
THE DEFINITIVE, PEER-REVIEWED AND EDITED VERSION OF THIS ARTICLE CAN BE FOUND IN:
Yue K, Krishnamurti R, 2013, "Tractable shape grammars" Environment and Planning B: Planning and Design 40(4) 576 – 594
[DOI http://dx.doi.org/10.1068/b38227]

Tractable shape grammars

Kui Yue

kuiyue@microsoft.com, Microsoft, Redmond, WA 98052

Ramesh Krishnamurti (1)

ramesh@cmu.edu, Carnegie Mellon University, Pittsburgh, PA 15213-3890

February 2010 (Revised) December 2011, May 2012, April 2013

Abstract: This paper explores the theoretical basis for a concept of “computation-friendly”

shape grammars, through a formal examination of tractability of the grammar formalism.

Although a variety of shape grammar definitions have evolved over time, it is possible to

unify these to be backwards compatible. Under this unified definition, a shape grammar can

be constructed to simulate any Turing machine from which it follows that: a shape grammar

may not halt; its language space can be exponentially large; and in general, its membership

problem is unsolvable. Moreover, parametric subshape recognition is shown to be NP. This

implies that it is unlikely in general to find a polynomial time algorithm to interpret

parametric shape grammars, and that more pragmatic approaches need to be sought. Factors

that influence the tractability of shape grammars are identified and discussed.

Keywords: shape grammar definitions, Turing machine, parametric shape recognition,

computational complexity, tractability

(1) Author for correspondences

EPB 138-227 Tractable shape grammars

 -2-

1 Introduction

Implementing a parametric shape grammar interpreter has long been considered difficult

(Chau et al., 2004; Gips, 1999), for reasons not always apparent. In this paper we consider

the issue of implementation through a formal examination of tractability of the shape

grammar formalism for which we invoke both formal language theory and asymptotic

analyses of algorithms. Specifically, a computational problem is deemed tractable whenever

there is a polynomial algorithm; and intractable when it requires super-polynomial, typically,

exponential, time. As a result we are better positioned to formulate a concept for a shape

grammar that is “computation-friendly.”

The basic formalism of a shape grammar has remained largely unchanged, although,

over time, there have been changes in definition and development. Factors that have

influenced these changes relate to the scope of permissible shape elements and possible

augmentations. The early focus in shape grammars was on two-dimensional shapes made up

from finite lines, specified, representationally, in terms of maximal elements (Stiny, 1980a).

In the kindergarten grammar (Stiny, 1980b), basic shapes were extended to three-

dimensional rectilinear solids, albeit drawn as line shapes. In a subsequent paper, Stiny

(1991) considered shapes made up from points, lines, planes, or solids as the main elements

for a shape grammar. Krishnamurti (1992a) examined shape arithmetic on shapes made up

from finite planes; with Earl, he considered subshape recognition for three-dimensional

shapes under linear transformations (Krishnamurti and Earl, 1992); and with Stouffs, he

extended the arithmetic to higher-dimensional shape algebras (Krishnamurti and Stouffs,

2004), described algorithms for three-dimensional shape arithmetic and analyzed their

EPB 138-227 Tractable shape grammars

 -3-

computational complexity (Stouffs and Krishnamurti, 2006) and considered subshape

recognition over the Cartesian products of differently dimensioned shapes (Krishnamurti and

Stouffs, 1997). A three-dimensional shape grammar implementation based on a commercial

solid modeling kernel has been described in Piazzalunga and Fitzhorn (1998), and grammars

over curves have been considered by several authors (Chau, 2002; Jowers et al., 2004;

Jowers&Earl, 2010, 2011; McCormack and Cagan, 2003; Prats et al., 2004).

Geometric shapes can be augmented by symbols, numbers, attributes, in general, weights

(Stiny, 1992), in this way, connecting shapes of various kinds (Stiny, 1991). Shapes so

augmented can be further extended, by open parameters, such that a family of shapes can be

defined. A shape s ≈ s(x) can be associated with a finite but possibly empty set of variables, x,

for example, coordinates of points that describes a family of shapes. When the set of

variables x is empty, then a shape is given automatically. Otherwise, a shape can be ‘fixed’

by using a function g to assign values to the variables x as g(s) ≈ g[s(x)]. Shape grammars

with parameters have been, historically, termed parametric shape grammars. To distinguish,

grammars without parameters are referred to as non-parametric shape grammars.

2 Evolution of shape grammar definitions

A rigorous unified general definition of shape grammars is essential for theoretical analyses.

In this regard, a detailed review of past definitions is essential to enable us to explore

important characteristics over the time, capture tendencies of development, and obtain

insights on a definition of shape grammars, which will be appropriate for complexity analysis.

EPB 138-227 Tractable shape grammars

 -4-

The first formal definition, SG-DEF-1971 (2) was given in the seminal article by Stiny and

Gips (1971). Since then, several other definitions have appeared in the literature, each

reflecting either the understanding at a particular time, or reflecting a specific research flavor.

These include SG-DEF-1974 (Gips, 1974), SG-DEF-1975 (Stiny, 1975), SG-DEF-1977

(Stiny, 1977), SG-DEF-1980 (Stiny, 1980a), SG-DEF-1991 (Stiny, 1991), SG-DEF-1992

(Stiny, 1992) and the implied definition SG-DEF-2006 (Stiny, 1992). All but SG-DEF-1974,

and SG-DEF-1992 are reviewed in detail.

In these definitions, a shape grammar SG = <S, M, P, I> is typically specified as a 4-

tuple made up from a set of vocabulary shapes S, a set of markers M, a set of productions P

and an initial shape I together with a notion of shape rule application. The set S* is formed by

finite arrangements of one or more elements of S in which any element may be used in a

multiple number of times with any scale or orientation. Typically, the elements of S* and M

have nothing in common. That is, S* ∩ M = ∅. Each element in P consists of an ordered

pair (u, v) typically written as u → v, represents a shape rule. The initial shape I normally

contains an A such that there is an applicable rule, (u, v), which is an element of P. Elements

of S* appearing in certain rules (u, v) of P, or in I are terminal elements. By contrast,

elements of M are non-terminals. Variations between the definitions rest on the way in

which the sets and shape rule application are specified.

A shape is generated from a shape grammar by starting with the initial shape and

recursively applying the rules. The result of applying a rule to a given shape is another shape

consisting of the given shape with the right side of the rule substituted in the shape for an

(2) In this paper, the different definitions are named using the format, SG-DEF-year.

EPB 138-227 Tractable shape grammars

 -5-

occurrence of the left side of the rule. In principle, shape rule application proceeds as

follows: (1) find a part of the shape that is geometrically similar to the left side of a rule in

terms of both spatial and marker elements, (2) find a geometric transformation that makes the

left side of the rule identical to the corresponding part in the shape, and (3) apply those

transformations to the right side of the rule and substitute the right side of the rule for the

corresponding part of the shape. The shape generation process terminates when no shape rule

in the grammar can be applied. The set of shapes generated by the shape grammar is defined

to be its language.

2.1 SG-DEF-1971

The earliest definition for a shape grammar comes from the seminal article by George Stiny

and James Gips (1971), who employ an analogy to phrase structure grammars (aka

generative grammars).

Here, the marker set M is a finite set of shapes that is distinct from the vocabulary set S.

Each rule (u, v) satisfies the following: u is a shape in (x ∈ S*) × M, and (i) v is x or, (ii) v is x

augmented by a shape in M (that is, x ∈ ({s}× M)) or, (iii) v is x augmented by a shape in

S* × M. That is, v ∈ ((∃y, x ⊆ y ∈ S*) × M). I is a shape in S* × M.

In many ways this definition reflects the infancy of shape grammars in the sense that

grammars are purely shape-based, daringly moving away from symbols in a direct manner.

Markers, which are used to guide the application of shape rules, are also shapes

distinguishable from the principal shape, avoiding the use of any non-shape symbols. There

are no restrictions on the types of shapes used; that is, in principle, shapes can be

EPB 138-227 Tractable shape grammars

 -6-

combinations of straight lines or curves, two- or three-dimensional, whatsoever. Analogous

to phrase structure grammars, the * operator is defined over S, which is interpreted as a finite

arrangement of elements of S under transformations of similarity, including the empty shape

ø (3). This enables one to define a shape vocabulary succinctly. However, on careful

examination, there is no * operator defined over M—in all probability, this was a typo—

however, this results in a definition that is not completely consistent with the shape grammar

examples (Urform I, II, and III) given in the paper. In particular, the marker for RULE 1 (pp.

1461) changes in size as well as orientation while the set M is defined to contain a single

marker. Noticeably, here shape rules can, in effect, only add more terminal shapes, with no

capacity for subtraction, although markers can be eliminated, revised, or exchanged during

the application of shape rules. Implicitly, the application of a shape rule involves the shape

operations of Boolean sum and difference; moreover, recursive application of shape rules

requires that both Boolean operations be closed over the types of shapes involved.

2.2 SG-DEF-1975

In his dissertation, Stiny (1975) investigated the concept of shape grammars in terms of two

models, pictorial and formal. The definition of shape grammars in the pictorial model is

essentially the same as Gips’ definition, SG-DEF-1974. However, the definition for the

formal model (SG-DEF-1975) is ‘custom-designed’ for analysis, analogously to phrase

structure grammars. Here, a shape is restricted to consist of only line segments. Such shapes

are most common, and have certain nice properties. For example, all shapes belongs to the

(3) Notationally, we distinguish between Ø, the empty set and ø, the empty shape.

EPB 138-227 Tractable shape grammars

 -7-

set defined by a unit line segment under the * operator. In contrast, this is not the case for

shapes made out of arcs. As before, a shape grammar is a 4-tuple: <S, M, P, I>, with the

following conditions: Each production in P is of the form <su, u1, …, un> → <sv, v 1, …, vn>

such that (a) su, sv ∈ S*R; (b) for all i, 1 ≤ i ≤ n, ui ∈ M*R, or ui = e, for all i, 1 ≤ i ≤ n, vi ∈ M*R;

and (c) there is an i, 1 ≤ i ≤ n, such that ui ≠ ø and ui ≠ e. The initial shape I is an n+1 tuples

of shapes I =<s0, m01
, …, m0n

> such that (a) s0 ∈ S*R; (b) for all i, 1 ≤ i ≤ n, m0i
∈ M*R; and (c)

there is an i, 1 ≤ i ≤ n, such that m0i
 ≠ e.

In comparison to SG-DEF-1971 and SG-DEF-1974, the R operator, which enforces

shapes to be in a reduced form (maximal lines), is new in this definition. Implicit in the

definition of the R operator is the notion of embedded shapes, more specifically of proper line

(segments) embedded in the maximal lines. A subshape of a shape is then made up from

these embedded (line) segments. The restriction of shapes made out of straight lines makes it

nearly impossible to distinguish S* from M*. The technique to deal with such difficulty is to

employ shapes with multiple tuples; that is, shapes on different tuples are on different

‘channels,’ thereby not interfering with one another. The use of n+1 tuples of shapes,

together with the symbol e (which behaves as the empty shape ø), enables shape grammars to

be combined to form a new shape grammar. However, to our knowledge, no further work

along these lines can be found in the subsequent literature.

This definition also distinguishes a special case of shape rule application. When the

union of the left hand side of a shape rule has fewer than two points of intersection, there are

potentially infinitely many ways to apply such a shape rule. It appears that Stiny, at the time,

EPB 138-227 Tractable shape grammars

 -8-

regarded the ‘infinitely many ways’ unfavorably, defining the transformation to be the one

which transforms the left hand side in such a way that each element has an identical, rather

than a subshape, counterpart in the configuration.

With this definition, Stiny was able to show that shape grammars so defined are as

equally powerful as Turing machines. Algorithms for shape rule application, and Church’s

thesis demonstrate that a Turing machine can simulate any shape grammar so defined.

Likewise, a shape grammar can be constructed to simulate any Turing machine.

2.3 SG-DEF-1977

In his paper on Chinese ice-ray lattice grammars, (Stiny, 1977) introduces labeled shapes and

parametric shape grammars briefly explaining the corresponding definition for non-

parametric shape grammars in the appendix. As parametric shape grammars are further

elaborated in a subsequent paper (Stiny, 1980a), we postpone discussion to section SG-DEF-

1980; the focus here is on labels and markers.

In this definition, shapes are finite arrangements of straight lines of limited but nonzero

length specified in some Cartesian coordinate system, assumed given. A family of shapes is

defined by associating parametric expressions satisfying certain conditions with a limited

number of points coincident with the lines in a given shape. A particular member of this

family is specified, by giving an assignment of real values to parameters that satisfies the

conditions. The result of applying an assignment g to a parameterized shape s is the shape

denoted by g(s). A non-parameterized shape is a special case of a parameterized shape—

here g is always the identity assignment, that is, s = g(s). In this case, s has no variables.

EPB 138-227 Tractable shape grammars

 -9-

 The set M consists of labeled points of the form p:m, where p is a point with the symbol

m associated with it. It is not necessary for labeled points to be coincident with lines in a

shape. A transformation t of a labeled point p:m is the labeled point t(p):m, where t(p) is the

image of p under t. A labeled shape, σ = <s, l>, consists of a shape s and an unordered set

of labeled points, l. Note that an unlabeled shape s is the labeled shape with an empty set of

labeled points; that is, s ≈ <s, ∅>. When s or l are parameterized, σ = <s, l> is a labeled

parameterized shape. An assignment g to the parameters in s and l specify a specific labeled

shape g(σ) in the family of labeled shapes defined by σ.

Here, a parametric shape grammar has five parts: <S, M, P, I, T>. T is a collection of

allowable transformations. Here, M is a finite unordered set of labeled points. P is a set of

shape rules u → v where u and v are labeled parameterized shapes in S+× M* and S*× M*

respectively. M* = M+ ∪ {e}, where e denotes the empty labeled point. The initial shape is

an element of S+× M*. Again, shapes are generated by a shape grammar by beginning with

the initial shape I, and recursively applying the shape rules in the set P.

A shape rule u → v applies to a labeled shape s when there is an assignment g and a

transformation t such that t[g(u)] ≤ s. The result of applying shape rule u → v to labeled

shape s under g and t is the labeled shape given by [s –t[g(u)]] + t[g(v)]. The expression for

rule application for a non-parametric shape grammar is obtained by substituting for g by the

identity function. That is, applying u → v to a shape s under t is the shape given by [s –

 t(u) + t(v)].

EPB 138-227 Tractable shape grammars

 -10-

This definition of shape grammars uses labeled points instead of markers, in contrast to

definitions SG-DEF-1971, SG-DEF-1974, and SG-DEF-1975. Nevertheless, labels and

markers are equivalent to some extent. Stiny explains that labeled points function in the

same way as markers to guide shape generation; however, labels are invariant under

Euclidean transformations whereas markers are not. However, such a distinction might be

construed as overly simple, and depends on the design of shape rules. For example, in SG-

DEF-1974, Gips employs certain geometrical characteristics, such as the asymmetry of the

markers, to control shape rule application. By replacing markers with labels, the only

important geometry information is position. As most grammars do not rely on the geometric

characteristics of markers or labels beyond their position, we may use markers and labels

interchangeably unless stated otherwise; consequently, the phrases ‘marker-driven’ and

‘label-driven’ mean exactly the same thing.

Knight (1983) provides an extensive discussion on the usage of labels. Labels in a shape

rule normally supply additional information not provided by the shapes themselves and

indicate (1) how, (2) where, or (3) when a shape rule may apply to the design being

generated. How labels specify under which Euclidean transformations a rule can apply

(usually by altering the symmetry). Where labels specify the subshapes in the design to

which a shape rule can apply. When labels are associated with the design instead of with any

particular point or points. This last kind of labeling is most frequently used to indicate

successive stages in the generation of a design. Here, labels serve as status markers,

regulating the sequence and repetition of rule applications. How and where labels are spatial

EPB 138-227 Tractable shape grammars

 -11-

as their location is important. When labels are non-spatial as their presence rather than

location is more important.

2.4 SG-DEF-1980

Stiny (1980a) elaborates on labeled shapes, non-parametric, and parametric shape grammars.

This version (SG-DEF-1980) has subsequently become the standard definition, and is most

widely quoted. In this definition, a shape is specified by its maximal line representation, and

every line (segment) of a subshape of a shape is embedded in a maximal line of the shape.

As before, a labeled shape consists of two parts: a shape and a set of labeled points.

Parameterized labeled shapes are similarly defined. Labeled points may be parameterized.

That is, the coordinates of a labeled point may be variables

Unlike SG-DEF-1977, in this definition, a shape grammar reverts back to comprising

four components: S, a finite set of shapes; M, a finite set of labels; P, a finite set of rules of

the form u → v, where u is a labeled shape in (S, M)+, and v is a labeled shape in (S, M)*; and

I, the initial shape, a labeled shape in (S, M)+.

For non-parametric shape grammars, a shape rule u → v applies to a labeled shape s

when there is a transformation t such that t(u) is a subshape of s. The labeled shape produced

by applying the shape rule u → v to the labeled shape s under the transformation t is given by

[s – t(u)] + t(v). Parametric shape grammars are extensions of non-parametric shape

grammars in which shape rules are defined by filling the open terms (point variables) of a

general schema.

EPB 138-227 Tractable shape grammars

 -12-

A shape rule schema u → v comprises a pair of parameterized labeled shapes, u and v,

where no member of the family of labeled shapes specified by u is the empty labeled shape.

When specific values are given to the variables of u and v by an assignment g, to determine

specific labeled shapes, a new shape rule g(u) → g(v) is defined. This shape rule can then be

used to change a given labeled shape into a new shape in the usual way. That is, rule

application is expressed as [s – t(g(u))] + t(g(v)).

In comparison to SG-DEF-1975 and SG-DEF-1977, this definition is much more

succinct and allows for more flexible shape rules. In SG-DEF-1975, markers are just shapes

on different channels from the principal configuration, and labeling is implicit. In SG-DEF-

1977, labels replace markers. In this definition, shape rules without symbols are supported;

subshape matching drives shape rule application rather than markers or labels, whereupon,

shape emergence becomes the factor to be considered during shape rule application. While

this allows new types of shape rules, there is a price to pay. Computationally, determining

applicability of shape rules as well as their corresponding transformations become much

more complicated.

Note that, in this definition, the allowable transformations can be restricted to special

kinds, although this facility seldom features in the subsequent literature. The restriction on

the transformations in the case of the infinitely many ways of applying a shape rule, which

appears in SG-DEF-1975, is not singled out here.

The introduction of parametric shape grammars basically extends the scope of allowable

transformations. While providing for more flexible and natural design of shape rules,

EPB 138-227 Tractable shape grammars

 -13-

function g for assigning parameters implicitly implies computational difficulty. Such

functions are those allowing the points of a shape as variables (open terms) and the space of

such functions is infinitely large. This means searching an infinite space. Indeed, Stiny (2006:

pp 280) states that devising an algorithm to find the transformations under which a

parametric shape rule applies to a configuration is an open question. As shown in this paper,

the number of candidates to be tested increases exponentially fast as the number of open

terms increases, making this problem NP (Garey and Johnson, 1979), perhaps NP-hard, in

general.

2.5 SG-DEF-1991

An obvious deficiency of SG-DEF-1980 is the limitation on shapes requiring them to be

composed of straight lines. Shapes, in general, are formed as arrangements of points, lines,

planes, solids, and even exotic curves and surfaces. Stiny (1991) generalizes definition SG-

DEF-1980 in terms of shape algebras.

Mathematically, if there is a t such that t(u) ≤ s is satisfied, then an object is produced

according to the formula [s − t(u)] + t(v). t, ≤, +, and − are operators defined over a shape

algebra, where t is a transformation function over a shape and can be generalized as a being

alike function, ≤ is a partial order relation in terms of subshape, and + and − are Boolean sum

and difference. All these operators are applied recursively until reaching the basic elements,

on which these operators are directly defined.

EPB 138-227 Tractable shape grammars

 -14-

In short, in a shape grammar, any pair of objects u and v defines a rule u → v. The rule

applies to an object s in a two-stage process involving a transformation t. The transformation

is used in both stages, once with the subshape relation ≤ to distinguish some part of s, and

then again with the arithmetic operations + and − to replace the part that has been picked out.

Under this definition, shapes are readily extensible. A shape can be simple—formed

from basic elements of a single kind; or compound—a mix of various elements, optionally

augmented in some way, for example, by colors. The only condition is that the operators of

any shape algebra are defined on all its elementary objects, are recursively applicable, and

are closed. In contrast to definition SG-DEF-1980, indeterminacy, that is, the infinitely many

ways of applying a shape rule, is encouraged rather than restricted. While this causes little

trouble for designers, indeterminacy is a tough issue for computer implementations.

Additionally, shape emergence is regarded as a way of producing novel designs. As an

extension to this definition, SG-DEF-1992 (Stiny, 2006, 1992) formally includes labels and

weights in algebraic terms.

2.6 SG-DEF-2006

In his monograph, Shape: Talking about seeing and doing, Stiny discusses shape grammars

in terms of drawing shapes and calculating by seeing. The historical analogy of shape

grammars to phrase structure grammars is re-examined, with the conclusion that the analogy

is inappropriate; it implies a lot more than it should. As a matter of fact, during the design

process, a designer’s vocabulary of shapes is typically not prescribed; instead, new types of

shapes are defined on the fly. Noticeably, in this book, a definition for a shape grammar is

EPB 138-227 Tractable shape grammars

 -15-

actually never given, and only alluded to informally, with the basic formalism remaining the

same as SG-DEF-1992.

2.7 Trends in the development of shape grammars

The evolutionary development of shape grammars falls into two categories: marker-driven

and subshape-driven grammars. Computationally, this distinction is important; in

comparison to marker-driven shape grammars, there are harder computational issues with

subshape-drive shape grammars, in particular, parametric subshape recognition and

indeterminacy.

The first four definitions: SG-DEF-1971, SG-DEF-1974, SG-DEF-1975 and SG-DEF-

1977 belong to the former category in the sense that shape rule application in grammars so

defined are controlled by markers. It is the markers, which play a pivotal role in determining

both the applicability of shape rules as well as their corresponding transformation. Markers

can be designed in a way that the determination of applicability and transformation is

relatively straightforward to compute. In later developments of shape grammars, markers

evolve as alphanumeric symbols, which make determination even simpler (albeit while

losing power). All subsequent definitions belong to the subshape-driven category during

which marker-driven (aka label-driven) and subshape-driven rule application can coexist. In

other words, the definitions support both marker-driven and subshape-driven shape

grammars. This coexistence between marker-driven and subshape-driven rules is explicit in

SG-DEF-1975.

EPB 138-227 Tractable shape grammars

 -16-

Chronologically, the above definitions exhibit backwards compatibility. That is SG-

DEF-1971 << SG-DEF-1975 << SG-DEF-1977 << SG-DEF-1980 << SG-DEF-1991 << SG-

DEF-1992 << SG-DEF-2006, where the right side of << is more general than the left side.

Historically, it is significant to note that SG-DEF-1971 << SG-DEF-1974. However, there is

a discrepancy between SG-DEF-1974 and SG-DEF-1975, which were developed

independently by the two principal authors of shape grammars, for very distinct research

purposes, albeit from the same root, SG-DEF-1971. The discrepancy is reflected in the

evolutionary development of shape grammar definitions.

The evolutionary development shows a trend from ‘rigid’ to ‘soft’. ‘Rigid’ here means

that the shape grammars are defined in a way that is closer to phrase structure grammars.

Such shape grammars are more machine-bound in the sense that they are relatively easy to

carry out (compute) on a computer, but harder to use to generate novel designs. As a matter

of fact, there is very limited novelty involved. SG-DEF-1974 falls within this category. A

recent series of notable shape grammar implementations based on the CGA shape falls

within the rigid category of shape grammars (Müller et al., 2007; Pascal Müller et al., 2006;

Watson et al., 2008; Weber et al., 2009).

On the other hand, ‘soft’ is more human-centered, showing more concern and

consideration on how to use shape grammars to generate novel designs. This explains, in

part, the importance of subshape-driven grammars, concepts of indeterminacy and shape

emergence, and the support for ambiguity in shape grammar research. Humans have little

trouble handling such concepts. Moreover, human designers actually benefit from them.

However, these concepts are problematical when considering computer implementation.

EPB 138-227 Tractable shape grammars

 -17-

Recent developments attempt to subvert some of the more difficult issues through alternative

representations (Keles, Ozkar and Tari, 2010). The features are summarized in Table 1.

Table 1. Evolution of shape grammar definitions

 Definition Features

M
ar

ke
r-

dr
iv

en
 sh

ap
e

gr
am

m
ar

s

SG-DEF-1971 Based on shapes as both vocabulary and marker elements. Introduces the
analogy to generative string grammars. Emergent shapes are implicit in
‘surprises.’

SG-DEF-1974 Based on closed polygons, curves. No treatment of emergent shapes.
Theoretical basis of the first ever shape grammar interpreter implemented
(Gips, 1974). Certain elements of the shape grammar were treated
symbolically in Gips’ implementation.

SG-DEF-1977 Introduces labels and labeled points. Outlines the elements of parametric
shape grammars.

(Above) Marker-driven shape grammars based on an analogy to generative grammars.
Grammars tend to be more tractable and easier to implement.

SG-DEF-1975 Based on two-dimensional rectilinear shapes. Implicit introduction to
maximal lines. Mainly used to prove equivalence between shape grammars
and other formal language formalisms. Emergent shapes are referred to as
‘surprises.’ Theoretical basis of the first shape grammar interpreter that
properly took into consideration emergent shapes (Krishnamurti, 1982).

Su
bs

ha
pe

-d
riv

en
 sh

ap
e

gr
am

m
ar

s

(Below) Subshape-driven shape grammars. Progressively shy away from the generative
grammar analogy. Grammars tend to be human-centered, less tractable, and harder to
implement. Emergence is central to such grammars.

SG-DEF-1980 Introduces parametric shape grammar definition for shapes based on a
maximal line representation. First definition for rule application explicitly
based on the subshape relationship.

SG-DEF-1991 Extends the definition to apply to shapes defined on different algebras, e.g.,
points, lines, planes and volumes. Introduces a being-alike function.

SG-DEF-1992 Extends the algebraic definition to include weighted shapes.
This definition subsumes a host of other independently defined weighted
shape grammars, e.g., color grammars (Knight, 1989).

SG-DEF-2006 Implicit definition of shape grammars considered in Stiny (2006).
Essentially dismantles any vestiges of a connection to generative grammars.
Indeed, generative grammars can be considered as a special case of shape
grammars.

EPB 138-227 Tractable shape grammars

 -18-

2.8 A unified definition of shape grammars

Traditionally, the non-parametric shape grammars formalism is defined as follows: for a

shape rule u → v and a configuration c, if t(u) ≤ c, then the result of applying the shape rule

on c is [c − t(u)] + t(v), where t is a transformation of similarity, ≤ is a part relation, − is the

operation of Boolean difference, and + is the operation of Boolean sum. Note that, the

operations of Boolean sum and difference implicitly involve an operation of reduction R,

which is used to maintain the maximal representation (Krishnamurti, 1992b).

For parametric shape grammars, the formalism is defined as follows: for a shape rule

schema u(x) → v(x) and a configuration c, if t[g(u(x))] ≤ c, then the result of applying the

shape rule on c is [c − t[g(u(x))]] + t[g(v(x))], where g is a function which makes an

assignment to the open terms (aka variables) of the schema.

Since t can be generalized to a being-alike function (Stiny, 1991), the function g can be

combined with, thus subsumed by, t to form a new being-alike function. In this way, the

formalisms of non-parametric and parametric shape grammars are unified.

For a shape rule u → v and a configuration c, if t(a) ≤ c, then the result of applying the

shape rule on c is [c – t(u)]+t(v), where t is a being-alike function, ≤ is a part relation, − is

the operation of Boolean difference, + is the operation of Boolean sum.

Implicit in this definition, as the last step in applying a shape rule, is the reduction operator,

R, which is needed to maintain a maximal representation.

EPB 138-227 Tractable shape grammars

 -19-

Following this definition, the scope of basic shape elements can be extended arbitrarily;

the bottom line is that all operators of t, ≤, −, +, and R are well defined. In particular,

elements are implicitly typed in a way that operators of ≤, −, +, and R only operates on two

elements of the same type (that is, the elements are co-equal); For example, for two line

segments, these operators are only meaningful when two have the same slope. The unified

definition above is backwards compatible with the other definitions reviewed in this section.

The unified definition holds for shape rules defined across shape algebras. In a recent

article, Stiny (2011) considers the specification of shape rules in terms of general

transformations, part and boundary relationships. In his classification, Stiny considers three

basic kinds of rule constructs: x → t(x), x →prt(x) or x → b(x), where t(x) represents a

transformation, typically geometrical, in general, a parametric variation of x; in other words,

t is a being-alike function. The part relation satisfies prt(x) ≤ x with the reduction operation

R relying on there being a shape y such that x = prt(y), or y = prt-1(x). The inverse part

relationship prt-1 is computationally interesting as it essentially specifies a data structure that

hosts any of its embedded shapes. Certain prt-1 relations have been referred to as carriers

(Krishnamurti and Stouff, 2004). An example is shown in Figure 1. Elements of prt-1(x)

share descriptors with subshapes of carrier(x), which can be effectively employed in

computation (Stouff and Krishnamurti, 2006).

EPB 138-227 Tractable shape grammars

 -20-

Figure 1. A shape x, a shape in prt-1(x), the carrier of x, and interesting subshapes of carrier(x)

Note that carrier(x) is a restriction on prt-1(x). There are subshapes y of carrier(x) that

are not elements of prt-1(x). However, since x + y is an element of prt-1(x), carrier(x) enables

EPB 138-227 Tractable shape grammars

 -21-

us to explore shapes that appear ‘unrelated’ to x so to speak, that is, even having no shape in

common with x. However, these shapes are parts of the same carrier, and this opens up an

interesting question, which is beyond the scope of this paper to address. As Stiny (2004)

remarks “seeing makes it worthwhile to calculate with shapes,” it is worth exploring

calculations with the ‘unrelated’ shapes of a shape. The answer may well lie within the

carriers of shapes. For example, in Figure 1, for the left-most shape, from among possible

shapes we see immediately, are the star, five triangles, the pentagon in the middle, ten

distinct points of intersection, and at least 25 different angles. Some shapes are seen in

combination with parts of the left-most shape; others have an identity all their own.

The boundary is a cross algebra operator. The b operator and its inverse b-1 define a

shape, may resolve parameters and can be used in conjunction with t, prt, and prt-1 to specify

particular shapes. Computationally, in a maximal element representation, the combination of

a b and a prt-1 operator specify a shape (Krishnamurti and Stouff, 2004). Other kinds of

shape rules such as erasure, identity, and in general, unrestricted parametric rules can be

created from these basic constructs. See Stiny (2011).

3 Three corollaries

In his dissertation, Stiny (1975) concluded that for shape grammars under SG-DEF-1975,

theorems on Turing machines naturally hold. Certain direct extensions of theorems on Turing

machines to shape grammars are helpful in understanding their computational complexity.

These are worth discussing in some detail. Using constructions similar to Stiny’s, it is

possible to show that a shape grammar under the unified definition can be constructed to

EPB 138-227 Tractable shape grammars

 -22-

simulate any Turing machine. For this, it is essential to consider four aspects. The following

briefly explain each and illustrate the corresponding simulation.

(1) The states of a Turing machine can be encoded as shapes in reduced form, such that

no two similar shapes represent distinct states. The set of shapes corresponding to the set of

states of the Turing machine will form the main part of the set of markers for the constructed

shape grammar.

Consider a Turing machine with states qi, 0 ≤ i ≤ n. Each state qi can be encoded by a

triangle shape si with points {<0, p>, <p, p>, <
!
!!!

, 0>}, where 0 ≤ i ≤ n, p ≠ 0. Notice that

for states qi and qj, if qi ≠ qj, then si is not similar to sj. For the shape rules simulating

transitions, the states serve as markers. Figure 2a shows an example of one such state.

(2) The tape symbols, including the blank symbol, of a Turing machine can be encoded

as shapes in reduced form such that no two similar shapes represent different tape symbols.

The set of shapes corresponding to the set of tape symbols of the Turing machine form the

main part of the set of terminals for the constructed shape grammar.

Tape symbols can be defined similarly to state symbols. Assume the Turing machine to

have the set of tape symbols Σ = {ai | 1 ≤ i ≤ m}. Let the blank symbol be a0. Each symbol in

the set, Σ ∪ {a0}, can be uniquely encoded by a triangle with points in the set {<0,p>, <p, p>,

<
!
!!!

, 2p>}, where 0 ≤ i ≤ m, p ≠ 0. Figure 2b is an example of such a symbol.

EPB 138-227 Tractable shape grammars

 -23-

Figure 2. Encoding symbols and states for a Turing machine by parametric shapes.

Adapted from Stiny (1975)

EPB 138-227 Tractable shape grammars

 -24-

(3) Turing machine tapes and configurations can be represented by shape grammars.

Consider the Turing machine tape ai0
 … aik

 where all symbols to the left of ai0 and to the

right of aik are the blank tape symbol a0. The tape can be represented by the shape ti0

∪ trans(ti1
, p) ∪ … ∪ trans(tik

, pk), where trans(t, x) means translating shape t by x along the

X-axis. Figure 2c illustrates an example of such a tape.

Assume that the Turing machine is in state qi and is scanning the tape symbol aij

occurring in the tape ai0
 … aij

 … aik
. The configuration can be represented by the pair of

shapes <T, trans(si, pj)> where T is the shape representing the tape ai0
 … aij

 … aik
. Figure 2d

illustrates an example of such a configuration.

(4) Turing machine transitions can be represented as shape rules. The set of shape rules

corresponding to the set of transitions of the Turing machine form the main part of the set of

shape rules for the constructed shape grammar.

A transition <qi, aj, aj', qi', L>, which reflects a Turing machine in state qi scanning

symbol aj, replacing it by symbol aj’, subsequently, going into state qi’, and moving its tape

one tape cell to the left, can be represented by the shape rule <tj, si> → <tj', trans(si', p)>.

Figure 3 depict two shape rules that simulate such transitions.

EPB 138-227 Tractable shape grammars

 -25-

Figure 3. Simulating Turing machine transitions by shape rules. Adapted from Stiny (1975)

With the above setup, it is easy to see that the constructed parametric shape grammar

simulates the computation of a Turing machine by derivation. The following are three

relevant direct extensions from the theory of formal languages (Harry and Christos, 1997).

EPB 138-227 Tractable shape grammars

 -26-

Firstly, it is well known that a Turing machine may not halt. Assume there is a computer

program, which recursively applies the shape rules of a shape grammar until no shape rules

can apply. As a result, this computer program will not halt for any shape grammar that

simulates a non-halting Turing machine. In other words, there are non-halting shape

grammars.

Secondly, a simulation of a non-deterministic Turing machine (abbreviated as NTM)

with n steps by a deterministic Turing machine (abbreviated as DTM) requires exponentially

many steps in n. Naturally, a shape grammar can be designed in a non-deterministic fashion,

for example, the sports figure grammar (Carlson et al., 1991). Thus, a shape grammar can be

designed to simulate any NTM in a fashion similar to simulating a DTM. This is equivalent

to the problem of simulating a NTM by a DTM; that is the language space of a shape

grammar can be exponentially large.

Lastly, another well-known theorem for unrestricted string grammars is that the

membership problem—that is determining whether a string belongs to the language defined

by a grammar or not—is undecidable. A shape grammar can be designed to simulate a string

grammar in a similar manner to simulating a Turing machine. For such a shape grammar, the

membership problem is equally undecidable—the proof, by contradiction, is trivial. In other

words, in general, determining whether a configuration (aka. shape) belongs to the language

defined by the shape grammar is unsolvable; that is, the problem of parsing a configuration

against a shape grammar is unsolvable in general. Whether it is possible to restrict shape

rules, to restriction categories similar to those defined for string grammars, for example,

context-free grammars, remains an open problem.

EPB 138-227 Tractable shape grammars

 -27-

4 Recognition in parametric shape grammars

The three corollaries show that, in principle, there are shape grammars, which do not halt and

whose language spaces are exponentially large. Such shape grammars are unquestionably

intractable. The following question is immediate: are all halting shape grammars with (even

large) polynomial language space tractable? For ease of discussion, such grammars are

termed practical shape grammars. See Figure 4.

Figure 4. Practical shape grammars

A shape grammar is interpreted through the application of its shape rules. A shape

grammar contains a finite set of shape rules. This fact underlies the fundamental basis for a

shape grammar, namely, that of using a small number of shape rules to realize many,

potentially, infinitely many, design possibilities (Stiny, 2006). For practical shape grammars,

this fact implies that shape rules are applicable, at most, in polynomial time. It therefore

EPB 138-227 Tractable shape grammars

 -28-

follows that tractability is determined by the application of each shape rule. However, it is

known that parametric subshape recognition is difficult.

In the sequel, the tractability of a specific problem, that is, subshape recognition of

parametric shape grammars over two-dimensional rectilinear shapes is examined. This is

done by considering a polynomial-time reduction on the maximum clique problem (Cormen

et al., 2004). The conclusion reached is that it is computationally expensive even for shapes

of a relatively small size, and it is NP-hard for shapes with an arbitrary number of open terms.

4.1 Parametric two-dimensional rectilinear subshape recognition

For non-parametric subshape recognition of two-dimensional rectilinear shapes, the

transformation t can be determined by matching three distinguishable points of a left side

shape u to three distinguishable points of a configuration c (Krishnamurti, 1981). In fact,

two points are all that are required with a third distinguishable point constructed from these

two in four possible ways by considering reflections about the axis through the two

distinguishable points. However, for parametric subshape recognition, this is not necessarily

the case.

It is possible that the parametric shape u has a certain number of fixed points (non-open

terms). If there are more than two fixed points (distinguishable by definition), the above 3-

point algorithm is still applicable, with O(n2) possibilities to initially test against. For shapes

with a single fixed point, this is identical to the situation when all points are open as

similarity is subsumed by the assignment. When there are open points, the shape

transformation may not be describable by a homogeneous transformation matrix. For

EPB 138-227 Tractable shape grammars

 -29-

example, in Figure 5, (i) matches (ii) under a parametric shape rule, but there is no 3 × 3

homogeneous matrix which describes the transformation. In every case, open terms have to

be determined, point-by-point, for each candidate subshape in c.

Figure 5. Example of parametric subshape matching

In general, when there are k open terms, there are 𝑛𝑘 , or O(nk) possibilities. Even

assuming that testing against each possibility costs unit time (typically, this is much more

expensive in reality), when k is close to n/2, the time complexity is a super-polynomial. To

illustrate with concrete examples, the possible number of tests is 7.5 × 107 when k = 5, n = 100;

1.7 × 1013 when k = 10, n = 100; and 1.0 × 1029 when k = 50, n = 100. It takes a computer, with

performance of thousands of millions of instructions per second, several minutes to test all

the possibilities when k = 10, n = 100. Note that when k exceeds n/2, the number of possible

tests begins to decrease. It should be noted that in practice n and k are small numbers.

4.2 Parametric subshape recognition (PSR) is NP

Suppose that a subshape s is found under a parametric schema function t. We need to verify

that s is the same as the left-hand side shape u under t. Let n be the maximum of the number

EPB 138-227 Tractable shape grammars

 -30-

of points in s and u. As both shapes are two-dimensional and rectilinear, the verification

algorithm first computes u' = t(u) by applying t to each point in u. This takes O(n) time, and

u' so obtained has at most n points. The verification algorithm picks a point p in s, and

compares the neighbors of p against the neighbors of point p' in u' , which has the same

coordinates as p. This process ends when all points of s have been compared. For each point

p in s, it takes O(n) time to find the corresponding point p' in u' . Since there are at most

(n −1) edges incident with p as well as p', it takes O(n2) time to verify equality of

neighborhoods. Therefore, in total, it takes n(O(n) + O(n2)) = O(n3) time to verify the

equality of s and u'. That is, verification takes polynomial time.

We next show that PSR in general is NP by reducing the problem of finding certain

cliques in a graph to the problem of PSR. That is, if we can solve parametric subshape

recognition in polynomial time, then we can solve the graph theoretical clique problem in

polynomial time, which is known to be NP, actually NP-hard (Cormen et al., 2004).

A clique in an undirected graph G = (V, E) is a subset of vertices, V' ⊆ V, in which each

vertex pair is connected by an edge in E. That is, a clique is a complete subgraph of G. The

size of a clique is the number of its vertices. Figure 6c is an example of a clique of size 4.

The clique problem corresponds to the optimization problem of finding a clique of maximum

size in a graph. For example, in the graph of Figure 6a, the maximum clique is 4. The

subgraph is shown bold.

EPB 138-227 Tractable shape grammars

 -31-

Figure 6. Example of finding a clique of size 4

Firstly, let us preprocess graph G (Figure 6a) to get G' (Figure 6b) by treating vertices in

G as end points of incident edges, assigning unique x- and y-coordinates to all vertices so that

no three vertices are collinear, and enforcing all arcs to be straight lines. This can be done in

O(|V|2) time. Note that G' is actually a two-dimensional shape, and we can use it as the

configuration shape c.

We generate a complete graph Gk with k vertices (Figure 6c) and similarly preprocess it

to obtain Gk' (Figure 6d). This can be done in O(k2) time. Note that Gk' is another two-

dimensional shape, and we may use it as the left side shape u. The points of u have their

EPB 138-227 Tractable shape grammars

 -32-

counterparts in the vertices of Gk. Note that as u is a parametric shape, certain points, hence

certain vertices in Gk, have coordinates with open terms.

If there is an algorithm capable of detecting the existence of subshape g(u) in c by

automatically finding an appropriate assignment of g in a polynomial time, then we can use

the algorithm to detect the existence of subshape g(Gk') in G' by automatically finding an

appropriate assignment of g in a polynomial time, say, Tk. By the particular way that we

processed graph G and Gk, the existence of subshape g(Gk') in G' is identical to the existence

of Gk in G. That is, we can use the algorithm to detect the existence of Gk in G in a

polynomial time of Tk plus an added preprocessing time.

By the above preprocessing, and detecting sequentially for k = {1 … |V|} until the

answer is false, we can find a clique of maximum size in time of 𝑂(𝑂(𝑉! + (𝑇! +
!
!!!

𝑂 𝑘!)), which is a polynomial. This is a contradiction since the clique problem is known to

be NP.

However, this result is not as bleak as it seems. The above proof is based on the

assumption that the number of open terms k, and the number of points n, n ≥ k, against which

these open terms are matched are unbounded. In fact, the proof relies on the fact that n and k

be as large as possible. Typically, n and k are bounded—we can employ a variant of the

subgraph isomorphism algorithm, which, using brute force comparison, in the worst case,

requires O(nk) time, although, as n grows indefinitely large, subgraph isomorphism too tends

to be exponential in time. In reality, the open terms are topologically (and geometrically)

dependent on the fixed terms. Matching can be resolved by following procedure. We first

EPB 138-227 Tractable shape grammars

 -33-

match the subshape constructed from the fixed points. This yields a mapping between a

spanning forest of the fixed points and corresponding points in the given shape, where two

points are adjacent whenever there is a line in the shape between them. Next, the open terms

are resolved by depth first search to grow this spanning forest. Implicit in this two-step

matching process is a tree isomorphism test, which, if successful, is followed by a graph

isomorphism check in the form of a simpler test for subshape relationship (Krishnamurti and

Stouffs, 2004). We leave the details to the reader.

On the other hand, there are subshape situations, which do require exponential time. As

a concrete example, consider a shape on 2n points such that it contains no n-sided polygon.

It is possible to construct such a polygon quite easily. Let the points be numbered 1, 2, …, 2n.

Construct lines pairwise among points i, i+1, …, i+(n-2) mod 2n and ensure that i and i+(n-1)

are not connected by a line. Then, for any sequence of n points it will not contain a line

between, at least, one pair of points. That is, there are no n-gons in this polygon. However,

determining that the shape does not contain an n-gon will require looking at 2𝑛𝑛 possible

candidates, which requires O(2n) time.

The above example illustrates a situation where there are no matching subshapes. We

have yet to find an example where a matching subshape exists, but one which requires

exponential time to determine, although if the above example was reconstructed so that there

was a single n-sided polygon, it is possible that it may still require O(2n) time to determine

the subshape. (4)

(4) It is possible that we may not be able to construct just one single n-sided polygon within this configuration.

EPB 138-227 Tractable shape grammars

 -34-

Taken altogether, we can conclude that parametric subshape recognition is NP in terms

of the number of open terms. That is, in general, it is unlikely that there is a polynomial

algorithm for parametric subshape recognition for two-dimensional rectilinear shapes. From

this, we formally know that the problem of implementing a parametric shape grammar

interpreter is NP, as parametric subshape recognition is a necessary step.

It follows then that some practical shape grammars are likely to be intractable. It is

therefore important to know the factors that influence shape grammar tractability. In doing so,

we would be in a position to manage and control the design of shape grammars to avoid

these possible intractable situations.

5 Factors influencing tractability

The following analysis is built on top of the unified definition for shape grammars so that the

results are as general as possible; that is, the factors influencing tractability are applicable to

a variety of different kinds of shape grammars.

For practical shape grammars, tractability is determined by shape rule application. By

definition, application of a shape rule involves operations of t, –, +, ≤, and R on elementary

objects. If any of these operations takes superpolynomial time, then the shape rule

application becomes intractable. In common design practice, the complexity of these

operations may seem trivial, since the operations are not difficult to specify for rectilinear

shapes. As shown by Stouffs and Krishnamurti (1993), the asymptotic upper bounds of

comparing two co-equal spatial elements in d-dimensional space, 0 ≤ d ≤ 3, is a polynomial

in the maximum boundary element size n. In particular, when d = 0,1, the upper bound is a

EPB 138-227 Tractable shape grammars

 -35-

constant; for d = 2, it is Θ((m+n) log n), with m = O(n2); and for d = 3, Θ((Km + kn) log n),

with K = O(k), k = O(n) and m = O(n2).

However, for certain kinds of shape objects, some of these operations can be difficult,

even intractable. An example is the Boolean operation on two solids with rational curved

surfaces, which involves finding the intersection of two rational surfaces. The intersection of

two smooth surfaces is one of the following: i) empty; ii) a collection of points; iii) a

collection of smooth curves; iv) a collection of smooth surfaces; or, v) any combination of ii),

iii), and iv) (Barnhill et al., 1987). Traditionally, analytical approaches by variable

elimination have been the means to solving this kind of intersection problem. However, the

degree of the resulting polynomial can be too high to solve. For instance, two generic bicubic

patches can intersect in a curve of degree 324. Moreover, it has been shown that the

intersection curves cannot be exactly represented by parametric equations even of degree 324

(Katz and Sederberg, 1988). Therefore, numerical methods have to be used and only curves

under certain approximations are obtained. Although surface-to-surface intersection is still an

active area of research (Hur et al., 2009; Patrikalakis et al., 2004), there are no good, general

solvers for solving systems of multivariate polynomial equations, the equivalent problem to

surface-to-surface intersection (Press et al., 2007).

The implication of this is that one cannot arbitrarily expand the scope of shapes. Basic

operations of certain shape elements can become so complicated as to make them intractable.

As a guideline, in order to design tractable shape grammars, the basic operations of the

allowable elementary objects are required to take polynomial time. In the following

discussion, we assume that this is the case.

EPB 138-227 Tractable shape grammars

 -36-

The application of a shape rule u → v to configuration c involves two steps: searching

the configuration c for applicable regions according to the left-hand side u, and rewriting the

configuration with the right-hand side v. Rewriting a configuration involves two steps:

subtracting (−) the left-hand shape under a known t, and adding (+) the right-hand shape

under the same t. By our previous assumption, the operations of −, +, t, and R for each

allowable elementary objects are in polynomial time. As there are a fixed number of

elementary objects involved, the overall time complexity of rewriting still has an upper

bound in polynomial time. It should be noted that the algorithm here is brute force, given

simply for the purpose of deriving a polynomial upper bound—seeking efficient, uniform

algorithms for rewriting is still valid research (Jowers, 2006; Stouffs, 1994). In our

discussion, however, rewriting is ‘easier’, in the sense that there is always a brute-force

polynomial algorithm.

On the other hand, searching a configuration for possible rule applications can be much

‘harder’. In effect, the searching procedure includes two steps: using certain criteria to

identify possible matching candidates, and then verifying the exact matching of each

candidate under all allowable t. Even with the optimal searching criteria, the number of

matching candidates can be super-polynomial. This is exactly the case for parametric

subshape recognition over two-dimensional rectilinear shapes; the number of candidates

increases exponentially as the number of open terms increases.

In the verification step for exact matching of a candidate, it is possible that there are

infinitely many t’s, which are impossible to compute in finite time. For example, for the

candidate shape found in Figure 7 (marked with a dashed circle), the possible

EPB 138-227 Tractable shape grammars

 -37-

transformations, up to scale, are indefinitely many. This phenomenon is known, in the

literature, as indeterminacy, and viewed as an advantage where unexpected variations can be

introduced (Stiny, 1991). However, it is hard for a computer implementation to appreciate

this advantage. The basic question then is: which is the best way to choose one or a subset of

possible candidates from infinitely many? Random choice provides a solution, but relying

upon randomness to create novel designs is probably not always a good idea. Manual

selection is another option, although this is counter to the goal of a computer implementation.

What is certain is that it is impossible to elaborate all the indefinitely many possibilities; we

have to assume that the grammar designer specifies a way of selecting a finite subset so that

the implementation is tractable.

Figure 7. A candidate with infinitely many matching transformations under scaling

To sum up, there are three factors which influence tractability of a shape grammar:

i) computational complexity of the basic operations t, –, +, ≤, and R; ii) number of matching

candidates; iii) indeterminacy—number of possible t’s for each matching candidate.

EPB 138-227 Tractable shape grammars

 -38-

Factor i) is the most controllable in terms of computer implementation by ensuring that

the system only supports basic elementary objects for which there are efficient algorithms (at

most polynomial time complexity) for these operations.

Factor ii) probably influences certain extreme cases. In general, the number of open

terms in parametric shape rules is usually small enough for their time complexity to be

relatively inexpensive, thereby making shape recognition still tractable.

Factor iii) is somewhat controllable. As Stiny (1991) remarks, detailed conditions for

indeterminacy are more complicated and vary from algebra to algebra and from dimension to

dimension; Cartesian products are recommended as a useful way to avoid indeterminacy in

general. However, in practice, chances for indeterminacy are much less. Shape grammars

are seldom designed based purely on geometry—typically, they are imbued with semantics

in the form of labeled points or elements. The semantics are usually sufficiently rich enough

to permit only a limited number of possible transformations.

6 Computation-friendly shape grammars

The existence of both tractable and intractable shape grammars, together with other

computation difficulties mentioned at the beginning of this paper negates the possibility of a

single general shape grammar interpreter. As is shown in (Yue, 2009), characteristics of

tractable shape grammars can vary significantly. In response, a paradigm for practical,

‘general’, shape grammar interpretation is proposed in a sequel (Yue and Krishnamurti,

2011), and shape grammars following such a paradigm can be said to be computation-

friendly—that is, tractable with polynomial time and language space complexity.

EPB 138-227 Tractable shape grammars

 -39-

Acknowledgement

This research was supported in part by a grant from US Army Corps of Engineers, Engineer

Research and Development Center – Champaign, IL. Any opinions, findings, conclusions or

recommendations presented in this paper are those of the authors and do not necessarily

reflect the views of CERL. The authors are grateful to the referee for suggestions to improve

the paper.

References

Barnhill R E, Farin G, Jordan M, Piper B R, 1987, "Surface/surface intersection" Comput.

Aided Geom. Des. 4 3-16

Carlson C, McKelvey R, Woodbury R, 1991, "An introduction to structure and structure

grammars" Environment and Planning B: Planning and Design 18 417-426

Chau H-H, 2002 Preserving brand identity in engineering design using a grammatical

approach PhD dissertation, School of Mechanical Engineering and Keyworth Institute of

Manufacturing and Information Systems, The University of Leeds

Chau H H, Chen X, McKay A, Pennington A, 2004, "Evaluation of a 3D shape grammar

implementation", in Design Computing and Cognition '04 Ed J S Gero, Boston pp 357-376

Cormen T H, Leiserson C E, Rivest R L, Stein C, 2004 Introduction to Algorithms, Second

Edition (The MIT Press)

Garey MR, Johnson DS, 1979, Computers and Intractability: A Guide to the Theory of NP-

Completeness (WH Freeman and Company)

Gips J, 1974 Shape Grammars and Their Uses PhD dissertation, Computer Science

Department, Stanford University, Stanford, California

EPB 138-227 Tractable shape grammars

 -40-

Gips J, 1999, "Computer implementation of shape grammars", (Cambridge, MA: NSF/MIT

Workshop on Shape Computation)

Harry R L, Christos H P, 1997 Elements of the theory of computation (Prentice Hall PTR)

Hur S, Oh M-j, Kim T-w, 2009, "Approximation of surface-to-surface intersection curves

within a prescribed error bound satisfying G2 continuity" Computer-Aided Design 41 37-46

Jowers I, 2006 Computation with Curved Shapes: Towards Freeform Shape Generation in

Design PhD dissertation, Department of Design and Innovation, The Open University,

Milton Keynes

Jowers I, Prats M, Earl C, Garner S, 2004, "On curves and computation with shapes", in

Generative CAD systems symposium: G-CAD 2004, Carnegie Mellon University, Pittsburgh,

PA

Jowers I, Earl C, 2010, "The construction of cruved shapes" Environment and Planning B:

Planning and Design B 37 42 – 58

Jowers I, Earl C 2011, "Implementation of curved shape grammars" Environment and

Planning B: Planning and Design B 38 616– 635

Katz S, Sederberg T W, 1988, "Genus of the intersection curve of two rational surface

patches" Computer Aided Geometric Design 5 253-258

Keles HY, Ozkar M, Tari S, 2010, "Embedding shapes without predefined parts"

Environment and Planning B: Planning and Design B 37 664– 681

Knight T W, 1983, "Transformations of languages of designs" Environment and Planning B:

Planning and Design 10 125-177

Knight T W, 1989, "Color grammars: designing with lines and colors" Environment and

Planning B: Planning and Design 16 417-449

Krishnamurti R, 1981, "The construction of shapes" Environment and Planning B: Planning

and Design 8 5-40

EPB 138-227 Tractable shape grammars

 -41-

Krishnamurti R, 1982, "SGI: An interpreter for shape grammars" Technical Report, Centre

for Configurational Studies, The Open University, August 1982

(http://www.andrew.cmu.edu/user/ramesh/pub/distribution/technical/SGI.pdf)

Krishnamurti R, 1992a, "The arithmetic of maximal planes" Environment and Planning B:

Planning and Design 19 431-464

Krishnamurti R, 1992b, "The maximal representation of a shape" Environment and Planning

B: Planning and Design 19 267-288

Krishnamurti R, Earl C F, 1992, "Shape recognition in three dimensions" Environment and

Planning B: Planning and Design 19 585-603

Krishnamurti R, Stouffs R, 1997, "Spatial change: continuity, reversibility and emergent

shapes" Environment and Planning B: Planning and Design 24 359-384

Krishnamurti R, Stouffs R, 2004, "The boundary of a shape and its classification" The

Journal of Design Research 4

McCormack J P, Cagan J, 2003, "Increasing the scope of implemented shape grammars: a

shape grammar interpreter for curved shapes", in ASME 2003 International Design

Engineering Technical Conferences and Information in Engineering Conference, Chicago,

Illinois, USA

Müller P, Zeng G, Wonka P, Gool L V, 2007, "Image-based procedural modeling of facades"

ACM Trans. Graph. 26 85

Pascal Müller, Wonka P, Haegler S, Ulmer A, Gool L V, 2006, "Procedural modeling of

buildings" ACM Trans. Graph. 25 614-623

Patrikalakis N M, Maekawa T, Ko K H, Mukundan H, 2004, "Surface to surface

intersections" Computer-Aided Design and Applications 1 449-458

Piazzalunga U, Fitzhorn P, 1998, "Note on a three-dimensional shape grammar interpreter"

Environment and Planning B: Planning and Design 25 11-30

Prats M, Jowers I, Earl C, Garner S, 2004, "Generative curves in product design", in Design

Computing and Cognition DCC´04, MIT, Cambridge, MA

EPB 138-227 Tractable shape grammars

 -42-

Press W H, Teukolsky S A, Vetterling W T, Flannery B P, 2007 Numerical Recipes: The Art

of Scientific Computing. Third Edition (Cambridge University Press)

Stiny G, 1975 Pictorial and formal aspects of shape and shape grammars and aesthetic

systems PhD dissertation, System Science, University of California, Los Angeles, CA

Stiny G, 1977, "Ice-ray: a note on Chinese lattice designs" Environment and Planning B:

Planning and Design 4 89-98

Stiny G, 1980a, "Introduction to shape and shape grammars" Environment and Planning B:

Planning and Design 7 343-351

Stiny G, 1980b, "Kindergarten grammars: designing with Froebel's building gifts"

Environment and Planning B: Planning and Design 7 409-462

Stiny G, 1991, "The algebras of design" Research in Engineering Design 2 171-181

Stiny G, 1992, "Weights" Environment and Planning B: Planning and Design 19 413-430

Stiny G, 2004, "How to calculate with shapes" in Formal Engineering Design Synthesis, Eds

E K Antonsson and J Cagan (Cambridge University Press) pp 20-64

Stiny G, 2006 Shape: Talking about seeing and doing (MIT Press, Cambridge)

Sting G, 2011, "What rule(s) should I use?", Nexus Network Journal, 13(1) 15-47

Stiny G, Gips J, 1971, "Shape grammars and the generative specification of painting and

sculpture", in Information Processing 71, North Holland, Amsterdam Ed C V Freiman pp

1460-1465

Stouffs R, 1994 The algebra of shapes PhD dissertation, Department of Architecture,

Carnegie Mellon University, Pittsburgh, PA

Stouffs R, Krishnamurti R, 1993, "The complexity of the maximal representations of shapes",

in The IFIP WG 5.2 Workshop on Formal Design Methods for CAD, Talinn, Estonia

Stouffs R, Krishnamurti R, 2006, "Algorithms for the classification and construction of the

boundary of a shapes" Journal of Design Research 5 54-95

EPB 138-227 Tractable shape grammars

 -43-

Watson B, Müller P, Veryovka O, Fuller A, Wonka P, Sexton C, 2008, "Procedural Urban

Modeling in Practice" IEEE Comput. Graph. Appl. 28 18-26

Weber B, Müller P, Wonka P, Gross M, 2009, "Interactive Geometric Simulation of 4D

Cities" Computer Graphics Forum

Yue K, 2009, Computation-Friendly Shape Grammars: With application to determining

the interior layout of buildings from image data, PhD dissertation, School of Architecture,

Carnegie Mellon University, Pittsburgh, PA

Yue K, Krishnamurti R, 2013, "A paradigm for interpreting parametric shape grammars",

Environment & Planning B: Planning and Design, forthcoming

