs the
inversion about an X-axis, and TIY performs the inversion about
a Y-axis. The current line can be inverted about an axig which
passes through, and can be rotated about, either its mid-point
or the origin of the coordinate system. The TS command can be
used to either shrink or enlarge the current line. The user
can also specify his own transformation, by not supplying the
the specific transformation type parameter. In this case, the



38

program prompts the user to provide the coefficients for both

the x- and y-coordinate transformations.

The K (teKtronix) command displays a clean version of the
active shape on the screen. The KD command also provides a
clean version of the active shape and in addition, resets some
user accessible variables to their default values. For example
the program is placed in line mode with no current line defined
and the line/point numbering is switched off. The KC command
changes the colour maps and hence, the colour for the various
graphics elements such as line, text and background colours.

In the GEN phase the only command available is K.

3. Rule commands

Rule commands invoke or manipulate the shape rules. There
are four rule commands in both phases, one of which is shared,
namely, the S (show rule) command which displays a (side of a)
shape rule on the screen. In the GEN phase, both the standard

and reduced forms of the shape rule can be seen.

In the S8GI phase, the rule commands are used to define and
organize the shape rules. The E (enter rule) stores a copy of
_ elther the ‘active shape as a side of a shape rule or the left

and right side display shapes as a shape rule. The F (fetch
rule) places a copy of either an indicated side of a shape rule
onto the active shape or a shape rule onto the left and right
side display shapes. Only shape rules that have been defined
earlier can be fetched. 'The F command is useful when the left
side of a shape rule is the right side of another shape rule,
Such shape rules often occur in practice. The E command can be



~30-

used to erase or replace existing shape rules. The shape rules
can be defined in any arbitrary order. For both the E and F
commands, the active shape must be one of the two rule shapes.

The O (order shape rules) command organizes and renumbers
the shape rules consecutively from 1 onwards, in the process
removing all shape rules that have been erased. Any shape rule
that has been erased by an E command is still associated with a
rule number. The O command can also be used to interchange two
shape rules. This facility is useful when several versions of
a shape grammar, each differing in a few rules, are required to

be tested.

In the GEN phase, the rule commands correspond to shape
rule application commands. The R and A {apply rule) commands
apply a shape rule to generate a new shape from the current
shape.  The A command applies the shape rule to the first sub-
shape instance found. The R command gives the user the choice
of which subshape instance is to be replaced.

The B (backtrack) command applies, in reverse, the most
recently applied shape rule to the current shape, to obtain the’

immediately previous shape in the generation process,

4. Input/output commands

There are three input/output commands: the R (read file),
W (write file), and P (print, plot or photograph) commands.

The R command reads a shape or a shape grammar from a file
on disk. Prior to reading in a shape grammar, the program re—
initializes itself., Consequently, any information resident in



—40—

the program is lost. When reading in & shape, the user window
is readjusted to accommodate both the shape and active shape to
vhich the shape is unioned. ‘The read command is not available

in the GEN phase.

The W command writes the shape grammar or the active shape
onto a file on disk. In the CGEN phase, only the current shape
can be written to disk.

It should be remarked that if there is more than one file
with same name resident on disk, the program will read/write
the highest numbered version of the file, There is, as yet, no
provision for specifying the version number for a file.

The P command provides a hard copy output of the active
shape or a shape rule. In the GEN phase, the hard copy output
for both the standard and reduced forms of the shape rule can
be obtained. The PL command gives a line printer description
of the specified shape(s). THe PG command provides a graphics
plotter line drawing of the specified shape(s). The PC command
takes a photograph of the specified shape (s} with the camera.

5. Termination command

There is only one termination command in each phase, the 0
{quit) command. If this command is typed in the GEN phase, the
program returns to the SGI phase. If the command is entered in

the SGI phase, the program returns to the system monitor.



-1

6. Aid commands

These are general purpose commands to aid the user during
the course of an interactive session and to provide debugging
facility for program development and improvement. Some of the
commands are not available to the general SGI user.

The H (help) command provides 1) status information on the
program variables; and 2) information on the various commands.
The status information provided are:
1)In the SGI phase:

a) the coordinates of the user window;
b) the active shape;
¢) the current line or labeled point and its coordinates;
d) the current program mode;
e) the shape rules entered;
2)In the GEN phase:
a) the coordinates of the user window;
b)'the current sequence of shape rule application;
¢) the number of production rules in the grammar;
d) the rule type for each shape rule.

The PH (print help) command generates a printer listing of
the 5GI user manual (Krishnamurti, 1982}, The uger is advised

to read the manual prior to using the program.

The U (users comments) command allows users to enter any
comments, suggestions for improvement, or requests for specific
facililties. ‘These comments are placed in a file which is in
the directory of the programmer in charge of the program. This
provides a machinery wherby users can communicate their needs.



- P

The following commands are not available to general users

except at the discretion of the programmer in charge of SGI.

The B (in the SGI phase) and D (in the GEN phase) commands
generate debug trace information. The PD (print dump) command
generates a dump of the list structures. These commands have
been found to be extremely useful during program development.
Since the program is still considered to be in its infancy,
these commands have not been removed. It is recommended that
they are used judiciously as they produce reams of printout.

Ptk ot g g o ot Vo e i~ ot b o e P s ot Pt ot

Consider the simple shape grammar shown in PFigure 1. ‘The
grammar consists of two shape rules. The language defined by
this grammar contains shapes consisting of n(>#) squares, one
inscribed in another. The SGI program to construct the grammar
is developed below. FEach command has a comment which describes

the action of the command.

First, set up a user window, say, between (-18,~10) and
(19,10). The commands to do this are:
X ~10 14 ; sets the X-axis for user window
Y -1@ 18 ; sets the Y-axis for user window

Second, define the initial shape. ‘The following sequence
of commands constructs a square with corners at (-5,5), (5,5),
{5,~5) and (~5,-5):
Al ; activate the initial shape
VL ; set program to line mode - that is, view lines

N ; inform program that you are ready to input lines



—4 3

line? -5 555
1line? 5 5 5 -5

line? 5 -5 -5 -5

line? -5 -5 -5 5§

1ine?<CR> ; <CR> denotes a carriage return

Mt ; display the line numbers

€2 ; choose the line numbered 2 as the current line

r

IMA ; label the mid-point of the current line with label A

FG ; plot the initial shape

«ss < program -user interaction with the program requesting
.+« <~ information about plotter parameters

do you wish to title plot (y or n}?Y ; user replies with a ves
ok, enter title (max 6@ characters)?(a) Initial shape

; further program — user interaction

... plotter disconnected <-—- program indicates that plotting
is completed

The plot of the initial shape is shown in Figure 6(a). MNotice
that the label symbol o in Figure 1 has been replaced by the

letter A.

Third, since this shape appears as the left side of shape
rules 1 and 2, it is convenient to save it.
W SOQUARE ; save the initial shape on a disk file named “"SQUARE"
Fourth, construct the shape rules. Consider shape rule 2
first.
AL ; activate the left side display shape
R SQUARE ; read in the square constructed above
AR ; activate the right side display shape
R BQUARE ; again, read in the square constructed above

ZP i remove all (in this case, the only} labeled pointsg in the
active shape

ER2 ; define shape rule 2



—44-

At this stage, it should be remarked that the left and
right side display shapes remain unaltered and that the right
side shape is currently active, If the user is in any doubt,
the commands: |
H.A ; request the currently active shape
H.V ; request the current mode
provide the necessary status information.

Consider shape tule 1. The command sequencé:
N ; inform program of new lines o #
line?-5 § ¢ 5
line? ¢ 55 @
line? 5 @8 ¢ -5
line? @ -5 -5 6@
1line?<cr>
constructs a square ‘inscribed inside the original square.

M+ ; switch on the line numbers

C2 ; choose line numbered 2 as the current line .

r

IMA ; label the mid-point of the current line with label A

r

ER1 ; define shape rule 1

The commands -
PGl ; plot shape rule 1
PG2 ; plot shape rule 2
provide line drawings on the plotter for shape rules 1 and 2
{see Figures 6(b} and 6(c) respectively).

The shape grammar has been defined. The following command

saves the shape grammar on disk:
W. GRAMMAR ; save the grammar on a disk file named "GRAMMAR"



) e

(a) Initial shape




—46-

Now, 1let us consider generating some of the shapes in the
language defined by this grammar. For this, we need to enter

the generation phase:

G2 ; inform the program that shape rules numbered 1 and 2 are
the production rules for the grammar

At each stage in the generation, shape rule 1 can be applied to
two distinct subshape instances which are axial reflections of
one another (see Figure 7). A sequence of:

Al ; apply rule 1 to first subshape instance found

will generate the intermediate shapes shown in Figure 8, 2nd a
sequence of commands consisting of some combination of:

Al ; apply rule 1 to first subshape instance found

r
and

Rl ; apply rule 1 to user-specified subshape instance : in this

case the program will display each subshape instance and
will enquire from the user if [s]lhe wishes:

(see the section on interactive generation of shapes for a

description of the various options)
will generate the intermediate shapes shown in Figure 9,

Applying the erasing rule, by typing the command:
A2 ; apply shape rule 2
to each of the intermediate shapes in Figure 8 yield the shapes
in Figure 10 which correspond to shapes in the langauge defined
by the grammar. Notice that the bounding sguare fqr all such

shapes is always the same.



-4

Figure 7




—d] B

and

the A comm

Figure 8




T

Figure 8 (continued)




-5

i_ ‘
e

e

ﬁ;

¥
Shapes generate

Figure 9




Bl

dge

i

shapes n the

Termirial

Figure 19




50—

F"igure B (continued)

Figure 12 (continued)




~53—~

[ R R L e e R e A

We now consider a class of shapes that has attracted the
attention of researchers over the past decade (see Earl, 1988
for a reasonable bibliography). The shapes correspond to floor

plans, and in particular, to the arrangement of rooms within a

rectangular framework and are referred to as rectangular shapes
(Barl, 198f). The grammar in Figure 2 generates all possible
rectangular.shapes within a fixed framework which is given by
the intial shape. Strictly, the grammar in Figure 2 is not a
shape grammar in the technical sense in that the initial shape
cannot be specified with arbitrary dimensions but instead, must
be generated by applying a set of rules to some fixed initial
shape. This problem is considered in the next example.

It is worthwhile to reflect briefly on the rules. Shape
rules 1 through 6 remove lines from and change marker positions
in the original initial shape. Shape rules 7 through 12 erase
the marker shapes. Earl (1988) haes shown that by selecting a
subset of the line erasing rules (1 through 6} and a subset of
the marker erasing rules (7 through 12}, different classes of
rectangular shapes can be generated. For instance, dissections
of rectangles into rectangles can be generated using rules 1,2,
7,9,1¢ and 11,

In order to define the shape grammar using the program,
the first step is replace the labeled points and marker shapes
by points associated with a letter label. Clearly, the label
e Can be replaced by the label, say Q. The marker appears
in the grammar in four distinct orientations: I ,v, < and A .



Py

Each orientation must be uniquely represented. The obvious
solution is to assign a distinct label to denote each distinct
marker orientation. But, this would involve replacing each
shape rule by a set of shape rules each of which corresponds
to the different marker orientation. Alternatively, by using
a single label, say P, to represent the shape > , and by
positioning the label with respect to the lines in the shapes,
the original set of rules can be preserved. For convenience,
let the tip of the marker by denoted by a ® . Then, the four
orientations of the marker can be represented by the four
distinct positions of the label P with respéct to the » , as

shown below:

D< . P <

P
Y
pq . » P

v
— , B

it should be observed that the line erasing shape rules
are applied to the line segments between two consecutive grid
lines in the initial shape. Consequently, to ensure that the
program does not expend a lot of fruitléss computation search—~
ing for all possible subshape instances, it is advisable to
label the mid points of the line segments with the label, say
s. This would then add an extra erasing rule which removes
all labeled points with the label S. The shape rules take the

form shown in Figure 11.



B

Consider the initial shape shown in Figure 12. Suppose we
wish to generate the divide the initial shape into rectangles.
As stated earlier, we require just seven of the thirteen rules:
1,2,7,9,14,11 and 13, In order that the shape rules appear to
the program as rules 1 through 7, they have to be renumbered.
The command sequence:

0 37 ; interchange rules 3 and 7
0 49 ; interchange rules 4 and 9

0 5 18 ; interchange rules 5 and 18
0 6 11 ; interchange rule 6 and 11
0 7 13 ; interchange rule 7 and 13 - notice rule 7 currently

refers to the original rule number 3

accomplishes the renumbering of the rules. We can now enter

the generation phase by typing in:

G7 ; enter generation phase with shapes rules numbered from 1
to 7 inclusive as the production rules for this grammar

A labeled rectangular shape generated by applying the line
erasing rules 1 and 2 is shown in Figure 13. The corresponding
rectangular shape generated by applying the label erasing rules
7,9,18,11 and 13 is shown in Figure 14.



B

(4]

Rule 1

3

Rule

i
—i
o]
W
=
o
-t
e




—57~

Figure

11 (continued)




—5—

Figure 11 (continued)

Rule 9

i

o,



—50—

Figure 11 (continued)




w5

Figure 11 (continued)




—61—

Figure 12




—f 2

e

G

Figure 13




—53—

Figure 14

S H




—64—

At g o Yot P P

We now present a shape grammar for generating rectangular
grids. A grid is a shape which consists of maximal lines all
parallel to the cartesian coordinate axes, four of which share
end points (the boundary rectangle) and the rest have their end
points coincident with the boundary rectangle. "An  (m,n) grid
has m+l maximal lines parallel to the y-axis and n+l maximal
lines parallel to x-axis. Parametric shape schemas for the
generation of wvarious classes of (m,n) grids can be found in
(Stiny and Mitchell, 1978,1980; Weissman Knight, 1981).

The shape grammar is shown in Figure 3 and consists of
ten shape rules. Shape rules 1 and 2 define the x-axis for the
grid and likewise, shape rules 3 and 4 define the y-axis. Rule
5 extends the internal maximal lines parallel to the y-axis by
a unit distance. In same fashion, shape rules 6 and 7 extend
by a unit distance the internal maximal lines parallel to the
x-axis. Rule 8 is similar to rule 7 except that it affects
just the top most maximal line of the boundary recténgle. Rule
9 affects the right most maximal line of the boundary rectangle
and extends it by a unit distance when a row of grid cells have
been constructed. Rule 1¢ 1is the termination rule which only
applies when the grid has been generated. MNotice that in order
to construct an (m,h) grid, shape rule 1 has to be applied m-1
times and shape rule 3 has to be applied n-1 times. Figure 15
illustrates some stages in the generation of a (4,4) grid.



—H5—

Figure 15

Y
D
D
C
D X
C C
of the grid

Y
D
D
C C
D

b Start the internal maxd




~-B6-~-

Compiete a

(d) An Fntermediggggf

Figure 15 (continued)




—67-

P R s

g -
oS

d

gri

)

4

4

the (4

#

) Términate

(f

Figure 15 {continued)




—~HB—

Notice that the shape rules can be modified in order to
construct, say all (2m,n) grids. For that, shape rules 1l and 2
are changed to those shown in Figure 16.  Clearly, any class of
(m,n) grids can be constructed by suitably changing shape rules
1l through 4,

Notice too that the shape rules can be easily modified to
construct the initial shape for the shape grammar described in
the preceding section. This shape grammar is shown in Figure

17,

It is worth making one last comment. The grammar shown in
Figure 3 was implemented without modification. This resulted
in several unexpected subshape instances to be discovered when
shape rule 9 was applied. Rule 9 was subsequently modified to
that shown below:

This eliminated the surprise (though perfectly valid) subshape
instances. This simple grammar provides an example where the
tradeoff between time and space costs must be considered when
using the program, by supplying more than the minimum necessary
information in the shape rules, the computation required to

search for sUbshape instances is substantially reduced.



~69~

Modified shape rules 1 and 2 to
generate all (2m,n) grids

-
-

Figure 16




T

Figure 17: Changes to shape grammar to generate
the initial shape for Earl's grammar




-7

iy

ape rule S e

)

Figure 17 (continued)




~F -

Shape rule

Bhope rule 7
s

5 T




—7 3

Figure 17 (continued)




~7h—

S P ot s s ot ot et £t o o o tor e

The design of the shape grammar interpreter SGI has been
presented. The program implements any shape grammar based on a
complete and uniform representation of rational two dimensicnal
shapes. Shapes can be generated by applying any user—specified
‘sequence of shape rule application. SGI has been tested on a

few sample shape grammars.

The correctness and efficiency of the shape algorithms
employed by the program have been established in (Krishnamurti,
198@, 1981).

The program has been implemented in Fortran on a VAX11/780
computer. The program consists of 149 routines including the
graphics and debug trace routines, and occupies approximately
240K bytes of memory excluding the storége required to house
the list structures and shape rules. At present 200K bytes of
memory have been allocated for this purpose. The program has
been thoroughly tested. Fach command has been wverified to
execute correctly for all possible spatial conditicns. ‘The
response time for each command is, for all practical purposes,
instantaneous except for the disk file read command which is

dependent on the system disk driver routines.

The program fulfills a need for a general shape grammar
interpreter that has existed for the past 5 or 6 years. To my
knowledge, SGI is the second computer program ever designed to
operate on shape grammars. ‘The first program was written by
Gips (1975). Gips' program was restricted to shape grammars
with two shape rules and to shapes which are closed polygons.



—7 5~

Nonetheless, his experience with the compuational aspects of
shape grammars through publications and personal communication,
has had considerable influence on the design of SGI. While the
shape algorithms and the data structures used by 8GI differ
radically from those employed by Gips' program, his design for
a user—friendly shape grammar interpreter command set served
as a medel for the SGI language and helped to reduce what would
gtherwise have proved very hard work.

It is early days. There has been limited interaction with
other users whose initial response has been encouraging. With
greater user interaction one c¢an expect more constructive
comments and suggestions which will result in improvements and
modifications to the program. ‘This is precisely the reason for
including the U command in the SGI language. One of the aims
in designing a shape grammar interpreter is to extend our
understanding of machine generation of shapes. ‘The feedback
from using SGI or any other shape grammar program can only lead
to the design of better shape grammar programs with sufficient
power for inclusion in large CAD and CAAD packages.

The program does have its limitations, stated earlier in
the paper. It also lacks some other features which have become
apparent through use such as commands for global deletion and
~ substitution of subsets of labels from the labeled points. It
is expected that these features along with others suggested by
potential users will be incorporated in future versions of the
program. I believe that SGI will prove to be a valuable tool
which can contribute towards an appreciation of the joys and
frustrations involved in the computer generation of shapes.



References

Pt Pt s ot o e Pt P

Earl C F, 1984,
"Rectangular shapes™"
Environment & Planning B 7 pp3i1-342

Gips J, 1975,
Shape Grammar and their Uses: Artificial Perception,
shape Generation and Computer Aesthetics
(Birkhauser Verlag, Basel and Stuttgart)

Krishnamurti R, 1980,
"The arithmetic of shapes®
Environment & Planning B 7 pp463-484

Krishnamurti R, 1981,
"The construction of shapes"
Environment & Planning B 8 pp5-44

Krishnamurti R, 1982,
"SGI User Manual"
Technical Report: Centre for Configurational Studies

Stiny G, 19884,
"Introduction to shapes and shape grammars"
Environment & Planning B 7 pp343-351

Stiny G, Mitchell W J, 1978,
"The Palladian grammar™
Environment & Planning B 5 pp5-18

L

Stiny G, Mitchell W J, le8g,
"The grammar of paradise: on the generation of Mughal gardens"

Fnvironment & Planning B 7 pp2@9-226

Weissman Knight T, 1981,

"The forty-one steps"
Environment & Planning B 8 pp97-114




